Электролитические и оптические методы контроля РЭСИ
Процесс электрографии на фильтрованной бумаге. Электрофорез – движение заряженных частиц, находящихся в виде суспензии в жидкости. Декорирование с помощью коронного разряда. Сравнительная оценка параметров электрохимических методов обнаружения дефектов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 03.02.2009 |
Размер файла | 926,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Республики Беларусь
Белорусский государственный университет информатики и
радиоэлектроники
кафедра РЭС
РЕФЕРАТ
на тему:
«Электролитические и оптические методы контроля РЭСИ»
МИНСК, 2008
Электрография.
Электролит состоит из бензидина, поверхностно-активного вещества и коллоида. Далее к ячейке прикладывают напряжение 5-10 В при 1 мкА и вы-держивают 5-10 мин. При приложении к ячейке напряжения неокрашенный раствор солянокислого бензидина окисляется с образованием темно-синих продуктов. После проведения процесса электрографии на фильтрованной бу-маге получается зеркальное изображение сквозных дефектов в виде темных пятен, форма и размер которых точно соответствует дефектам в диэлектриче-ской пленке. Процесс изображен на рисунке 1.
Электрофорез.
Электрофорез - движение заряженных частиц, находящихся в виде суспен-зии в жидкости, в электрическом поле между двумя электродами на одном из которых происходит осаждение частиц.
Процесс включает в себя: стадию заряда частиц, транспортирования в электрическом поле и осаждения. Положительно заряженными частицами оказываются частицы гидроокисей металлов, органических красителей, отри-цательно заряженными - частицы металлов, сульфидов и др. Ячейка для элек-трофореза представлена на рис. 2.
В качестве электролита используется ацетон или метиловый спирт. Расстояние между электродами 5 мм, время процесса 3 мин., напряжение до 80В.
При малой толщине окисла <<0,02 мкм наблюдаются дефекты, локализо-ванные непосредственно вблизи поверхности полупроводника (возможно, они возникли после механической полировки поверхности). До 0,04 мкм плот-ность выявленных дефектов возрастает, а затем быстро падает (рис.3).
Рисунок 1 - Принципиальная схема установки для электрохимической автогра-фии
1 - анод; 2 - кремниевая подложка;
3 - диэлектрическая пленка;
4 - мембранная бумага;
5 - катод.
Рисунок 2 - Испытательная ячейка для электрофореза
1 - исследуемая структура; 2 - электрододержатель;
3 - электролит; 4 - второй электрод (катод).
Рисунок 3 - Зависимость плотности дефектов от толщины слоя SiO2
Этот характер кривой можно объяснить дополнительным выявлением сквозных дислокаций через тонкую пленку окисла. При более толстом слое окисла d = 0,04 мкм эффект сквозных дислокаций ослабевает, выявляются только несквозные дефекты. При толщинах более 0,08 мкм выявляются де-фекты, образованные в результате осаждения пленок. Как видно из рис. 4 плотность пор, выявленная методом электролиза (нижняя кривая), много меньше плотности дефектов, выявленных электрофорезным декорированием (верхняя кривая), в связи с тем, что электролиз не способен выявить "скры-тые дефекты" и выявляет только сквозные поры. Электрофорез позволяет об-наруживать следующие виды дефектов: сквозные и несквозные поры окисла, скопления примесей вблизи поверхности.
Декорирование с помощью коронного разряда.
Этот метод является модификацией электрофорезного декорирования. На первом этапе процесса ионы коронного разряда осаждаются на поверхность образца и заряжают диэлектрические участки пленки. Этот заряд создает электрическое поле. Источником положительно заряженных ионов служит проволочная сетка, подсоединенная к высоковольтному источнику постоян-ного тока, обеспечивающему напряжение до ±10 кВ и ток до 6 мА. Сетка рас-полагается в 2 см над пластиной.
Рисунок 4 - Зависимость плотности дефектов от приложенного напряжения для методов
1 - электрофореза; 2 - электролиза.
На втором этапе образец погружается в суспензию, состоящую из заряжен-ных частиц.
При совпадении знаков зарядов осаждаемых частиц и диэлектрической пленки осаждение частиц идет в местах дефектов - происходит прямое деко-рирование, которое менее полезно, чем обратное, так как дефекты оказыва-ются закрытыми осадком.
При противоположных знаках зарядов частиц и диэлектрической пленки, частицы осаждаются всюду, кроме дефектов и окружающих их областей. Та-кой процесс называется обратным декорированием. Недостатком метода явля-ется необходимость работы с высокими напряжениями и необходимость тща-тельной очистки поверхности пластины.
Рисунок 5 - Схема процесса осаждения заряженных частиц на заряженную подложку
а) прямое декорирование; б) обратное декорирование
Сравнительная оценка параметров электрохимических методов обнаруже-ния дефектов в слоях двуокиси кремния представлена в таблице 1.
Таблица 1
Сравнительные характеристики параметров электрохимических ме-тодов контроля
Название метода |
Чувствительность, мкм |
Разрешающая способность, мкм |
|
Электролиз (пузырьковый) |
0,3 |
40-60 |
|
Электрография: а) Цветные реакции |
0,5 |
2-5 |
|
б) На фотобумаге |
0,1 - 0,3 |
200 - 300 |
|
Электрофорез |
0,1 - 0,3 |
10-30 |
|
Декорирование с помо-щью коронного разряда |
1 -5 |
Оптический контроль
Оптические методы неразрушающего контроля основаны на анализе взаимо-действия оптического излучения с объектом контроля. Методы оп-тического контроля и области их применения приведены в ГОСТ 23479-79 и ГОСТ 24521-80.
Спектр оптических излучений подразделяется по длине волны на три уча-стка: инфракрасное излучение (от 1 мм до 780 нм), видимое излучение (от 780 нм до 380 нм) и ультрафиолетовое излучение (от 380 нм до 10 нм).
Разрешающая способность оптических методов:
где А - коэффициент преломления среды (материала между наблюдаемым
объектом и линзами);
л - длина волны.
2б - максимальный угол при вершине конуса лучей, попадающих в точку
изображения на оптической оси;
D - числовая апертура линз объектива;
F - фокусное расстояние;
D - диаметр апертуры (диафрагмы) (см. рис. 6).
Для самых лучших современных объективов величина А, в случае воздуха, может достигать 0.95, а при заполнении пространства между объектом и объ-ективом маслом эта величина может быть увеличена до 1,5. Разрешение самых лучших оптических микроскопов достигает 0,3 мкм. Оптическими методами можно контролировать качество кристаллов и оснований ИС, монтажа, свар-ных и паяных соединений, плёнок и т. д. Основные методы оптического кон-троля приведены в таблице 2.
Рассмотрим наиболее часто применяющиеся методы оптического контроля в технологии РЭСИ.
Визуально-оптический контроль.
Одними из наиболее распространённых приборов визуального контроля являются микроскопы - бинокулярный, стереоскопический и проекционный. Точность контроля объекта при работе с проекционным экраном несколько меньше, чем при наблюдении в окуляр.
Бинокулярные и проекционные микроскопы можно разделить на «эписко-пические», (для контроля в отражённых лучах) и диаскопические (для кон-троля в проходящих лучах).
Оптическая схема эпископического проектора представлена на рис. 7. Контроль осуществляется в светлом поле зрения. Основным недостатком яв-ляется малая яркость и недостаточная контрастность изображений.
Диаскопические проекторы представляют собой либо просмотровую лупу создающую мнимое, прямое, увеличенное изображение, либо проекционное устройство, создающее действительное, обратное, увеличенное изображение. Различают линзовые и зеркальные диаскопы. Оптическая схема линзового диаскопа представлена на рис. 8. Рассматривание кадра осуществляется при освещении либо от специального источника света с искусственной подсвет-кой, либо на каком-нибудь ярком фоне с естественной подсветкой. Оптиче-ская схема зеркального диаскопа представлена на рис. 9.
Интерферометрический контроль.
Среди интерферометрических выделяют три характерных метода.
Цветовой метод. Основан на свойстве тонких прозрачных плёнок, нане-сённых на отражающую подложку, менять свой цвет в зависимости от толщи-ны (явление интерференционных световых лучей, отражённых от границы раздела «плёнка -- воздух» и «плёнка -- подложка»). Цвета плёнок двуокиси кремния в зависимости от толщины приведены в таблице 3.
Рисунок 6 - Оптическая схема
Рисунок 7 - Оптическая схема эпископического проектора
Таблица 2
Оптические методы неразрушающего контроля и области их применения.
Название метода |
Область при-менения |
Контролируе-мые параметры |
Чувст-витель-ность |
Отно-ситель ная по-греш-ность, % |
Факторы, ограничиваю-щие область применения |
|
1. Визуальный |
Дефектоскопия, контроль размеров |
Дефектность, отклонение от заданной формы изделия |
0,1 мм |
- |
Диапазон длин волн должен быть 0,38 - 0,76 мкм |
|
2. Визуально - оптический |
Дефектоскопия с помощью микроскопов и проекционных устройств |
Размеры изделий, дефектов, отклонений от заданной формы |
0,6 А |
0,1-1,0 |
Минимальная яркость объекта контроля не менее 1 кд/м2 |
|
3. Фотометрический |
Контроль параметров осаждения тонких пленок |
Интенсивность излучений, отражаемых или пропускаемых контролируемыми структурами |
0,6 А |
5 |
- |
|
4. Реф-лексомет-рический |
Контроль шероховатости поверхности изделий |
Коэффициент отражения |
0,6 А |
1,0 |
- |
|
5. Денси-тометри-ческий |
Контроль оптической плотности прозрачных пленок |
Коэффициент пропускания, оптическая плотность |
А |
1,0 |
Применим для нерассеи-вающих прозрачных сред |
|
6. Нефе-лометри-ческий |
Анализ структуры кристаллов |
Коэффициент рассеивания, концентрация включений |
0,6 А |
1,0 |
- |
|
7. Реф-ракцион-ный |
Контроль оп-тических сред |
Показатель преломления |
0,6 А |
0,01 |
Применим для оптиче-ски прозрач-ных сред |
|
8. Интер-феромет-рический |
Контроль тол-щины, шеро-ховатости и размеров из-делий |
Толщина, раз-меры изделий |
0,1 |
0,1 |
Поверхность изделий должна быть отполирован-ной |
|
9. Ди-фракци-онный |
Контроль размеров тон-ких волокон, формы острых кромок, от-верстий |
Диаметры во-локон, разме-ры дефектов, острых кромок |
0,1 |
1,0 |
Размеры де-фектов долж-ны быть сравнимы с длиной волны света |
|
10. Спек-тральный |
Контроль спектральных характеристик изделий в проходящем и отраженном свете |
Спектральные коэффициен-ты отражения, поглощения, пропускания, концентрация вещества |
10-4 |
1,0 |
- |
|
11. Поля-ризаци-онный |
Контроль на-пряжений в прозрачных средах, анализ степени поля-ризации ис-точников све-та, эллипсо-метрическая толщиномет-рия (одновре-менно кон-троль толщи-ны и показа-теля прелом-ления) |
Вращение плоскости по-ляризации, толщина и показатель преломления |
1,0 |
Применим только для оптически прозрачных сред |
||
12. Стро-боскопический |
Дефектоско-пия и размер-ный контроль подвижных объектов |
Угловая ско-рость, дефект-ность |
10-6 с |
5,0 |
- |
|
13. Голо-графиче-ский |
Контроль геометрии объектов сложной формы (фотошаблонов). |
Деформации, перемещения, отклонения от заданной формы, гради-енты показа-теля прелом-ления |
0,1 |
1,0 |
- |
|
14. Теле-визион-ный |
Оптический анализ струк-туры веществ, измерение линейных размеров |
Размеры де-фектов |
1,0 |
- |
Таблица 3
Цвета плёнок двуокиси кремния в зависимости от толщины
Цвет пленки |
Толщина пленки двуокиси кремния, мкм |
|
Бежевый |
0,05 |
|
Темно-фиолетовый |
||
Светло-красновато-фиолетовый |
0,85 |
Относительная погрешность измерения толщины пленок составляет 10%.
Первый эллипсометрический параметр (отношение амплитуд компонент, параметр условно обозначили через тангенс) определяется из соотношения:
Второй эллипсометрический параметр определяется из соотношения:
Рисунок 8 - Оптическая схема линзового диаскопа (изображение
мнимое, пря-мое, увеличенное)
Рисунок 9 - Оптическая схема зеркального диаскопа с искусственно-
подсвет-кой (изображение действительное, обратное, увеличенное)
Таким образом, параметр А есть относительная разность фаз между Р и S компонентами, возникшая вследствие отражения от рассматриваемой структу-ры. Основное уравнение эллипсометрии имеет вид:
Величина р для случая тонкой прозрачной диэлектрической пленки на по-верхности полупроводника является функцией, показателей преломления ок-ружающей среды, пленки и подложки , толщины пленки d, длины вол-ны лизерия л и угла падения луча на образец - (см. рис. 10).
Конкретная зависимость имеет вид
Рисунок 10 - Ход лучей при отражении линейно поляризованного
света от по-верхности полупроводника с пленкой
r1p, r2p, r1s, r2s - соответ-ственно коэффициенты отражения раздела «воздух-пленка» и «пленка-подложка»;
- изменение фазы, вызванное прохождени-ем луча света через пленку толщиной d.
Метод контроля с помощью интерференциональных микроскопов. Для контроля толщины покрытия необходимо получить на подложке, с на-пыленной на ней пленкой, уступ. Толщина слоя находится как:
где а - величина изгиба полосы
b - расстояние между соседними темными и светлыми полосами.
л - длина волны источника света
Широко распространенный микроскоп МИИ-4 позволяет контролировать толщину пленок от 0,03 до 2,2 мкм с относительной погрешностью 5%.
Метод контроля с помощью лазерной интерферометрии (контроль диэлектри-ческих пленок в процессе их получения).
Вследствие интерференции отраженных от границ («пленка - подложка» и «пленка - среда») лучей, интенсивность сигнала фотоэлемента меняется периодически с изменением толщины наращиваемой пленки. Общая тол-щина диэлектрической пленки нанесенной на стеклянную или ситалловую подложку:
где Z - суммарное число экстремумов (т.е. максимумов и минимумов); л - длина волны монохроматического света; n - показатель преломления пленки; ц - угол преломления луча в пленки.
Лазерная интерферометрия позволяет контролировать не только суммар-ную толщину, но и промежуточную. Для измерения толщины эпитаксиальных слоев от 2 до 50 мкм используется спектральный диапазон инфракрасного (ИК) излучения. В диапазоне ИК волн исследуемые пленки прозрачны.
Поляризационный (эллипсометрический) контроль.
Этот метод основан на изменении поляризации света, отраженного от подложки с тонкой прозрачной пленкой на поверхности. [29;30] При осве-щении подложки линейно-поляризованным светом, составляющие излуче-ния (параллельная и перпендикулярная плоскости падения) отражаются по разному, в результате чего, после отражения излучение оказывается эллип-тически поляризованным (рис.11). Отсчет положительных значений угла ведется против часовой стрелки. Измерив эллиптичность отраженной вол-ны, можно определить свойства пленки, вызвавшей изменения поляризации. Состояние эллиптической поляризации определяется двумя эллипсометрическими параметрами и А.
Зная оптические параметры, толщину пленки d (изменяется от 0,5 до 10 мкм), длину волны л (составляет 0,5-0,6 мкм), угол падения (изменяется от 45° до 75°) и экспериментально определив значение и А и определя-ют показатель преломления . Результатами расчета являются номограммы (рис. 12), на которых представлены зависимости A, . Величины ш и А являются периодическими функциями толщины и повторяются через так называемый эллипсометрический период равный 250...300 нм, в зави-симости от показания преломления п, и угла падения . После прибли-женного определения , а также и в том случае, когда величина n, извест-на заранее, используют кривые и (рис 13), построен-ные для определенного значения углов падений и показателей преломле-ния для более точного определения толщины пленки d. Используя лазер-ную эллипсометрию, определяют толщины пленок от до 17 мкм и показатели преломления от 1,1 до 3,0.
Разновидностью эллипсометрии является инфракрасная эллипсометрия. Она используется для определения толщины пленок и концентрации носителей за-ряда в сильнолегированных подложках (структуры nn+, pp+, Si, Ge, GaAs). Кон-троль толщины осуществляется в диапазоне от 1 до 10 мкм в структурах крем-ния, GaAs на 154мкм. В сильнолегированных положках из-за большого погло-щения света на свободных носителях (исследуемая пленка становиться непроз-рачной для видимого диапазона длин волн) показатель преломления начинает зависеть от концентрации носителей.
Толщина пленки и концентрация носителей заряда рассчитывается по зави-симости:
где d - толщина пленки;
n - концентрация носителей заряда.
Оптические методы контроля обладают высокой разрешающей способнос-тью и хорошей чувствительностью и позволяют перейти от традиционного ис-пользования зрительного рецептора оператора к автоматическим методам обра-ботки изображения и использованию полученной информации в процессах ис-пытания РЭСИ.
Рисунок 11 - Номограммы ш и А для приближенного определения
показателей пре-ломления n и толщины d эпитаксиальных пленок
Рисунок 12 - Номограммы для определения толщины пленок
Рисунок 13 - Спектральная зависимость показателя преломления с различной кон-центрацией свободных носителей от длины волны падающего излу-чения 1 - N=1018 см3; 2 - N=1019 см3
ЛИТЕРАТУРА
1. Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. - М.: Высш. школа., 2001 - 335 с
2. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 - 272 с.
3. Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 - 567 с
4. Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007
5. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств - Техносфера, 2005. - 504с.
Подобные документы
Определения в области испытаний и контроля качества продукции, понятие и контроль. Проверка показателей качества технических устройств. Цель технического контроля. Классификация видов и методов неразрушающего контроля. Электромагнитные излучения.
реферат [552,7 K], добавлен 03.02.2009Необходимое условие применения СВЧ-методов. Варианты схем расположения антенн преобразователя по отношению к объекту контроля. Три группы методов радиоволновой дефектоскопии: на прохождение, отражение и на рассеяние. Аппаратура радиоволнового метода.
реферат [2,8 M], добавлен 03.02.2009Анализ методов обнаружения и определения сигналов. Оценка периода следования сигналов с использованием методов полных достаточных статистик. Оценка формы импульса сигналов для различения абонентов в системе связи без учета передаваемой информации.
дипломная работа [3,0 M], добавлен 24.01.2018Радиационные и радиоактивные методы НК (РНК). Схема рентгеновской трубки. Разновидности ионизирующих излучений, используемых в РНК. Электронная дефектоскопия. Характер взаимодействия заряженных частиц с материалами. Рентгеновский проекционный микроскоп.
реферат [695,9 K], добавлен 24.12.2008Назначение, классификация и основные характеристики оптических средств обнаружения, принцип действия, универсальность и особенности применения. Сущность сигналообразования, классификация помех, сравнительный анализ методов повышения помехоустойчивости.
реферат [1,8 M], добавлен 27.08.2009Электромагнитные методы неразрушающего контроля. Особенности вихретокового метода неразрушающего контроля. Основные методы возбуждения вихревых токов в объекте. Дефектоскопы многоцелевого назначения. Использование тепловых метода неразрушающего контроля.
реферат [782,1 K], добавлен 03.02.2009Результаты эксплуатации РЭСИ используются для получения экспериментальных значений их критериев надежности. Определение оценок параметров и доверительных границ для параметров экспоненциального распределения. Использование распределения Пуассона.
реферат [80,4 K], добавлен 28.01.2009Системы связи: GPS, Глонасс для обнаружения местонахождения, их сравнительное описание и функциональные особенности, оценка преимуществ и недостатков, условия использования. Система контроля движение для пациентов. Безопасность данных пользователя.
дипломная работа [2,0 M], добавлен 16.06.2015Методы проведения испытаний РЭСИ. Общий подход к планированию испытаний. Основные положения программы испытаний. Содержание основных разделов программы испытаний и рекомендации по их выполнению. Основные требования и содержания методики испытаний.
реферат [29,1 K], добавлен 14.01.2009Выбросы ПКГ и критерии исключения. Статистическая обработка результатов испытаний РЭСИ. Оценка ошибок измерения и исключения значений ПКГ. Коэффициент Диксона и основные формулы для его расчета. Графические методы представления экспериментальных данных.
реферат [152,1 K], добавлен 28.01.2009