Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств

Структурная схема тракта передачи. Модели мощных транзисторов. Проектирование выходных цепей коррекции, согласования и фильтрации. Проектирование цепей формирования амплитудно-частотных характеристик. Метод параметрического синтеза.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид учебное пособие
Язык русский
Дата добавления 19.11.2003
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4

Министерство образования Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиоэлектроники и защиты информации (РЗИ)

УТВЕРЖДАЮ

Заведующий кафедрой РЗИ

доктор технических наук, профессор

________________В.Н. Ильюшенко

____ _____________________2003 г.

Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств

Учебно-методическое пособие по курсовому проектированию

для студентов радиотехнических специальностей

Разработчик:

доцент кафедры РЗИ

кандидат технических наук

_______________А.А. Титов;

Томск - 2003

УДК 621.396

Рецензент: А.С. Красько, старший преподаватель кафедры Радиоэлектроники и защиты информации Томского государственного университета систем управления и радиоэлектроники.

Титов А.А.

Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств: Учебно-методическое пособие по курсовому проектированию для студентов радиотехнических специальностей. - Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2003. - 64 с.

Пособие содержит описание схемных решений построения цепей формирования амплитудно-частотных характеристик, согласования и фильтрации широкополосных и полосовых усилителей мощности радиопередающих устройств, методов их проектирования по заданным требованиям к тракту передачи.

© Томский гос. ун-т систем

управления и радиоэлектроники, 2003

©Титов А.А., 2003

Содержание

Введение…………………………………………………………………..……...........4
1. Исходные данные для проектирования …….....………...……………...……......5
1.1. Структурная схема тракта передачи .................................................................5
1.2. Модели мощных транзисторов ..........................................................................7
2. Проектирование выходных цепей коррекции, согласования и фильтрации .....9
2.1. Выходная корректирующая цепь широкополосного усилителя....................9
2.2. Выходной согласующий трансформатор широкополосного усилителя ....12
2.3. Выходной согласующий трансформатор полосового усилителя ...............15
2.4. Фильтры высших гармонических составляющих полосового усилителя..17
3. Проектирование цепей формирования амплитудно-частотных
характеристик .......................................................................................................19
3.1. Метод параметрического синтеза мощных усилительных каскадов
с корректирующими цепями...........................................................................20
3.2. Параметрический синтез широкополосных усилительных каскадов ........24
3.2.1. Параметрический синтез широкополосных усилительных каскадов
с корректирующей цепью второго порядка .................................................25
3.2.2. Параметрический синтез широкополосных усилительных каскадов
с корректирующей цепью третьего порядка ............................................... 29
3.2.3. Параметрический синтез широкополосных усилительных каскадов
с заданным наклоном амплитудно-частотной характеристики .................35
3.3. Параметрический синтез полосовых усилительных каскадов....................43
3.3.1. Параметрический синтез полосовых усилительных каскадов
с корректирующей цепью третьего порядка................................................44
3.3.2. Параметрический синтез полосовых усилительных каскадов
с корректирующей цепью четвертого порядка............................................47
3.3.3. Параметрический синтез полосовых усилительных каскадов
с корректирующей цепью, выполненной в виде фильтра нижних
частот .............................................................................................................54
4. Список использованных источников ..……………………………..................60

ВВЕДЕНИЕ

Задача оптимальной реализации входных, выходных и межкаскадных корректирующих цепей, цепей фильтрации и согласования широкополосных и полосовых усилителей мощности радиопередающих устройств по заданным требованиям к тракту передачи является неотъемлемой частью процесса проектирования передатчиков телевизионного и радиовещания, сотовой и пейджингогой связи, систем линейной и нелинейной радиолокации. В известной учебной и научной литературе материал, посвященный этой проблеме, не всегда представлен в удобном для проектирования виде. К тому же в теории радиопередающих устройств нет доказательств преимущества использования того либо иного схемного решения при разработке конкретного передатчика. В этой связи проектирование усилителей мощности радиопередающих устройств во многом основано на интуиции и опыте разработчика. При этом, разные разработчики, чаще всего, по-разному решают поставленные перед ними задачи, достигая требуемых результатов. В этой связи в данном пособии собраны наиболее известные и эффективные схемные решения построения входных, выходных и межкаскадных корректирующих цепей, цепей фильтрации и согласования широкополосных и полосовых усилителей мощности, а соотношения для расчета даны без выводов. Ссылки на литературу позволяют найти, при необходимости, доказательства справедливости приведенных соотношений. Поскольку, как правило, усилители мощности работают в стандартном 50 либо 75-омном тракте, соотношения для расчета даны исходя из условий, что их оконечные каскады работают на чисто резистивную нагрузку, а входные - от чисто резистивного сопротивления генератора.

1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

1.1. СТРУКТУРНАЯ СХЕМА ТРАКТА ПЕРЕДАЧИ

Радиопередающие устройства предназначены для формирования радиочастотных сигналов, их усиления и последующей передачи этих сигналов к потребителю.

Общая структурная схема радиопередающего устройства может быть представлена в виде, изображенном на рис. 1.1 [1].

Рис. 1.1

Основными элементами этой схемы являются:

- возбудитель, предназначенный для формирования несущего колебания;

- модулирующее устройство, изменяющее параметры несущего колебания для однозначного отображения в нем передаваемой информации;

- усилитель мощности, предназначенный для обеспечения необходимых энергетических характеристик электромагнитных колебаний.

Методы проектирования возбудителей, модулирующих устройств, усилителей мощности и способы решения общих вопросов построения радиопередающих устройств описаны в [1-4]. В настоящее время возрастают требования к таким параметрам радиопередающих устройств как коэффициент полезного действия, уровень выходной мощности, полоса рабочих частот, уровень внеполосных излучений, массогабаритные показатели, стоимость, которые в значительной мере определяются применяемыми в них усилителями мощности.

В общем случае структурная схема усилителя мощности может быть представлена в виде, приведенном на рис. 1.2.

Рис. 1.2

Входная цепь коррекции и согласования совместно с входным транзистором образуют входной каскад, межкаскадная корректирующая цепь (КЦ) и выходной транзистор образуют выходной каскад. При необходимости между входным и выходным каскадом может быть включен один или несколько промежуточных каскадов. Входная цепь коррекции и согласования предназначена для согласования входного сопротивления усилителя мощности с выходным сопротивлением модулятора и формирования заданной амплитудно-частотной характеристики входного каскада. Наибольшее распространение в настоящее время получила реализация входной цепи коррекции и согласования в виде последовательного соединения аттенюатора и КЦ той же структуры, что и межкаскадная КЦ [5, 6]. Межкаскадная КЦ предназначена для формирования заданной амплитудно-частотной характеристики выходного каскада. Согласующе-фильтрующее устройство служит для устранения влияния реактивной составляющей выходного импеданса транзистора на уровень выходной мощности выходного каскада, для реализации оптимального, в смысле достижения выходной мощности, сопротивления нагрузки внутреннего генератора транзистора выходного каскада, для обеспечения заданного уровня внеполосных излучений радиопередающего устройства.

Радиопередатчики чаще всего классифицируют по пяти основным признакам [3, 4]: назначению, объекту использования, диапазону рабочих частот, мощности и виду излучения. В настоящем учебно-методическом пособии рассмотрены вопросы построения цепей формирования амплитудно-частотных характеристик, согласования и фильтрации транзисторных широкополосных и полосовых усилителей мощности радиопередающих устройств диапазона метровых и дециметровых волн. Предполагается, что требуемая выходная мощность радиопередатчика может быть получена от одного современного транзистора без использования устройств суммирования мощности нескольких активных элементов. Для широкополосных усилителей это десятки ватт, для полосовых - сотни ватт.

1.2. МОДЕЛИ МОЩНЫХ ТРАНЗИСТОРОВ

Используемые в настоящее время методы проектирования усилителей мощности радиопередающих устройств диапазона метровых и дециметровых волн основаны на применении однонаправленных моделей мощных биполярных и полевых транзисторов [7-12], принципиальные схемы которых приведены рис. 1.3 и 1.4.

Рис. 1.3. Однонаправленная модель биполярного транзистора

Значения элементов однонаправленной модели биполярного транзистора, представленной на рис. 1.3, могут быть рассчитаны по следующим формулам [7, 10]:

;

;

;

,

где , - индуктивности выводов базы и эмиттера;

- сопротивление базы;

- емкость коллекторного перехода;

, - максимально допустимые постоянное напряжение коллектор-эмиттер и постоянный ток коллектора.

При расчетах по схеме замещения приведенной на рис. 1.3, вместо используют параметр - коэффициент усиления транзистора по мощности в режиме двухстороннего согласования [3], равный:

, (1.1)

где = - круговая частота, на которой коэффициент усиления транзистора по мощности в режиме двухстороннего согласования равен единице;

- текущая круговая частота.

Формула (1.1) и однонаправленная модель (рис. 1.3) справедливы для области рабочих частот выше [11], где - статический коэффициент передачи тока в схеме с общим эмиттером; - граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Рис. 1.4. Однонаправленная модель полевого транзистора

Значения элементов однонаправленной модели полевого транзистора, представленной на рис. 1.4, могут быть рассчитаны по следующим формулам [1, 11]:

=+;

=+;

=,

где - емкость затвор-исток;

- емкость затвор-сток;

- емкость сток-исток;

- крутизна;

- сопротивление сток-исток;

- сопротивление нагрузки каскада на полевом транзисторе.

Приведенные в данном учебно-методическом пособии соотношения для проектирования входных, выходных и межкаскадных КЦ, цепей фильтрации и согласования широкополосных и полосовых усилителей мощности радиопередающих устройств основаны на использовании приведенных однонаправленных моделей транзисторов.

2. ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации

Построение согласующе-фильтрующих устройств радиопередатчиков диапазона метровых и дециметровых волн основано на использовании выходных КЦ, широкополосных трансформаторов импедансов на ферритах, полосовых трансформаторов импедансов, выполненных в виде фильтров нижних частот, фильтрующих устройств, в качестве которых чаще всего используются фильтры Чебышева и Кауэра.

2.1. ВЫХОДНАЯ КОРРЕКТИРУЮЩАЯ ЦЕПЬ ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ

При проектировании широкополосных передатчиков малой и средней мощности основной целью применения выходной КЦ усилителя этого передатчика является требование реализации постоянной в заданной полосе рабочих частот величины ощущаемого сопротивления нагрузки внутреннего генератора транзистора выходного каскада. Это необходимо для обеспечения идентичности режимов работы транзистора на разных частотах заданного диапазона, что позволяет отдавать в нагрузку не зависимое от частоты требуемое значение выходной мощности.

Поставленная цель достигается включением выходной емкости транзистора (см. рис. 1.3 и 1.4) в фильтр нижних частот, используемый в качестве выходной КЦ [2]. Принципиальная схема усилительного каскада с выходной КЦ приведена на рис. 2.1,а, эквивалентная схема включения выходной КЦ по переменному току - на рис. 2.1,б, где - разделительный конденсатор, - резисторы базового делителя, - резистор термостабилизации, - блокировочный конденсатор, - дроссель, - сопротивление нагрузки, - элементы выходной КЦ, - ощущаемое сопротивление нагрузки внутреннего генератора транзистора выходного каскада.

а) б)

Рис. 2.1

При работе усилителя без выходной КЦ модуль коэффициента отражения || ощущаемого сопротивления нагрузки внутреннего генератора транзистора равен [2]:

|| = , (2.1)

где - текущая круговая частота.

В этом случае относительные потери выходной мощности, обусловленные наличием , составляют величину [2]:

, (2.2)

где - максимальное значение выходной мощности на частоте при условии равенства нулю ;

- максимальное значение выходной мощности на частоте при наличии.

Описанная в [2] методика Фано позволяет при заданных и верхней граничной частоте полосы пропускания разрабатываемого усилителя рассчитать такие значения элементов выходной КЦ и , которые обеспечивают минимально возможную величину максимального значения модуля коэффициента отражения в полосе частот от нуля до . В таблице 2.1 приведены взятые из [2] нормированные значения элементов , , , а также коэффициент, определяющий величину ощущаемого сопротивления нагрузки относительно которого вычисляется .

Истинные значения элементов рассчитываются по формулам:

(2.3)

где = - верхняя круговая частота полосы пропускания усилителя.

Пример 2.1. Рассчитать выходную КЦ для усилительного каскада на транзисторе КТ610А (=4 пФ [13]), при = 50 Ом, =600 МГц. Определить и уменьшение выходной мощности на частоте при использовании КЦ и без нее.

Решение. Найдем нормированное значение : = = = 0,7536. В таблице 2.1 ближайшее значение равно 0,753. Этому значению соответствуют:= 1,0; = 0,966; =0,111; =1,153. После денормирования по формулам (2.3) получим: = 12,8 нГн; = 5,3 пФ; = 43,4 Ом. Используя соотношения (2.1), (2.2) найдем, что при отсутствии выходной КЦ уменьшение выходной мощности на частоте, обусловленное наличием , составляет 1,57 раза, а при ее использовании - 1,025 раза.

Таблица 2.1 - Нормированные значения элементов выходной КЦ

0,1

0,2

0,3

0,4

0,5

0,180

0,382

0,547

0,682

0,788

0,099

0,195

0,285

0,367

0,443

0,000

0,002

0,006

0,013

0,024

1,000

1,001

1,002

1,010

1,020

0,6

0,7

0,8

0,9

1,0

0,865

0,917

0,949

0,963

0,966

0,513

0,579

0,642

0,704

0,753

0,037

0,053

0,071

0,091

0,111

1,036

1,059

1,086

1,117

1,153

1,1

1,2

1,3

1,4

1,5

0,958

0,944

0.927

0,904

0,882

0,823

0,881

0,940

0,998

1,056

0,131

0,153

0,174

0,195

0,215

1,193

1,238

1,284

1,332

1,383

1,6

1,7

1,8

1,9

0,858

0,833

0,808

0,783

1,115

1,173

1,233

1,292

0,235

0,255

0,273

0,292

1,437

1,490

1,548

1,605

2.2. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ

При проектировании широкополосных передатчиков средней и большой мощности одной из основных является задача максимального использования транзистора выходного каскада усилителя по выходной мощности. Оптимальное сопротивление нагрузки мощного транзистора, на которое он отдает максимальную мощность, составляет единицы ом [2]. Поэтому между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, реализуемый, как правило, на ферритовых сердечниках и длинных линиях [1-4, 14]. Принципиальная схема усилительного каскада с трансформатором импедансов, имеющим коэффициент трансформации сопротивления 1:4, приведена на рис. 2.2,а, эквивалентная схема по переменному току - на рис. 2.2,б, где - конденсатор фильтра; - трансформатор; , - элементы схемы активной коллекторной термостабилизации [15]; - транзистор выходного каскада усилителя. На рис. 2.2,в приведен пример использования трансформатора с коэффициентом трансформации 1:9.

б)

а) в)

Рис. 2.2

Согласно [16, 17] при заданном значении нижней граничной частоты полосы пропускания разрабатываемого усилителя требуемое число витков длинных линий, наматываемых на ферритовые сердечники трансформатора, определяется выражением:

, (2.4)

где d - диаметр сердечника в сантиметрах;

N - количество длинных линий трансформатора;

- относительная магнитная проницаемость материала сердечника;

S - площадь поперечного сечения сердечника в квадратных сантиметрах.

Значение коэффициента перекрытия частотного диапазона трансформирующих и суммирующих устройств на ферритовых сердечниках и длинных линиях лежит в пределах 2·104...8·104 [16, 17]. Поэтому, приняв коэффициент перекрытия равным 5·104, верхняя граничная частота полосы пропускания трансформатора может быть определена из соотношения:

(2.5)

При расчетах трансформаторов импедансов по соотношениям (2.4) и (2.5) следует учитывать, что реализация более 1 ГГц технически трудно осуществима из-за влияния паразитных параметров трансформаторов на его характеристики [3].

Требуемое волновое сопротивление длинных линий разрабатываемого трансформатора рассчитывается по формуле [16, 17]:

. (2.6)

Методика изготовления длинных линий с заданным волновым сопротивлением описана в [18].

Входное сопротивление трансформатора, разработанного с учетом (2.4) - (2.6), равно:

. (2.7)

Пример 2.2. Рассчитать , , трансформатора на ферритовых сердечниках и длинных линиях с коэффициентом трансформации сопротивления 1:9, если = 50 Ом, = 5 кГц.

Решение. В качестве ферритовых сердечников трансформатора выберем кольца марки М2000НМ 20х10х5,имеющих параметры: = 2000; d = 6 см; S = 0,5 см2. Из (2.5) - (2.7) определим: N = 3, = 16,7 Ом, = 250 МГц. Теперь по известным параметрам кольца из (2.4) найдем: n=16,7. То есть для создания трансформатора импедансов с = 5 кГц необходимо на каждом ферритовом кольце намотать не менее 17 витков. Длина одного витка длинной линии, намотанной на ферритовое кольцо, равна 3 см. Умножая это значение на 17, получим, что минимальная длина длинных линий должна быть не менее 51 см. С учетом необходимости соединения длинных линий между собой, с нагрузкой и выходом усилителя, следует длину каждой длинной линии увеличить на
2...3 см.

2.3. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР полосового УСИЛИТЕЛЯ

При проектировании полосовых передатчиков средней и большой мощности, также как и при проектировании широкополосных, одной из основных является задача максимального использования по выходной мощности транзистора выходного каскада усилителя. Однако в этом случае между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, выполненный в виде фильтра нижних частот [3, 19, 20]. Чаще всего он выполняется в виде фильтра нижних частот четвертого порядка [19-23]. Принципиальная схема усилительного каскада с таким трансформатором приведена на рис. 2.3,а, эквивалентная схема по переменному току - на рис. 2.3,б, где элементы формируют трансформатор импедансов, обеспечивающий оптимальное, в смысле достижения максимального значения выходной мощности, сопротивление нагрузки транзистора и практически не влияют на форму АЧХ усилительного каскада. Методика расчета оптимального сопротивления нагрузки мощного транзистора дана в [2, 3, 24].

Наиболее полная и удобная для инженерных расчетов методика проектирования рассматриваемых трансформаторов импедансов приведена в [25, 26]. В таблице 2.2 представлены взятые из [26] нормированные относительно и значения элементов для относительной полосы рабочих частот трансформатора равной 0,2 и 0,4 и для коэффициента трансформации сопротивления лежащего в пределах 2...30 раз, где = - входное сопротивление трансформатора в полосе его работы, = - средняя круговая частота полосы рабочих частот трансформатора.

а) б)

Рис. 2.3

Выбор w равной 0,2 и 0,4 обусловлен тем, что это наиболее часто реализуемая относительная полоса рабочих частот полосовых передатчиков средней и большой мощности, так как в этом случае перекрывается любой из каналов телевизионного вещания и диапазоны ЧМ и FM радиовещания [27].

Таблица 2.2 - Нормированные значения элементов трансформатора

2

3

4

6

8

10

15

20

30

w = 0,2

0,821

1,02

1,16

1,36

1,51

1,62

1,84

2,02

2,27

0,881

0,797

0,745

0,671

0,622

0,585

0,523

0,483

0,432

w = 0,4

0,832

1,04

1,19

1,40

1,56

1,69

1,95

2,15

2,46

0,849

0,781

0,726

0,649

0,598

0,559

0,495

0,453

0,399

При выбранных значениях нормированные значения элементов определяются из соотношений [23]:

(2.8)

Истинные значения элементов рассчитываются по формулам:

(2.9)

Пример 2.3. Рассчитать элементы трансформатора импедансов (рис. 2.3) при w = 0,2, = 20 и предназначенного для работы в FM диапазоне (88...108 МГц) на нагрузку 75 Ом.

Решение. Из таблицы 2.2 для = 20 найдем: = 2,02, = 0,483. По формулам (2.8) определим: = 9,67, = 0,101. С учетом того, что == 3,75 Ом, а == 6.154·108 из (2.9) получим: = 12,3 нГн, = 208 пФ, = 58,9 нГн, = 43,7 пФ.

2.4. Фильтры высших гармонических составляющих полосового усилителя

Выходные каскады полосовых усилителей мощности работают, как правило, в режиме с отсечкой коллекторного тока, так как в этом случае можно получить в нагрузке значительно большую мощность, чем от каскада, работающего в режиме без отсечки, при одновременном обеспечении более высокого коэффициента полезного действия [2, 3, 4, 9, 24]. Однако в этом случае сигнал на выходе усилителя оказывается не синусоидальным и содержит в своем спектре высшие гармонические составляющие, приводящие к большим внеполосным излучениям. В соответствии с требованиями ГОСТ [28, 29], уровень любого побочного (внеполосного) радиоизлучения передатчиков с выходной мощностью более 25 Вт должен быть не менее чем на 60 дБ ниже максимального значения выходной мощности радиосигнала. Указанное требование достигается установкой на выходах усилителей мощности фильтрующих устройств, в качестве которых чаще всего используются фильтры Чебышева (рис. 2.4) и фильтры Кауэра (рис. 2.5) [2, 3, 4, 30].

Рис. 2.4

Рис. 2.5

В таблице 2.3 представлены взятые из [31] нормированные относительно и значения элементов приведенных фильтров, соответствующие максимальному значению затухания в полосе пропускания равному 0,1 дБ.

Таблица 2.3 - Нормированные значения элементов фильтров

Тип

,дБ

N=5

Ч

37

1,14

1,37

1,97

1,37

1,14

К

57

1,08

1,29

0,078

1,78

1,13

0,22

0,96

N=6

Ч

49

1,16

1,40

2,05

1,52

1,90

0,86

К

72

1,07

1,28

0,101

1,82

1,28

0,19

1,74

0.87

N=7

Ч

60

1,18

1,42

2,09

1,57

2,09

1,42

1,18

К

85

1,14

1,37

0,052

1,87

1,29

0,23

1,79

1,23

0,17

1,03

При этом приняты следующие обозначения: N - порядок фильтра; - гарантированное затухание высших гармонических составляющих на выходе фильтра; Ч - фильтр Чебышева; К - фильтр Кауэра.

Истинные значения элементов рассчитываются по формулам:

(2.10)

Пример 2.4. Рассчитать фильтр Кауэра пятого порядка при = 50 Ом и = 100 МГц.

Решение. Из таблицы 2.3 найдем, что нормированные значения элементов фильтра Кауэра пятого порядка равны: = 1,08; = 1,29; = 0,078; = 1,78; = 1,13; = 0,22; = 0,96. После денормирования по формулам (2.10) получим: = 34,4 пФ; = 103 нГн; = 2,5 пФ; = 56,7 пФ; = 90 нГн; = 7,0 пФ; = 30,6 пФ. Как следует из таблицы 2.3, спроектированный фильтр обеспечивает гарантированное затухание высших гармонических составляющих на выходе фильтра равное 57 дБ.

3. ПРОЕКТИРОВАНИЕ ЦЕПЕЙ ФОРМИРОВАНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

Цепи формирования амплитудно-частотных характеристик (АЧХ) служат для реализации максимально возможного для заданного схемного решения коэффициента усиления усилительного каскада при одновременном обеспечении заданного допустимого уклонения его АЧХ от требуемой формы. К ним относятся межкаскадные и входные корректирующие цепи (КЦ). Необходимость выполнения указанного требования обусловлена тем, что коэффициент усиления одного каскада многокаскадного усилителя мощности метрового и дециметрового диапазона волн не превышает 3-10 дБ [5, 19, 20]. В этом случае увеличение коэффициента усиления каждого каскада, например, на 2 дБ, позволяет повысить коэффициент полезного действия всего усилителя мощности в 1,2-1,5 раза [32].

Задача нахождения значений элементов КЦ, обеспечивающих максимальный коэффициент усиления каскада, в каждом конкретном случае может быть решена с помощью программ оптимизации. Однако наличие хорошего начального приближения значительно сокращает этап последующей оптимизации или делает его излишним [3, 20, 33].

Рассмотрим метод параметрического синтеза КЦ усилителей мощности радиопередающих устройств метрового и дециметрового диапазона волн, позволяющий по таблицам нормированных значений элементов КЦ осуществлять реализацию усилительных каскадов с максимально возможным для заданного схемного решения коэффициентом усиления при одновременном обеспечении заданного допустимого уклонения АЧХ от требуемой формы [32].

3.1. МЕТОД ПАРАМЕТРИЧЕСКОГО СИНТЕЗА МОЩНЫХ УСИЛИТЕЛЬНЫХ КАСКАДОВ С КОРРЕКТИРУЮЩИМИ ЦЕПЯМИ

Согласно [3, 34, 35], коэффициент передачи усилительного каскада с КЦ в символьном виде может быть описан дробно-рациональной функцией комплексного переменного:

, (3.1)

где ;

- нормированная частота;

- текущая круговая частота;

- верхняя круговая частота полосы пропускания широкополосного усилителя, либо центральная круговая частота полосового усилителя;

- коэффициенты, являющиеся функциями параметров КЦ и нормированных элементов аппроксимации входного импеданса транзистора усилительного каскада.

Выберем в качестве прототипа передаточной характеристики (3.1) дробно-рациональную функцию вида:

. (3.2)

Найдём такие её коэффициенты, которые позволят из системы нелинейных уравнений [11]:

(3.3)

рассчитать нормированные значения элементов КЦ, обеспечивающие максимальный коэффициент усиления каскада при заданном допустимом уклонении его АЧХ от требуемой формы.

В теории усилителей нет разработанной методики расчета коэффициентов . Поэтому для их расчета воспользуемся методом оптимального синтеза электрических фильтров [36, 37].

В соответствии с указанным методом перейдем к квадрату модуля функции (3.2):

где

- вектор коэффициентов ;

- вектор коэффициентов .

По известным коэффициентам функции , коэффициенты функции (3.2) могут быть определены с помощью следующего алгоритма [38]:

В функции осуществляется замена переменной , и вычисляются нули полиномов числителя и знаменателя.

Каждый из полиномов числителя и знаменателя представляется в виде произведения двух полиномов, один из которых должен быть полиномом Гурвица [36].

Отношение полиномов Гурвица числителя и знаменателя является искомой функцией .

Для решения задачи нахождения векторов коэффициентов составим систему линейных неравенств:

(3.4)

где - дискретное множество конечного числа точек в заданной нормированной области частот;

- требуемая зависимость квадрата модуля на множестве ;

- допустимое уклонение от ;

- малая константа.

Первое неравенство в (3.4) определяет величину допустимого уклонения АЧХ каскада от требуемой формы. Второе и третье неравенства определяют условия физической реализуемости рассчитываемой МКЦ [35]. Учитывая, что полиномы и положительны, модульные неравенства можно заменить простыми и записать задачу в следующем виде:

(3.5)

Решение неравенств (3.5) является стандартной задачей линейного программирования [39]. В отличие от теории фильтров, где данная задача решается при условии минимизации функции цели: , неравенства (3.5) следует решать при условии ее максимизации: , что соответствует достижению максимального значения коэффициента усиления рассчитываемого каскада [40].

Таким образом, метод параметрического синтеза заключается в следующем:

1) нахождение дробно-рациональной функции комплексного переменного, описывающей коэффициент передачи усилительного каскада с КЦ;

2) синтез коэффициентов квадрата модуля прототипа передаточной характеристики усилительного каскада с КЦ по заданным значениям и ;

3) расчет коэффициентов функции-прототипа по известным коэффициентам ее квадрата модуля;

4) решение системы нелинейных уравнений (3.3) относительно нормированных значений элементов МКЦ.

Многократное решение системы линейных неравенств (3.5) для различных и позволяет осуществить синтез таблиц нормированных значений элементов МКЦ, по которым ведется проектирование усилителей.

Известные схемные решения построения КЦ усилителей мощности отличаются большим разнообразием. Однако из-за сложности настройки и высокой чувствительности характеристик усилителей к разбросу параметров сложных КЦ в усилителях мощности радиопередающих устройств метрового и дециметрового диапазона волн практически не применяются КЦ более четвертого-пятого порядка. [3, 5, 19, 20, 41].

Воспользуемся описанной выше методом параметрического синтеза усилительных каскадов с КЦ для синтеза таблиц нормированных значений элементов наиболее эффективных схемных решений построения КЦ широкополосных и полосовых усилителей мощности.

3.2. Параметрический синтез широкополосных усилительных каскадов

На рис. 3.1-3.3 приведены схемы КЦ, наиболее часто применяемые при построении широкополосных усилителей мощности метрового и дециметрового диапазона волн [5, 7, 12, 42-44].

Рис. 3.1. Четырехполюсная диссипативная КЦ второго порядка

Рис. 3.2. Четырехполюсная реактивная КЦ третьего порядка

Рис. 3.3. Четырехполюсная диссипативная КЦ четвертого порядка

Осуществим синтез таблиц нормированных значений элементов приведенных схемных решений КЦ.

3.2.1. Параметрический синтез широкополосных усилительных каскадов с корректирующей цепью второго порядка

Практические исследования различных схемных решений усилительных каскадов с КЦ на полевых транзисторах показывают, что схема КЦ, представленная на рис. 3.1 [43, 45, 46], является одной из наиболее эффективных, с точки зрения достижимых характеристик, простоты настройки и конструктивной реализации.

Аппроксимируя входной и выходной импедансы транзисторов и - и - цепями [8, 12, 47] найдем выражение для расчета коэффициента передачи последовательного соединения транзистора и КЦ:

(3.6)

где ;

;

- нормированная частота;

- текущая круговая частота;

- верхняя круговая частота полосы пропускания разрабатываемого усилителя;

- крутизна транзистора ;

- выходное сопротивление транзистора ;

- нормированные относительно и значения элементов ;

- выходная емкость транзистора ;

- входная индуктивность и входная емкость транзистора .

В качестве прототипа передаточной характеристики каскада выберем функцию вида

, (3.7)

квадрат модуля которой равен:

. (3.8)

Для выражения (3.8) составим систему линейных неравенств (3.5):

(3.9)

Решая (3.9) для различных , при условии максимизации функции цели: , найдем коэффициенты квадрата модуля функции-прототипа (3.8), соответствующие различным значениям допустимого уклонения АЧХ от требуемой формы. Вычисляя полиномы Гурвица знаменателя функции (3.8), определим требуемые коэффициенты функции-прототипа (3.7). Решая систему нелинейных уравнений

относительно при различных значениях , найдем нормированные значения элементов КЦ, приведенной на рис. 3.1. Результаты вычислений для случая, когда равна 0,25 дБ и 0,5 дБ, сведены в таблицу 3.1.

Таблица 3.1 - Нормированные значения элементов КЦ

= ± 0,25 дБ

= ± 0,5 дБ

0,01

0,05

0,1

0,15

0,2

0,3

0.4

0,6

0,8

1

1,2

1,5

1,7

2

2,5

3

3,5

4,5

6

8

1,59

1,59

1,59

1,59

1,59

1,59

1,59

1,59

1,59

1,58

1,58

1,46

1,73

1,62

1,61

1,61

1,60

1,60

1,60

1,60

88,2

18,1

9,31

6,39

4,93

3,47

2,74

2,01

1,65

1,43

1,28

1,18

1,02

0,977

0,894

0,837

0,796

0,741

0,692

0,656

160,3

32,06

16,03

10,69

8,02

5,35

4,01

2,68

2,01

1,61

1,35

1,17

0,871

0,787

0,635

0,530

0,455

0,354

0,266

0,199

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,01

2,00

2,03

2,03

2,02

2,02

2,02

2,02

101

20,64

10,57

7,21

5,50

3,86

3,02

2,18

1,76

1,51

1,34

1,17

1,09

1,00

0,90

0,83

0,78

0,72

0,67

0,62

202,3

40,5

20,2

13,5

10,1

6,75

5,06

3,73

2,53

2,02

1,69

1,35

1,19

1,02

0,807

0,673

0,577

0,449

0,337

0,253

Рассматриваемая КЦ может быть использована также и в качестве входной КЦ [44]. В этом случае следует принимать: , где - активная и емкостная составляющие сопротивления генератора.

При заданных и расчет КЦ сводится к нахождению нормированного значения , определению по таблице 3.1 соответствующих значений и их денормированию.

Пример 3.1. Рассчитать КЦ однокаскадного транзисторного усилителя с использованием синтезированных данных таблицы 3.1, при условиях: используемый транзистор 3П602А; = 50 Ом; верхняя частота полосы пропускания усилителя равна 1,8 ГГц; допустимая неравномерность АЧХ равна ± 0,5 дБ. Принципиальная схема каскада приведена на рис. 3.4. Для термостабилизации тока покоя транзистора 3П602А, в схеме применена активная коллекторная термостабилизация на транзисторе КТ361А [48]. На выходе каскада включена выходная корректирующая цепь, практически не вносящая искажений в АЧХ каскада, состоящая из элементов 2,7 нГн, 0,64 пФ и обеспечивающая минимально возможное значение максимальной величины модуля коэффициента отражения ощущаемого сопротивления нагрузки внутреннего генератора транзистора (см. раздел 2.1).

Рис. 3.4 Рис. 3.5

Решение. Используя справочные данные транзистора 3П602А [49] и соотношения для расчета значений элементов однонаправленной модели полевого транзистора [1], получим:=2,82 пФ, =0,34 нГн. Нормированное относительно и значение равно: 1,77. Ближайшая величина в таблице 3.1 составляет 1,7. Для этого значения и
+ 0,5 дБ из таблицы найдем: =2,01; =1,09; =1,19. После денормирования элементов КЦ получим: =3,2 пФ; =
4,3 нГн; =3,96 нГн; =60 Ом. Коэффициент усиления рассматриваемого усилителя равен [14]: = 4,4.

На рис. 3.5 (кривая 1) приведена АЧХ рассчитанного усилителя, вычисленная с использованием полной эквивалентной схемы замещения транзистора [49]. Здесь же представлена экспериментальная характеристика усилителя (кривая 2), и АЧХ усилителя, оптимизированного с помощью программы оптимизации, реализованной в среде математического пакета для инженерных и научных расчетов MATLAB [50] (кривая 3). Кривые 1 и 3 практически совпадают, что говорит о высокой точности рассматриваемого метода параметрического синтеза. Оптимальность полученного решения подтверждает и наличие чебышевского альтернанса АЧХ [35].

3.2.2. Параметрический синтез широкополосных усилительных каскадов с корректирующей цепью третьего порядка

Схема четырехполюсной реактивной КЦ третьего порядка приведена на рис. 3.2 [5, 42, 45]. Как показано в [51] рассматриваемая КЦ позволяет реализовать коэффициент усиления каскада близкий к теоретическому пределу, который определяется коэффициентом усиления транзистора в режиме двухстороннего согласования на высшей частоте полосы пропускания [7].

Аппроксимируя входной и выходной импедансы транзисторов и - и - цепями [11, 19, 35], от схемы, приведенной на рис. 3.2, перейдем к схеме, приведенной на рис. 3.6.

Рис. 3.6 Рис. 3.7

Вводя идеальный трансформатор после конденсатора и применяя преобразование Нортона [2, 3], перейдем к схеме представленной на рис. 3.7. Для полученной схемы в соответствии с [7, 11, 35] коэффициент передачи последовательного соединения КЦ и транзистора может быть описан в символьном виде дробно-рациональной функцией комплексного переменного:

, (3.10)

где ;

- нормированная частота;

- текущая круговая частота;

- верхняя круговая частота полосы пропускания разрабатываемого усилителя;

; (3.11)

- коэффициент усиления транзистора по мощности в режиме двухстороннего согласования на частоте [7];

- частота, на которой коэффициент усиления транзистора по мощности в режиме двухстороннего согласования равен единице;

; (3.12)

,,,, - нормированные относительно и значения элементов ,,,,.

Переходя от схемы рис. 3.7 к схеме рис. 3.6 по известным значениям найдём:

(3.13)

где ;

- нормированное относительно и значение .

В качестве функции-прототипа передаточной характеристики (3.15) выберем дробно-рациональную функцию вида:

. (3.14)

Квадрат модуля функции-прототипа (3.14) имеет вид:

, (3.15)

Для выражения (3.15) составим систему линейных неравенств (3.5):

(3.16)

Решая (3.16) для различных при условии максимизации функции цели? , найдем коэффициенты квадрата модуля функции-прототипа (3.15), соответствующие различным значениям допустимого уклонения АЧХ от требуемой формы. Вычисляя полиномы Гурвица знаменателя функции (3.15), определим требуемые коэффициенты функции-прототипа (3.14). Решая систему нелинейных уравнений

относительно ,, при различных значениях , найдем нормированные значения элементов КЦ, приведенной на рис. 3.2. Результаты вычислений сведены в таблицу 3.2.

Анализ полученных результатов позволяет установить следующее. Для заданного значения существует определенное значение при превышении, которого реализация каскада с требуемой формой АЧХ становится невозможной. Большему значению соответствует меньшее допустимое значение , при котором реализуется требуемая форма АЧХ. Это обусловлено уменьшением добротности рассматриваемой цепи с увеличением .

Исследуемая КЦ может быть использована и в качестве входной корректирующей цепи усилителя. В этом случае при расчетах следует полагать , где - активная и емкостная составляющие сопротивления генератора.

Пример 3.2. Рассчитать КЦ однокаскадного усилителя на транзисторе КТ939А при условиях: 50 Ом; = 2 пФ; верхняя частота полосы пропускания равна 1 ГГц; допустимая неравномерность АЧХ ± 0,25 дБ. Выбор в качестве примера проектирования однокаскадного варианта усилителя обусловлен возможностью простой экспериментальной проверки точности результатов расчета, чего невозможно достичь при реализации многокаскадного усилителя. Принципиальная схема усилителя приведена на рис. 3.8.

Таблица 3.2 - Нормированные значения элементов КЦ

Неравномерность АЧХ

=0.1 дБ

1.805

1.415

0.868

0.128

0.126

0.122

0.112

0.09

0.05

0.0

1.362

1.393

1.423

1.472

1.55

1.668

1.805

2.098

1.877

1.705

1.503

1.284

1.079

0.929

0.303

0.332

0.358

0.392

0.436

0.482

0.518

=0.25 дБ

2.14

1.75

1.40

0.0913

0.09

0.087

0.08

0.065

0.04

0.0

1.725

1.753

1.784

1.83

1.902

2.00

2.14

2.826

2.551

2.303

2.039

1.757

1.506

1.278

0.287

0.313

0.341

0.375

0.419

0.465

0.512

=0.5 дБ

2.52

2.01

2.04

0.0647

0.0642

0.0621

0.057

0.047

0.03

0.0

2.144

2.164

2.196

2.24

2.303

2.388

2.52

3.668

3.381

3.025

2.667

2.32

2.002

1.69

0.259

0.278

0.306

0.341

0.381

0.426

0.478

=1.0 дБ

3.13

2.26

3.06

0.0399

0.0393

0.0375

0.033

0.025

0.012

0.0

2.817

2.842

2.872

2.918

2.98

3.062

3.13

5.025

4.482

4.016

3.5

3.04

2.629

2.386

0.216

0.24

0.265

0.3

0.338

0.38

0.41

На выходе каскада включена выходная корректирующая цепь, практически не вносящая искажений в АЧХ каскада, состоящая из элементов
6,4 нГн, 5,7 пФ и обеспечивающая минимально возможное значение максимальной величины модуля коэффициента отражения ощущаемого сопротивления нагрузки внутреннего генератора транзистора (см. раздел 2.1).

Рис. 3.8 Рис. 3.9

Решение. Используя справочные данные транзистора КТ939А [13] и соотношения для расчета значений элементов однонаправленной модели [10], получим: 0,75 нГн; 1,2 Ом; 15. Нормированные относительно и значения элементов равны: 0,628; 0,0942; 0,024. Подставляя в (3.12) и коэффициент функции-прототипа из таблицы 3.2 для = ± 0,25 дБ рассчитаем: = 0,012. Ближайшая табличная величина равна нулю. Для указанного значения из таблицы 3.2 найдем: = 2,14; = 1,278; = 0,512. Подставляя найденные величины в (3.13), получим: =1,512; =0,1943; =0,9314. Денормируя полученные значения элементов КЦ, определим: =4,8 пФ; =0,6 пФ; =7,4 нГн. Теперь по (3.11) вычислим: =1,81. Резистор на рис. 3.8, включенный параллельно , необходим для установления заданного коэффициента усиления на частотах менее [11] и рассчитывается по формуле [52]:

.

На рис. 3.9 приведена АЧХ спроектированного однокаскадного усилителя, вычисленная с использованием полной эквивалентной схемы замещения транзистора КТ939А [9] (кривая 1). Здесь же представлена экспериментальная характеристика усилителя (кривая 2).

3.2.3. Параметрический синтез широкополосных усилительных каскадов с ЗАДАННЫМ НАКЛОНОМ АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ

Проблема разработки СУМ с заданным подъемом (спадом) АЧХ связана с необходимостью компенсации неравномерности АЧХ источников усиливаемых сигналов, либо с устранением частотно-зависимых потерь в кабельных системах связи, либо с выравниванием АЧХ малошумящих усилителей, входные каскады которых реализуются без применения цепей высокочастотной коррекции.

Схема корректирующей цепи, обеспечивающей реализацию заданного подъема (спада) АЧХ усилительного каскада, приведена на рис. 3.3 [7, 53, 54].

Аппроксимируя входной и выходной импедансы транзисторов и - и - цепями от схемы, приведенной на рис. 3.3, перейдем к схеме приведенной на рис. 3.10.

Рис. 3.10 Рис. 3.11

Вводя идеальный трансформатор после конденсатора и применяя преобразование Нортона, перейдем к схеме, представленной на рис. 3.11.

Коэффициент передачи последовательного соединения КЦ и транзистора для полученной схемы может быть описан в символьном виде дробно-рациональной функцией комплексного переменного:

, (3.17)

где ;

- нормированная частота;

- текущая круговая частота;

- верхняя круговая частота полосы пропускания усилителя;

;

;

;

;

;

- нормированные относительно и значения элементов ;

В качестве прототипа передаточной характеристики (3.17) выберем функцию:

. (3.18)

Квадрат модуля функции-прототипа (3.18) имеет вид:

. (3.19)

Для выражения (3.19) составим систему линейных неравенств (3.5):

(3.20)

Решая (3.20) для различных и , при условии максимизации функции цели: , найдем коэффициенты квадрата модуля функции-прототипа (3.24), соответствующие различным наклонам АЧХ и различным значениям допустимого уклонения АЧХ от требуемой формы. Вычисляя полиномы Гурвица числителя и знаменателя функции (3.19), определим требуемые коэффициенты функции-прототипа (3.18). Значения коэффициентов функции-прототипа, соответствующие различным наклонам АЧХ и допустимым уклонениям АЧХ от требуемой формы, равным 0,25 дБ и 0,5 дБ, приведены в таблицах 3.3 и 3.4.

Решая систему нелинейных уравнений

относительно при различных значениях , найдем нормированные значения элементов КЦ, приведенной на рис. 3.11. Предлагаемая методика была реализована в виде программы в среде математического пакета для инженерных и научных расчетов Maple V [55]. Результаты вычислений сведены в таблицы 3.3 и 3.4.

Анализ полученных результатов позволяет установить следующее. Чем меньше требуемое значение , тем меньше допустимый подъем АЧХ при котором возможна его аппроксимация квадратом модуля функции вида (3.19). Для заданного наклона АЧХ и заданном значении существует определенное значение , при превышении которого реализация каскада с требуемой формой АЧХ становится невозможной.

Таблица 3.3 - Нормированные значения элементов КЦ для =0,25 дБ

Наклон

+4 дБ

3.3

2

3.121

5.736

3.981

3.564

0.027

0.0267

0.0257

0.024

0.02

0.013

0.008

0,0

1.058

1.09

1.135

1.178

1.246

1.33

1.379

1.448

2.117

2.179

2.269

2.356

2.491

2.66

2.758

2.895

3.525

3.485

3.435

3.395

3.347

3.306

3.29

3.277

6.836

6.283

5.597

5.069

4.419

3.814

3.533

3.205

0.144

0.156

0.174

0.191

0.217

0.248

0.264

0.287

+2 дБ

3.2

2

3.576

6.385

4.643

3.898

0.0361

0.0357

0.0345

0.0325

0.029

0.024

0.015

0.0

1.59

1.638

1.696

1.753

1.824

1.902

2.014

2.166

3.18

3.276

3.391

3.506

3.648

3.804

4.029

4.332

3.301

3.278

3.254

3.237

3.222

3.213

3.212

3.227

5.598

5.107

4.607

4.204

3.797

3.437

3.031

2.622

0.172

0.187

0.207

0.225

0.247

0.269

0.3

0.337

+0 дБ

3.15

2

4.02

7.07

5.34

4.182

0.0493

0.049

0.047

0.045

0.04

0.03

0.017

0.0

2.425

2.482

2.595

2.661

2.781

2.958

3.141

3.346

4.851

4.964

5.19

5.322

5.563

5.916

6.282

6.692

3.137

3.13

3.122

3.121

3.125

3.143

3.175

3.221

4.597

4.287

3.753

3.504

3.134

2.726

2.412

2.144

0.205

0.219

0.247

0.263

0.29

0.327

0.36

0.393

-3 дБ

3.2

2

4.685

8.341

6.653

4.749

0.0777

0.077

0.075

0.07

0.06

0.043

0.02

0.0

4.668

4.816

4.976

5.208

5.526

5.937

6.402

6.769

9.336

9.633

9.951

10.417

11.052

11.874

12.804

13.538

3.062

3.068

3.079

3.102

3.143

3.21

3.299

3.377

3.581

3.276

2.998

2.68

2.355

2.051

1.803

1.653

0.263

0.285

0.309

0.34

0.379

0.421

0.462

0.488

-6 дБ

3.3

2

5.296

9.712

8.365

5.282

0.132

0.131

0.127

0.12

0.1

0.08

0.04

0.0

16.479

17.123

17.887

18.704

20.334

21.642

23.943

26.093

32.959

34.247

35.774

37.408

40.668

43.284

47.885

52.187

2.832

2.857

2.896

2.944

3.049

3.143

3.321

3.499

2.771

2.541

2.294

2.088

1.789

1.617

1.398

1.253

0.357

0.385

0.42

0.453

0.508

0.544

0.592

0.625

Таблица 3.4 - Нормированные значения элементов КЦ для =0,5 дБ

Наклон

+6 дБ

5.4

2

2.725

5.941

3.731

4.3

0.012

0.0119

0.0115

0.011

0.0095

0.0077

0.005

0.0

0.42

0.436

0.461

0.48

0.516

0.546

0.581

0.632

0.839

0.871

0.923

0.959

1.031

1.092

1.163

1.265

6.449

6.278

6.033

5.879

5.618

5.432

5.249

5.033

12.509

11.607

10.365

9.624

8.422

7.602

6.814

5.911

0.09

0.097

0.109

0.117

0.134

0.147

0.164

0.187

+3 дБ

4.9

2

3.404

7.013

4.805

5.077

0.0192

0.019

0.0185

0.017

0.015

0.012

0.007

0.0

0.701

0.729

0.759

0.807

0.849

0.896

0.959

1.029

1.403

1.458

1.518

1.613

1.697

1.793

1.917

2.058

5.576

5.455

5.336

5.173

5.052

4.937

4.816

4.711

8.98

8.25

7.551

6.652

6.021

5.433

4.817

4.268

0.123

0.134

0.146

0.165

0.182

0.2

0.224

0.249

0 дБ

4.9

2

4.082

8.311

6.071

6.0

0.0291

0.0288

0.028

0.0265

0.024

0.019

0.01

0.0

1.012

1.053

1.096

1.145

1.203

1.288

1.404

1.509

2.024

2.106

2.192

2.29

2.406

2.576

2.808

3.018

5.405

5.306

5.217

5.129

5.042

4.94

4.843

4.787

6.881

6.296

5.79

5.303

4.828

4.271

3.697

3.301

0.16

0.175

0.19

0.207

0.226

0.253

0.287

0.316

-3 дБ

5.2

2

4.745

9.856

7.632

7.13

0.0433

0.043

0.0415

0.039

0.035

0.027

0.015

0.0

1.266

1.318

1.4

1.477

1.565

1.698

1.854

2.019

2.532

2.636

2.799

2.953

3.13

3.395

3.708

4.038

5.618

5.531

5.417

5.331

5.253

5.172

5.117

5.095

5.662

5.234

4.681

4.263

3.874

3.414

3.003

2.673

0.201

0.217

0.241

0.263

0.287

0.321

0.357

0.391

-6 дБ

5.7

2

5.345

11.71

9.702

8.809

0.0603

0.06

0.058

0.054

0.048

0.04

0.02

0.0

1.285

1.342

1.449

1.564

1.686

1.814

2.068

2.283

2.569

2.684

2.899

3.129

3.371

3.627

4.136

4.567

6.291

6.188

6.031

5.906

5.812

5.744

5.683

5.686

5.036

4.701

4.188

3.759

3.399

3.093

2.634

2.35

0.247

0.264

0.295

0.325

0.355

0.385

0.436

0.474

Для перехода от схемы, приведенной на рис. 3.11, к схеме, представленной на рис. 3.10, следует воспользоваться формулами пересчета:

(3.21)

где

Табличные значения элементов , в этом случае, выбираются для величины

(3.22)

где - коэффициент, значения которого приведены в таблицах 3.3 и 3.4.

Таблицы 3.3 и 3.4 могут быть применены и для проектирования усилительных каскадов на полевых транзисторах (рис. 3.12).

Рис. 3.12

В этом случае удобнее рассматривать коэффициент передачи с входа транзистора на вход транзистора , который описывается соотношением, аналогичным (3.17):

,

где ;

- крутизна транзистора ;

- входная емкость транзистора ;

- выходное сопротивление транзистора .

При использовании таблиц 3.3 и 3.4 и переходе к реальным нормированным значениям элементов КЦ, следует пользоваться формулами пересчета:

где - нормированное относительно и значение выходной емкости транзистора ;

- нормированное относительно и значение входной емкости транзистора .

Пример 3.3. Рассчитать КЦ однокаскадного транзисторного усилителя с использованием синтезированных таблиц 3.3 и 3.4 при условиях: используемый транзистор - КТ939А; = 50 Ом; емкостная составляющая сопротивления генератора = 2 пФ; верхняя частота полосы пропускания =1 ГГц; требуемый подъем АЧХ 4 дБ; допустимое уклонение АЧХ от требуемой формы =0,25 дБ. Принципиальная схема каскада приведена на рис. 3.13. На выходе каскада включена выходная КЦ, состоящая из элементов =6,4 нГн, =
5,7 пФ (см. раздел 2.1).

Решение. Используя справочные данные транзистора КТ939А [13] и соотношения для расчета значений элементов однонаправленной модели [10], получим: =0,75 нГн; =1,2 Ом; =15.

Рис. 3.13 Рис. 3.14.

Нормированные относительно и значения равны: =0,628; =0,0942; =0,024. Подставляя в (3.22) значение и табличную величину , рассчитаем: =0,019. Ближайшая табличная величина равна 0,02. Для указанного значения из таблицы 3.3 найдем: =1,246; =2,491; =3,347; =4,419; =0,217. Подставляя найденные величины в формулы пересчета (3.26) получим: =1,246; =2,491; =2,719; =2,406; =0,235. Денормируя полученные значения элементов КЦ, определим: =62,3 Ом; =19,83 нГн; = 8,66 пФ; 7,66 пФ; 1,87 нГн. Далее по (3.17) вычислим: = 1,98. Резистор на рис. 3.13, включенный параллельно , необходим для установления заданного коэффициента усиления на частотах менее и рассчитывается по формуле [52]: .

На рис. 3.14 приведена АЧХ спроектированного однокаскадного усилителя, вычисленная с использованием полной эквивалентной схемы замещения транзистора КТ939А [13] (кривая 1). Здесь же представлена экспериментальная характеристика усилителя (кривая 2).

3.3. Параметрический синтез полосовых усилительных каскадов

Полосовые усилители мощности находят широкое применение в системах пейджинговой и сотовой связи, телевизионном и радиовещании. На рис. 3.15-3.17 приведены схемы КЦ, наиболее часто применяемые при построении полосовых усилителей мощности метрового и дециметрового диапазона волн [3, 5, 6, 19, 20, 32].

Рис. 3.15. Четырехполюсная реактивная КЦ третьего порядка

Рис. 3.16. Четырехполюсная реактивная КЦ четвертого порядка

Рис. 3.17. Четырехполюсная реактивная КЦ, выполненная в виде фильтра нижних частот

Осуществим синтез таблиц нормированных значений элементов приведенных схемных решений КЦ полосовых усилителей мощности.

3.3.1. Параметрический синтез полосовых усилительных каскадов с корректирующей цепью третьего порядка

Описание рассматриваемой схемы (рис. 3.15), ее применение в полосовых усилителях мощности и методика настройки даны в работах [5, 44, 56]. В разделе 3.2.2 дано описание методики расчета анализируемой схемы при ее использовании в качестве КЦ широкополосного усилителя. В случае ее использования в качестве КЦ полосового усилителя методика расчета остается неизменной, за исключением изменения условий расчета функции-прототипа.


Подобные документы

  • Проектирование устройств фильтрации по рабочим параметрам. Виды аппроксимации частотных характеристик. Моделирование разрабатываемого фильтра на функциональном уровне в MathCAD, в частотной и временной областях, в нормированном и денормированном виде.

    курсовая работа [2,8 M], добавлен 28.06.2011

  • Общие сведения и классификация методов и приборов СВЧ цепей. Основные методы и средства измерений параметров СВЧ цепей. Обобщенная структурная схема измерителя (анализатора). Измерительные направленные ответвители. Скалярные анализаторы цепей.

    реферат [82,7 K], добавлен 23.01.2009

  • Характеристика основных вопросов, связанных с частотными характеристиками электроцепей ОУ. Передаточные функции активных цепей и каскадно-развязанных структур. Функция чувствительности частотных характеристик электрических цепей, селективные устройства.

    реферат [134,3 K], добавлен 25.04.2009

  • Моделирование переходных процессов в элементарных звеньях радиотехнических цепей. Спектральные преобразования входных и выходных сигналов в элементарных звеньях радиотехнических цепей. Расчет и исследование электрических фильтров второго порядка.

    дипломная работа [4,0 M], добавлен 24.06.2013

  • Разработка структурной схемы радиопередатчика. Расчет режима работы выходного каскада и цепей согласования. Выбор стандартных элементов. Конструктивное вычисление катушки индуктивности. Основные требования к синтезатору частот и к источнику питания.

    курсовая работа [454,2 K], добавлен 08.01.2012

  • Проектирование усилителя мощности: выбор режима работы транзистора, синтез согласующих цепей. Конструирование фильтра и направленного ответвителя. Анализ, настройка схемы и характеристика автогенератора с замкнутой и разомкнутой цепью обратной связи.

    дипломная работа [1,6 M], добавлен 08.08.2013

  • Анализ схемы, особенности расчёта цепей с операционными усилителями. Вычисление передаточной функции, составление ее карты и проверка по схеме. Расчёт частотных и временных характеристик функции. Определение реакции цепи на прямоугольный импульс.

    контрольная работа [161,6 K], добавлен 28.02.2011

  • Выбор типа выходного каскада исходя из необходимой величины напряжения питания. Расчет цепей фильтрации по питанию. Выбор выходных транзисторов, необходимых для усилителя низкой частоты. Расчет фазоинверсного каскада и каскада предварительного усиления.

    курсовая работа [476,7 K], добавлен 29.11.2011

  • Основные сведения из теории фильтрующих цепей, требования к электрическим характеристикам. Синтез пассивных и активных полосовых фильтров; этапы аппроксимации и реализации: расчёт амплитудного спектра радиоимпульсов и частотных характеристик фильтра.

    курсовая работа [671,5 K], добавлен 04.11.2011

  • Расчет цепей смещения и питания транзистора. Выбор радиодеталей для цепей связи, фильтрации, питания для схемы оконечного каскада. Расчет принципиальной схемы передатчика. Электрический расчет генератора, управляемого напряжением с частотной модуляцией.

    курсовая работа [461,5 K], добавлен 04.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.