Лампы СВЧ диапазона

Лампы бегущей и обратной волны СВЧ диапазона. Расчет геометрии замедляющей системы, дисперсионной характеристики и сопротивления связи, геометрии и рабочих параметров вывода и ввода энергии, величины индуктивности фокусирующего магнитного поля.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 20.06.2012
Размер файла 972,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Северо-Кавказский федеральный университет»

Контрольная работа

по дисциплине: «Приборы СВЧ и оптического диапазона»

Тема: «Лампы СВЧ диапазона»

Выполнил:

студент 3 курса

группы ТКМБ-091

Чичулин С.В.

Принял: Жубреев С.В.

Ставрополь 2012

Содержание:

Введение

1. Теоретическая часть

1.1 Лампа бегущей волны

1.2 Лампа обратной волны

2. Расчетная часть

2.1 Расчет геометрии замедляющей системы

2.2 Расчет дисперсионной характеристики и сопротивления связи

2.3 Расчет геометрии и рабочих параметров вывода и ввода энергии

2.4 Расчет величины индуктивности фокусирующего магнитного поля

Заключение

Список используемых информационных источников

Введение

К лампам СВЧ диапазона можно отнести лампу бегущей волны и лампу обратной волны. Эти лампы относятся к электровакуумным приборам СВЧ диапазона. Эти лампы в основном применяются для усиления сигналов СВЧ.

1. Теоретическая часть

1.1 Лампа бегущей волны

лампа диапазон индуктивность магнитный

Лампа бегущей волны (ЛБВ) -- электровакуумный прибор, в котором для генерирования и/или усиления электромагнитных колебаний СВЧ используется взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении.

Лампа бегущей волны была впервые создана Рудольфом Компфнером в 1943 году.

Лампы бегущей волны подразделяются на два класса: ЛБВ типа О и ЛБВ типа М.

В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле в таких лампах направлено вдоль направления распространения пучка и служит лишь для фокусировки последнего.

В приборах типа М в энергию СВЧ поля переходит потенциальная энергия электронов, смещающихся в результате многократного торможения и разгона от катода к аноду. Средняя кинетическая энергия при этом остается постоянной. Магнитное поле в таких приборах направлено перпендикулярно направлению распространения пучка.

ЛВБ типа О

Принцип действия ламп бегущей волны (ЛБВ) основан на механизме длительного взаимодействия электронного потока с полем бегущей электромагнитной волны. На рисунке схематично представлено устройство ЛБВ. Электронная пушка формирует электронный пучок с определенным сечением и интенсивностью. Скорость электронов определяется ускоряющим напряжением. С помощью фокусирующей системы, создающей продольное магнитное поле, обеспечивается необходимое поперечное сечение пучка на всем пути вдоль замедляющей системы. В ЛБВ электронная пушка, спиральная замедляющая система и коллектор размещаются в металлостеклянном или металлическом баллоне, а фокусирующий соленоид располагается снаружи. Спираль крепится между диэлектрическими стержнями, которые должны обладать малыми потерями на СВЧ и хорошей теплопроводностью. Последнее требование важно для ламп средней и большой выходной мощности, когда спираль нагревается из-за оседания электронов и нужно отводить это тепло, чтобы не было прогорания спирали.

На входе и выходе замедляющей системы есть специальные устройства для согласования ее с линиями передачи. Последние могут быть либо волноводными, либо коаксиальными. На вход поступает СВЧ сигнал, который усиливается в приборе и с выхода передается в нагрузку.

Трудно получить хорошее согласование во всей полосе усиления лампы. Поэтому есть опасность возникновения внутренней обратной связи из-за отражения электромагнитной волны на концах замедляющей системы, при этом ЛБВ может перестать выполнять свои функции усилителя. Для устранения самовозбуждения вводится поглотитель, который может быть выполнен в виде стержня из поглощающей керамики или в виде поглощающих плёнок.

Рисунок 1 Устройство ЛБВ типа О

В зависимости от назначения ЛБВ выпускаются на выходные мощности от долей мВт (входные маломощные и малошумящие ЛБВ в усилителях СВЧ) до десятков кВт (выходные мощные ЛБВ в передающих устройствах СВЧ) в непрерывном режиме и до нескольких МВт в импульсном режиме работы.

В ЛБВО малой и средней мощности применяют спиральные замедляющие системы, в мощных ЛБВО -- цепочки связанных резонаторов

Электроны, пролетая сквозь замедляющую систему, отдают часть своей кинетической энергии СВЧ полю, что приводит к уменьшению скорости электронов. Но при этом нарушается условие фазового синхронизма Ve ? Vф. Отсюда вытекает основное ограничение КПД ЛБВО, связанное с невозможностью отдачи всей кинетической энергии электронов СВЧ полю: электронные сгустки смещаются из области тормозящего поля в область ускоряющего.

Нижний предел скорости электронов определяется фазовой скоростью замедленной волны. Поэтому величина КПД должна быть тем больше, чем значительнее превышение начальной скорости электронов над фазовой скоростью волны в замедляющей системе. Однако при увеличении рассинхронизма ухудшается группирование на входном участке замедляющей системы и резко уменьшается коэффициент усиления. Таким образом, требования максимального КПД и высокого коэффициента усиления в ЛБВО оказываются противоречивыми.

Реальная величина КПД у ЛБВО составляет 30--40 %.

Маломощные ЛБВО применяются во входных усилителях, средней мощности -- в промежуточных усилителях, большой -- в выходных усилителях мощности СВЧ колебаний.

ЛВБ типа М

В ЛБВ типа М, в отличие от ЛБВО, существуют две существенные особенности:

наиболее благоприятное взаимодействие электронов с бегущей волной и передача энергии от электронов к полю происходят при точном равенстве средней скорости электронов и фазовой скорости волны (Ve = Vф). Напротив, для передачи энергии от электронов к полю в ЛБВ типа О требуется, чтобы электроны двигались чуть быстрее.

в ЛБВО электроны отдают полю только избыточную кинетическую энергию, соответствующую разности скоростей электронов и волны. КПД ограничен допустимой разностью этих скоростей. Энергия, передаваемая полю, берется от источника ускоряющего напряжения . В ЛБВМ же кинетическая энергия электронов не меняется, а полю передается потенциальная энергия электронов.

Лампа имеет две основные части: инжектирующее устройство и пространство взаимодействия.

Инжектирующее устройство, состоящее из подогреваемого катода и управляющего электрода, обеспечивает создание ленточного электронного потока и ввод его в пространство взаимодействия.

Пространство взаимодействия, состоящее из волноводного входа, поглотителя, замедляющей системы-анода, волноводного выхода, коллектора и холодного катода, обеспечивает взаимодействие электронов с СВЧ полем. Для создания такого взаимодействия необходимо выполнение условия

,

где -- начальная скорость потока на входе в пространство взаимодействия, -- скорость поступательного движения в скрещённых электрическом () и магнитном полях ().

При выполнении данного условия электроны, в отсутствие СВЧ поля, прямолинейно движутся к коллектору. Поскольку начальная скорость потока определяется соотношением

, то описанное выше условие сводится к

Параметры прибора выбирают таким образом, чтобы при появлении на входе замедляющей системы СВЧ сигнала на одной из его пространственных гармоник выполнялось условие фазового синхронизма приборов типа М (V0 = Vф). В этом случае в тормозящих полупериодах электрического поля этой гармоники будет происходить увеличение энергии СВЧ сигнала за счет уменьшения потенциальной энергии электронов. Усиленный СВЧ сигнал поступает на выход замедляющей системы, а электроны оседают на коллекторе.

Лампа бегущей волны типа М, также, как и лампа бегущей волны типа О, является широкополосным усилителем, и поэтому в ней возможно самовозбуждение за счет отражения усиливаемого сигнала от выхода замедляющей системы. Для предотвращения самовозбуждения применяется поглотитель.

Рисунок 1 Устройство ЛБВ типа О

Полоса рабочих частот в усилителях на ЛБВМ достигает 30 % от средней рабочей частоты и определяется дисперсионной характеристикой замедляющей системы.

Выходная мощность ЛБВМ в непрерывном режиме достигает нескольких киловатт, в импульсном -- нескольких мегаватт.

1.2 Лампа обратной волны

Лампа обратной волны (ЛОВ) -- электровакуумный прибор, в котором для генерирования электромагнитных колебаний СВЧ используется взаимодействие электронного потока с электромагнитной волной, бегущей по замедляющей системе в направлении, обратном направлению движения электронов.

Первые сведения о разработках ЛОВ появились в 1952 году. Одним из создателей ЛОВ является Рудольф Компфнер.

Лампу обратной волны иногда называют карцинотроном (или карсинотроном). Чаще такое название можно встретить в зарубежной литературе.

Лампы обратной волны подразделяются на два класса: ЛОВ типа О и ЛОВ типа М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. В приборах типа М в энергию СВЧ поля переходит потенциальная энергия электронов, смещающихся в результате многократного торможения и разгона от катода к аноду. Средняя кинетическая энергия при этом остаётся постоянной.

ЛОВ типа О

Электронная пушка создаёт пучок электронов, движущийся к коллектору. Заданное сечение пучка сохраняется постоянным при помощи фокусирующей системы. Предположим, что со стороны коллектора в замедляющую систему ЛОВ введён СВЧ сигнал, то есть вдоль замедляющей системы справа налево двигается волна сгрупповой скоростью vгр.

Если бы замедляющая система была однородной, и поле её бы не содержало пространственных гармоник, то фазовая скорость волны была бы направлена так же, как и групповая, то есть навстречу движению электронов. Эффективное взаимодействие между СВЧ-волной и пучком электронов должно было бы отсутствовать.

Однако если замедляющая система имеет периодическую структуру, то имеющееся в ней поле можно рассматривать как сумму бесконечного множества гармоник. Фазовые скорости этих гармоник могут быть направлены как в сторону движения энергии (прямые волны), так и в противоположную сторону (обратные волны). Можно подобрать ускоряющее напряжение () для пучка электронов так, чтобы обеспечить синхронизм между электронами и одной из замедленных обратных волн (Ve ? Vф).

Тогда электроны, поочерёдно проходя мимо неоднородностей, встречают одну и ту же фазу высокочастотного продольного поля, что приводит к тому, что часть кинетической энергии пучка передаётся СВЧ-полю. При этом электронный поток приобретает модуляцию по скорости, что приводит к модуляции плотности электронного потока (быстрые электроны догоняют медленные). Этот модулированный поток, двигаясь по направлению к коллектору, наводит на замедляющей системе высокочастотный ток. Но энергия волны, с которой взаимодействуют электроны, двигается навстречу электронному потоку. В результате на выходе лампы около электронной пушки создаётся поле, превышающее первоначальный сигнал. Лампа приобретает свойства автогенератора.

Таким образом, электронный пучок играет в ЛОВ двойную роль -- как источник энергии и как звено, по которому осуществляется положительная обратная связь. Эта связь присуща самому принципу ЛОВ и принципиально неустранима, в отличие от других генераторов СВЧ.

При изменении частоты ЛОВ СВЧ-волна может отражаться от нагрузки и поступать обратно в замедляющую систему. Эта отраженная волна может взаимодействовать с электронным потоком, что будет приводить к изменению выходной мощности. Для устранения этих эффектов на конце замедляющей системы, обращенном к коллектору включают самосогласованную нагрузку (поглотитель).

Устройство ЛОВ типа О

Частота колебаний ЛОВ зависит от напряжения , приложенного между замедляющей системой и катодом. Современные (2005 год) ЛОВ покрывают диапазон частот от единиц ГГц до единиц ТГц.

Зависимость частоты излучения от напряжения на замедляющей системе ЛОВ имеет нелинейный характер. Это связано с тем, что скорость электронов в потоке пропорциональна квадратному корню из напряжения на замедляющей системе.

При заданных геометрических размерах замедляющей системы частота генерируемых колебаний однозначно определяется величиной напряжения на замедляющей системе:

,

где б и в зависят только от геометрических параметров.

Крутизна электронной перестройки частоты ЛОВ увеличивается при уменьшении напряжения на замедляющей системе. При одинаковых пределах изменения напряжения на замедляющей системе большей крутизной перестройки обладают более высокочастотные ЛОВ. Крутизна перестройки для ЛОВ миллиметрового диапазона составляет десятки мегагерц на вольт, для ЛОВ сантиметрового диапазона -- несколько мегагерц на вольт.

Выходная мощность колебаний ЛОВ приблизительно пропорциональна величине напряжения на замедляющей системе и разности между рабочим и пусковым значениями тока электронного пучка:

,

где -- коэффициент пропорциональности, -- ток электронного луча, -- пусковой ток -- минимальное значение тока при электронного луча, при котором возникает генерация.

Обычно выходная мощность излучения ЛОВ составляет от нескольких милливатт до нескольких ватт.

Зависимость мощности излучения от напряжения на замедляющей системе представлена на рисунке. Выходная мощность ЛОВ увеличивается за счёт роста подводимой мощности . Однако после некоторого значения происходит уменьшение выходной мощности, связанное с уменьшением разности между рабочим и пусковым значениями тока электронного пучка .

Теоретическая зависимость выходной мощности от напряжения на замедляющей системе показана на рисунке пунктирной линией. Однако реальная зависимость мощности (сплошная линия) имеет гораздо более изрезанный характер. Главной причиной этого является отражение СВЧ-излучения от поглотителя замедляющей системы и устройства для вывода энергии.

Степень неравномерности кривой выходной мощности ЛОВ обычно оценивается величиной перепада этой мощности в диапазоне электронной перестройки:

Колебания ЛОВ, как и других типов СВЧ генераторов, не являются монохроматическими. Расширение спектральной линии обусловлено случайной модуляцией, являющейся следствием дискретного характера тока электронного луча, эффекта распределения тока луча между отдельными электродами и элементами замедляющей системы, эффекта мерцания катода и других причин.

Однако в ЛОВ с магнитной фокусировкой, как и в других СВЧ приборах типа О, также наблюдается значительная периодическая модуляция амплитуды и частоты колебаний. Одной из причин такой модуляции являются релаксационные колебания, возникающие в электронном потоке в области электронной пушки.

Также причиной модуляции может являться нестабильность источника питания ЛОВ. Поскольку мощность ЛОВ может очень сильно зависеть от напряжения на замедляющей системе, даже незначительное изменение напряжения может приводить к большой модуляции выходной мощности ЛОВ.

Максимальный коэффициент полезного действия не превышает в ЛОВ типа О нескольких процентов

ЛОВ типа М

В ЛОВ типа О электроны передают полю свою избыточную кинетическую энергию, соответствующую разности скоростей электронов и волны. КПД ограничен допустимой разностью указанных скоростей. Наоборот, в ЛОВ типа М кинетическая энергия электронов, не изменяется, а изменяется потенциальная энергия, преобразующаяся в энергию СВЧ поля.

Кроме того, в ЛОВ типа М наиболее благоприятное взаимодействие потока электронов и СВЧ поля происходит при точном равенстве средней скорости электронов и фазовой скорости волны (Ve = Vф), в то время как для передачи энергии в ЛОВ типа О требуется, чтобы электроны двигались немного быстрее волны.

Инжектирующее устройство создаёт поток электронов, движущийся к коллектору. Электронный поток создает в замедляющей системе наведенный ток и электромагнитное поле пространственных гармоник. Если ток луча (потока электронов) достаточно велик (больше пускового), на одной из пространственных гармоник, для которой выполнено условие фазового синхронизма (Ve = Vф), начинается взаимодействие электронного потока с полем волны, при котором в тормозящих полупериодах электрического поля гармоники будет происходить увеличение её энергии за счет уменьшения потенциальной энергии электронов. Электронный поток в ЛОВ типа М взаимодействует с обратными пространственными гармониками, для которых направления фазовой и групповой скоростей противоположны, поэтому электроны движутся к коллектору, а энергия волны им навстречу -- к волноводному выходу прибора. В результате возникает положительная обратная связь между полем волны и электронным потоком, при которой волна, отдавая часть своей энергии на группировку электронов, приобретает большее её количество за счет уменьшения потенциальной энергии сгруппированных электронов.

Вследствие трудностей широкополосного согласования волноводного выхода ЛОВМ с замедляющей системой в ЛОВМ возможны отражения от нагрузки. Для устранения этого эффекта в ЛОВ типа М, как и в ЛОВ типа О, применяют поглотитель.

Устройство ЛОВ типа О

Также как и в ЛОВ типа О частота излучения зависит от напряжения на замедляющей системе. Обычно ЛОВ типа М используются в диапазоне частот от 200 МГц до 20 ГГц с диапазоном электронной перестройки частоты до 40 %.

В отличие от ЛОВ типа О в ЛОВ типа М скорость электронов в ЛОВМ прямо пропорциональна (напряжению на замедляющей системе). Поэтому в ЛОВ типа М для достижения одинакового с ЛОВ типа О перекрытия частотного диапазона требуется меньшее изменение .

Современные генераторы на ЛОВ типа М способны обеспечивать выходную мощность в непрерывном режиме порядка десятков киловатт в дециметровом и единиц киловатт в сантиметровом диапазонах. В настоящее время они являются самыми мощными генераторами СВЧ колебаний с электронной перестройкой частоты.

Синхронизированные генераторы на ЛОВ типа М обладают высокой стабильностью частоты и низким уровнем шумов, что позволяет их использование в системах связи с частотной модуляцией.

Коэффициент полезного действия достигает в ЛОВ типа М 40--50 %.

ЛОВ применяются в широкодиапазонных сигнал- и свип-генераторах для радиотехнических измерений и радиоспектроскопии, в основном для генерации терагерцового излучения, в гетеродинах быстро перестраиваемых приёмников, в задающих генераторах передатчиков с быстрой перестройкой частоты и т. д.

2. Расчетная часть

Рассчитаем лампу бегущей волны типа О.

2.1 Расчет геометрии замедляющей системы

Выбираем условный угол пролета оав заданных пределах 1,61,8 . Расcчитываем средний радиус спирали замедляющей системы по формуле:

,(1.1)

гдеа - средний радиус спирали , см;

- длина волны, соответствующая середине рабочего диапазона, см;

- ускоряющее напряжение, В.

Длина волны , соответствующая середине рабочего диапазона определяется по формуле:

,(1.2)

(см),

тогда

(см).

Рассчитываем шаг спирали, используя формулу имеющую следующий вид:

,(1.3)

(см).

Используя соотношение , определили величину диаметра проволоки. Радиус проволоки выбирают малым по сравнению с шагом спирали для получения наибольшего поля, взаимодействующего с электронным потоком, поэтому

(см)(1.4)

Выбираем ближайший стандартный диаметр проволоки см.

Определяем радиус внешнего проводника (экрана) замедляющей системы из соотношения:

,(1.5)

Принимаем =1,5 (см).

Рабочая длина замедляющей системы рассчитывается из выражения:

,(1.6)

где - коэффициент усиления по мощности,

С - параметр усиления.

,(1.7)

где W - волновое сопротивление, Ом;

- ток системы, А.

Выбираем отношение радиуса потока к среднему радиусу спирали замедляющей системы:

,(1.8)

которое определяет наибольшее взаимодействие электронного потока с продольной составляющей .

Находим волновое сопротивление:

(Ом),

гдес - скорость света в вакууме, см/с;

- скорость электрона, см/с.

Величина плотности тока катода для малошумящих ламп меньше значений , поэтому ток системы:

,(1.9)

Выбираем плотность тока (мА/см2)

Радиус электронного потока:

(см),

тогда ток электронного потока:

(A).

Найденные значения W и определяют следующую величину параметра усиления:

Определяем величину : используя характеристическое уравнение, записанное для решения методом основ находим величину параметра А:

,(1.10)

где параметр объемного заряда 4Q при выбранных значениях и равен 7,2, тогда определяем величину .

,(1.11)

где - параметр расталкивания, рассчитанный по формуле:

,(1.12)

где - собственная частота колебаний электронного потока бесконечного сечения,

,(1.13)

(Гц).

Тогда

=0,011

Подставляя величины 4Q, и в выражение для получим:

,

тогда

,

.

Подставляем значения в уравнение, получаем:

.(1.14)

Первый корень уравнения =-0,12, , второй и третий корень находится из выражения:

.(1.15)

Определим параметр по формуле:

,(1.16)

.

Используя величину получим искомое значение для величины :

,(1.17)

.

Теперь

.

Протяженность активной части системы до поглощения:

,(1.18)

(см).

Протяженность поглотителя выбираем равной (см), тогда общая длина замедляющей системы при определении (см):

,(1.19)

(см).

Угол подъема спирали:

.(1.20)

2.2 Расчет дисперсионной характеристики и сопротивления связи

Под дисперсией понимают зависимость фазовой скорости волны от её частоты.

Используем выражения для расчета дисперсионной характеристики:

(1.21)

где - радиус замедляющей системы, см;

h - шаг спирали, см;

- длина волны, см.

Выражение можно записать в виде:

,(1.22)

учитывая что длина волны связана с частотой соотношения

откуда

,(1.23)

(см/с).

Рассчитываем сопротивление связи одиночной спирали:

,(1.24)

где - постоянная фазовая составляющая.

В ЛБВ используется нулевая гармоника, тогда S=0 поэтому:

,(1.25)

2.3 Расчет геометрии и рабочих параметров вывода и ввода энергии

При выполнении данного пункта рассчитаем взаимосвязанное звено между ЛБВ и линией связи. В качестве взаимодействующего звена взят трансформатор полных сопротивлений четырёхступенчатый.

Выберем коаксиал с сопротивлением равным 50 ОМ. Трансформатор используется для согласования системы в полюсе МГц.

Определяем среднюю длину волны рассчитываемого перехода:

,(1.26)

(см).

Этой длине волны соответствует определенная величина волнового сопротивления. Задаем необходимую трансформацию сопротивлений:

185 (Ом) до 50 (Ом).

Далее рассчитываем длину каждого трансформаторного участка:

,(1.27)

(см).

Необходимо определить масштабный множитель, который используется для нахождения местных коэффициентов отражения при значении:

,(1.28)

,

,(1.29)

.

Используя данные находим коэффициенты отражения

Волновое сопротивление отдельных ступеней трансформатора:

.(1.30)

Так как

,(1.31)

где - волновое сопротивление спирали, Ом.

С учетом определения:

,(1.32)

,(1.33)

,(1.34)

(Гц),

,(1.35)

.(1.36)

Откуда получаем, что:

,(1.37)

.(1.38)

Рассчитываем диаметры отдельных трансформаторных участков внутреннего проводника:

,(1.39)

,(1.40)

,(1.41)

где D - внутренний диаметр внешнего проводника, см.

2.4 Расчет величины индуктивности фокусирующего магнитного поля

В рассчитываемой лампы бегущей волны О-типа фокусировка электронного пучка осуществляется магнитным полем, источником которого служит магнит. Он обеспечивает однородное продольное поле в лампе.

Индукцию магнитного поля рассчитываем по формуле:

,(42)

где - ток пучка, мА;

- рабочее напряжение, кВ;

- радиус пучка, мм;

- магнитная индукция, Гс.

(Гс).

Заключение

В данной контрольной работе произведен расчет лампы бегущей волны О-типа. Определена геометрия замедляющей системы и её характеристики - дисперсию и сопротивление связи. Рассчитаны геометрия и рабочие параметры вывода и ввода энергии, величина магнитной индукции, необходимая для фокусировки пучка. Выбрана спиральная замедляющая система, которая определяет широкополосность ЛБВ. В таких ЛБВ скорость распространения бегущей волны сохраняется практически постоянной при изменении частоты входного сигнала.

Список литературы

1. Кацман, Ю. А. Приборы сверхвысоких частот./ Ю. А. Кацман. - М.: Высш.шк. 1973-382с.

2. Лошаков, Н. В., Пчельников, П. С. Расчёт и проектирование ЛБВ. - М.: Сов. радио, 1966-124с.

3. Цейтлин, М. Б., Кац, К. М. Лампа с бегущей волны. - М.: Сов.радио, 1964-311с.

4. Лебедев, И. В. Техника и приборы СВЧ. -М.:Высш. шк .,1972 - Т. 2. - 375с.

5. http://ru.wikipedia.org

Размещено на Allbest.ru


Подобные документы

  • Лампа бегущей волны - электровакуумный прибор на длительной бегущей электромагнитной волне. Расчет геометрии замедляющей системы. Дисперсия как зависимость фазовой скорости волны от её частоты. Расчет геометрии и рабочих параметров вывода и ввода энергии.

    контрольная работа [545,3 K], добавлен 14.11.2010

  • Программа моделирования высокочастотных электромагнитных полей CST Microwave Studio. Проектирование основных узлов лампы бегущей волны (ЛБВ) W-диапазона. Замедляющая, электронно-оптическая, фокусирующая системы ЛБВ. Выводы энергии из замедляющей системы.

    дипломная работа [3,3 M], добавлен 27.09.2016

  • Устройство и принцип работы лампы бегущей волны типа М. Путь построения теории лампы: продольная и переменная составляющие, решение характеристического уравнения. Амплитудно-частотная характеристика лампы. Устройство и принцип работы лампы обратной волны.

    реферат [715,7 K], добавлен 20.08.2015

  • Устройство и принцип работы лампы бегущей волны (ЛБВ). Расчет ее электрических и геометрических параметров по схеме. Общий принцип работы ЛБВ, описание технологических процессов и алгоритм проведения расчетов при изготовлении коллекторного узла лампы.

    курсовая работа [1,9 M], добавлен 05.06.2011

  • Тип схемы передатчика. Расчет параметров структурной схемы. Расчет генератора СВЧ, импульсного модулятора и блокинг-генератора. Мощность на выходе передатчика. Напряжение на аноде модуляторной лампы во время паузы. Прямое затухание ферритового вентиля.

    курсовая работа [212,7 K], добавлен 14.01.2011

  • Ультразвук. Общие сведения. Фронт волны. Фазовая скорость. Отношение давления к колебательной скорости. Коэфициент стоячей волны. Коэффициент бегущей волны. Энергия упругих колебаний. Плотность потенциальной энергии. Общая плотность энергии бегущей волны.

    реферат [185,4 K], добавлен 12.11.2008

  • Рассмотрение конструктивно-технологических параметров ПЗС. Квантовая эффективность и квантовый выход ПЗС-камеры. Применения ПЗС-камер инфракрасного диапазона как прибора ночного видения или устройства для определения температурного поля; их особенности.

    курсовая работа [158,0 K], добавлен 20.07.2015

  • Расчет характеристик антенны бегущей волны (антенны Бевереджа), используемой в КВ диапазоне. Работа антенны бегущей волны, ее зависимость от качества заземления. Схема подключения "земляных" проводов. Конструктивное выполнение антенны, ее нагрузка.

    реферат [183,5 K], добавлен 17.04.2011

  • Обзор конструкций типичных катушек индуктивности. Расчет глубины проникновения тока, величины индуктивности, числа витков и длины однослойной обмотки, оптимального диаметра провода, сопротивления потерь в диэлектрике каркаса и добротности катушки.

    курсовая работа [690,8 K], добавлен 29.08.2010

  • Разработка программно-аппаратной платформы "Заря". Функции регулировки интенсивности свечения ультрафиолетовой лампы и греющей лампы, в зависимости от настроек. Воздействие следующих параметров окружающей среды. Механические воздействия в виде вибрации.

    курсовая работа [1,4 M], добавлен 25.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.