Устройство сдвига двоичных чисел

Принцип работы структурной электрической схемы устройства сдвига двоичных чисел. Назначение и принцип построения комбинационных программируемых сдвигателей. Комбинационный программируемый сдвигатель и условное графическое обозначение сдвигателя.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 07.02.2012
Размер файла 81,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Устройство сдвига двоичных чисел

1. Описание принципа работы структурной электрической схемы устройства сдвига двоичных чисел

Операция сдвига широко используется в современной вычислительной технике для реализации умножения, деления, нормализации двоичных чисел с плавающей точкой и т.д.

Структурная электрическая схема устройства сдвига двоичных чисел представлена на рисунке 1.

Рассмотрим назначение узлов, входящих в структурную электрическую схему устройства.

Комбинационный программируемый сдвигатель Y4 предназначен для логического сдвига влево или вправо без округления четырехразрядного двоичного числа X, представленного разрядами x0, x1, x2, x3. На выходе сдвигателя формируется 10азрядное слово Y, представленное разрядами y6, y5, …, y0, y-1, y-2, y-3.

Счетчик Y1 предназначен для параллельного ввода четырехразрядного числа X. Триггер Y2 предназначен для ввода управляющего сигнала D, определяющего направление сдвига (D=0 означает сдвиг влево, D = 1 - сдвиг вправо).

Рисунок 1 - Устройство сдвига двоичных чисел. Схема электрическая структурная

Регистр Y3 предназначен для параллельного ввода управляющих сигналов S0 и S1, определяющих шаг сдвига. Например, если S1 = 0, S0 = 1, то выполняется сдвиг на один разряд.

Регистр Y5 предназначен для параллельного вывода результата сдвига, который представляет собой 10азрядное слово.

Загрузка числа X и управляющих сигналов D, S0, S1, а также вывод результата сдвига синхронизируется тактовыми импульсами UС. Причем ввод осуществляется по отрицательным фронтам тактовых импульсов, а вывод результата сдвига - по положительным.

Процесс функционирования устройства поясняется временной диаграммой, которая представлена на рисунке 2.

Рисунок 2 - Временная диаграмма, поясняющая процесс функционирования устройства

В момент времени t1 по отрицательному фронту тактового импульса начинается ввод числа X в счетчик Y1 и управляющих сигналов в триггер Y2 и регистр Y3 (рисунок 1). К моменту времени t2 ввод заканчивается, и начинается процесс сдвига в сдвигателе Y4.

Этот процесс в худшем случае завершается к моменту времени t3. Затем по положительному фронту тактового импульса результат сдвига записывается в регистр Y5 и т.д.

При подаче низкого уровня напряжения на вход (рисунок 1) устройство сбрасывается в исходное нулевое состояние.

Рассмотрим пример логического сдвига влево без округления на два разряда для двоичного числа) X=1101(2):

двоичный сдвигатель комбинационный схема

x3

x2

x1

x0

0

0

0

1

1

0

1

0

0

0

- до сдвига

0

1

1

0

1

0

0

0

0

0

- после сдвига

y6

y5

y4

y3

y2

y1

y0

y-1

y-2

y-3

Из примера следует, что сдвигаемые цифры сохранены (сдвиг без округления) и произошло умножение исходного числа на 4.

2. Назначение и принцип построения комбинационных программируемых сдвигателей

Операция сдвига заключается в смещении двоичного слова влево или вправо по разрядной сетке на заданное число разрядов.

В современной вычислительной технике сдвиг является одним из основных видов обработки информации. Он может реализовываться как составная часть других операций (умножение, деление, нормализация и др.).

Поэтому даже в самых ранних ЭВМ использовались так называемые сдвигающие регистры. Такие регистры применяются и в новейших машинах, но наряду с ними стали использоваться и комбинационные многоразрядные программируемые сдвигатели. Дело в том, что в сдвигающих регистрах время сдвига прямо пропорционально величине (шагу) сдвига, поскольку в них на каждом такте осуществляется сдвиг только на один разряд. Комбинационные устройства по своей природе являются однотактными. Время сдвига информации в таких устройствах не зависит от величины сдвига. Естественно, что их реализация сопровождается значительными аппаратурными затратами.

Различают четыре вида сдвигов: логический, арифметический, редакторский и циклический.

При логическом сдвиге смещаются все биты слова, включая знаковый. Высвобождающиеся разряды сетки заполняются нулями независимо от направления сдвига.

При арифметическом сдвиге смещаются только значащие цифры слова. При сдвиге вправо высвобождающиеся разряды заполняются знаковой цифрой, а при сдвиге влево - нулями. В некоторых случаях шаг сдвига влево не должен превышать количество незначащих цифр между знаковым разрядом и первой значащей цифрой. В противном случае происходит переполнение разрядной сетки, что должно индицироваться в устройстве специальным осведомительным сигналом.

Обычно при логическом и арифметическом сдвигах величина шага сдвига не превышает qmax = n - 1 (где n - разрядность сдвигаемого слова), так как в противном случае ни одна цифра сдвигаемого слова не останется в начальной разрядной сетке, что, как правило, не имеет смысла при обработке реальной информации.

Арифметический и в некоторой степени логический сдвиг на q разрядов влево равносилен умножению исходного слова на величину 2q; аналогично соответствующий сдвиг вправо равносилен делению исходного слова на эту же величину.

При редакторском сдвиге высвобождающиеся разряды слова заполняются любой, нужной пользователю информацией.

При циклическом сдвиге разрядная сетка условно замыкается в кольцо, и таким образом сдвигаемое слово перемещается по этому кольцу. При сдвиге вправо высвобождающиеся старшие разряды автоматически заполняются младшими цифрами слова, а при сдвиге влево высвобождающиеся младшие разряды - старшими цифрами слова. Циклический сдвиг интересен тем, что он обеспечивает любое положение слова в кольце только при одностороннем сдвиге.

Сдвигателем называется комбинационное цифровое устройство, реализующее операцию сдвига над исходным двоичным словом в соответствии с заданным типом, направлением и шагом сдвига. При разрядности сдвигаемого слова n сдвигатель должен иметь n информационных и 1 + log2n управляющих входов, а также m = 3n - 2 информационных выходов. Рассмотрим работу четырехразрядного сдвигателя, осуществляющего логические сдвиги в любую сторону с сохранением выдвигаемых цифр (часто такой сдвигатель называют сдвигателем без округления чисел). Ограничения на разрядность сдвигателя и вид сдвигов упрощают рассмотрение затронутых вопросов, не приводя к существенному уменьшению общности результатов.

Условное графическое обозначение сдвигателя приведено на рисунке 3 и представляет собой прямоугольник с аббревиатурой SH (от англ. shifter) во внутреннем поле. Входное нижнее поле выделено для приема управляющих сигналов, определяющих направление (D = 0 обозначает сдвиг влево, D = 1 - вправо) и шаг сдвига (S0, S1). Например, при S1 = 1, S0 = 0 - сдвиг на два разряда.

Описание сдвигателя в содержательных терминах дает возможность построить его сокращенную таблицу истинности. Полная таблица истинности имела бы семь логических аргументов, десять функций и была очень громоздкой и плохо обозримой. Таблицу можно значительно сократить, если аргументы x3, x2, x1, x0 вывести из левой ее части и ввести в рабочие поля правой части вместо единиц, как это сделано в таблице 1.

Рисунок 3 - Условное графическое обозначение сдвигателя

Таблица 1 - Табличное описание матричного сдвигателя

Логические аргументы (управл. сигналы)

Логические функции (выходное слово)

Направление сдвига

Величина сдвига

Сдвиг влево

Прямая передача

Сдвиг вправо

D

S1

S0

y6

y5

y4

y3

y2

y1

y0

y-1

y-2

y-3

0

1

1

x3

x2

x1

x0

0

0

0

0

0

0

0

1

0

0

x3

x2

x1

x0

0

0

0

0

0

0

0

1

0

0

x3

x2

x1

x0

0

0

0

0

X

0

0

0

0

0

x3

x2

x1

x0

0

0

0

1

0

1

0

0

0

0

x3

x2

x1

x0

0

0

1

1

0

0

0

0

0

0

x3

x2

x1

x0

0

1

1

1

0

0

0

0

0

0

x3

x2

x1

x0

Примечание - D = X - неопределенное значение (0 или 1), поскольку при нулевом шаге понятие «направление сдвига» теряет смысл.

Данные таблицы 1 дают возможность перейти к логико-математическому описанию сдвигателя:

(1)

Система функций (1) позволяет построить функциональную схему сдвигателя, но она получится неструктурированной, плохо обозримой. Для того чтобы схема лучше читалась (а в дальнейшем - легче тестировалась), структурируем ее путем выделения в ней управляющего дешифратора и сдвигающей (управляемой) матрицы конъюнкторов, для чего введем новые обозначения:

(2)

Подставив соотношения (2) в систему (1), получим

Структурированная система логических функций (2), (3) позволяет построить структурную и функциональную схему сдвигателя (рисунок 4).

Анализ функциональной схемы показывает, что сдвигатели матричного типа обладают весьма высоким быстродействием, которое оценивается величиной 2tзд. р. ср. ЛЭ, так как сдвигаемая информация проходит только через одну ступень сдвига (отсюда и их название - одноступенчатые).

(3)

Рисунок 4 - Комбинационный программируемый сдвигатель. Схема электрическая структурная (а) и функциональная (б)

Литература

1 Микросхемы интегральные. Термины и определения: ГОСТ 17021-88 ЕСКД. - Введ. 1990-01-01. - М.: Изд-во стандартов, 1989.

2 Обозначения буквенно-позиционные в электрических схемах: ГОСТ 2.710-81 ЕСКД. - Введ. 1983-01-01. - М.: Изд-во стандартов, 1982.

3 Обозначения условные графические в электрических схемах. Элементы цифровой техники: ГОСТ 2.743-91 ЕСКД. - Введ. 1993-01-01. - М.: Изд-во стандартов, 1992.

4 ИМС стандартной логики: информационно-справочный материал. - Мн.: Полифакт, 2009. - 85 с.

5 Калабеков, Б.А. Цифровые устройства и микропроцессорные системы: учеб. для техникумов связи / Б.А. Калабеков. - М.: Горячая линия - Телеком, 2008. - 336 с.

6 Лысиков, Б.Г. Цифровая и вычислительная техника: учеб. / Б.Г. Лысиков. - Минск: Экоперспектива, 2008. - 264 с.

7 Угрюмов, Е.П. Цифровая схемотехника: учеб. пособие для вузов. - 2 изд., перераб. и доп. / Е.П. Угрюмов. - Спб.: БХВ-Петербург, 2005. - 800 с.

Размещено на Allbest.ru


Подобные документы

  • Описание принципа работы структурной электрической схемы устройства умножения двоичных чисел, назначение каждого из входящих в нее узлов. Назначение и принцип построения матричных умножителей двоичных чисел, его структурная и электрическая схемы.

    реферат [63,9 K], добавлен 04.02.2012

  • Описание принципа работы структурной электрической схемы устройства суммирования двоичных чисел. Назначение построения четырехразрядных двоичных сумматоров с параллельным переносом. Логические функции для выходов Si и Ci+1 одноразрядного сумматора.

    реферат [139,5 K], добавлен 06.02.2012

  • Построение ОУ на микросхемах 155-ой серии ТТЛ-логики с малой степенью интеграции, обеспечение работы прибора путем соединения между собой логических элементов. Разработка умножителя положительных двоичных чисел. Построение схем, разработка регистров.

    курсовая работа [65,6 K], добавлен 22.04.2012

  • Выполнение арифметических и логических преобразований над операндами в арифметико-логическом устройстве, их классификация по принципу работы. Структурная схема, алгоритм вычисления, синтез сумматоров, регистров, счетчика и тактовые параметры устройства.

    курсовая работа [377,0 K], добавлен 03.12.2010

  • Исследование и принцип работы арифметико-логического устройства для выполнения логических операций. Условно–графическое обозначение микросхемы регистра. Анализ логической схемы регистра, принцип записи, чтения информации. Проектирование сумматора.

    курсовая работа [879,6 K], добавлен 23.11.2010

  • Понятие и основные сведения о генераторах чисел, расчет функций возбуждения. Модель генератора на программе Altera. Временные диаграммы. Особенности и главные условия применения постоянных запоминающих устройств для реализации комбинационных устройств.

    контрольная работа [442,5 K], добавлен 25.11.2013

  • Разработка структурной схемы дискретного устройства в составе: генератор импульсов, счетчик, дешифратор, мультиплексор, регистр сдвига. Разработка автомата по таблицам переходов и выходов, в котором в качестве элементов памяти используются D-триггеры.

    курсовая работа [755,2 K], добавлен 27.11.2013

  • Проведение компьютерного моделирования методов измерения фазового сдвига двух синусоидальных сигналов с заданными характеристиками. Преобразование фазового сдвига во временной интервал. Разработка функциональной и электрической схемы цифрового фазометра.

    курсовая работа [2,5 M], добавлен 07.09.2012

  • Этапы проектирования синхронной пересчетной схемы, реализующей последовательность двоичных эквивалентов заданных чисел. Определение функций внешних переходов Т-триггера. Представление работы триггера в виде таблицы его внутренних состояний и переходов.

    контрольная работа [1,3 M], добавлен 23.10.2010

  • Основные признаки классификации регистров. Принципов построения регистров сдвига, способы преобразования параллельного кода в последовательный и обратно. Сборка схем регистров сдвига и экспериментальное исследование их работы в динамическом режиме.

    лабораторная работа [460,8 K], добавлен 12.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.