Цифрова обробка сигналів
Знаходження згортки послідовностей способами прямого обчисленням і з використанням z-перетворення. Побудова графіків за результатами обчислення з використанням програми MathCAD. Визначення системної функції фільтра, імпульсної та частотної характеристик.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | практическая работа |
Язык | украинский |
Дата добавления | 19.11.2010 |
Размер файла | 119,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Міністерство освіти та науки України
Житомирський інженерно-технологічний інститут
Кафедра АУТС
Розрахунково-графічна робота
“Цифрова обробка сигналів”
Житомир 2006
Задача №1.
Знайти згортку послідовностей x(n) і y(n) двома способами: прямим обчисленням і з використанням z-перетворення. Результат обчислень представити графічно.
таблиця 1.1
N |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
|
x(n) |
3 |
0 |
-1 |
1 |
2 |
3 |
0 |
|
y(n) |
1 |
0 |
2 |
-1 |
-2 |
0 |
2 |
Для побудови графіків я використовую програму MathCAD 2001і Professional.
Знайдемо згортку прямим обчисленням:
F(0)=x(0)y(0) = 3;
F(1)=x(0)y(1)+x(1)y(0) = 0+0 = 0;
F(2)=x(0)y(2)+x(1)y(1)+x(2)y(0) = 32+00+(-1) 1 = 5;
F(3)=x(0)y(3)+x(1)y(2)+x(2)y(1)+x(3)y(0) = -3+0+0+1 = -2;
F(4)=x(0)y(4)+x(1)y(3)+x(2)y(2)+x(3)y(1)+x(4)y(0) = -6+0-2+0+2= -6;
F(5)=x(0)y(5)+x(1)y(4)+x(2)y(3)+x(3)y(2)+x(4)y(1)+x(5)y(0) = 0+0+1+2+0+3 = 6;
F(6)=x(0)y(6)+x(1)y(5)+x(2)y(4)+x(3)y(3)+x(4)y(2)+x(5)y(1)+x(6)y(0) = 6+0+2-1+4+0+0 = 11.
F(7)= x(0)y(7)+x(1)y(6)+x(2)y(5)+x(3)y(4)+x(4)y(3)+x(5)y(2)+x(6) y(1)+x(7)y(0) = 0+0-2-2+6+0 = 2;
F(8)=x(0)y(8)+x(1)y(7)+x(2)y(6)+x(3)y(5)+x(4)y(4)+x(5)y(3)+x(6)y(2)+x(7)y(1)+x(8)y(0) =0+0-2+0-4-3+0+0+0 = -9;
F(9)=x(0)y(9)+x(1)y(8)+x(2)y(7)+x(3)y(6)+x(4)y(5)+x(5)y(4)+x(6)y(3)+x(7)y(2)+x(8)y(1)+x(9)y(0)= 0+0+0+2+0-6+0+0+0+0 = -4;
F(10)= x(0)y(10)+x(1)y(9)+x(2)y(8)+x(3)y(7)+x(4)y(6)+x(5)y(5)+x(6) y(4)+x(7)y(3)+x(8)y(2)+x(9)y(1)+x(10)y(0) = 0+0+0+0+4+0+0+0+0+0+0 = 4;
F(11)= x(0)y(11)+x(1)y(10)+x(2)y(9)+x(3)y(8)+x(4)y(7)+x(5)y(6)+x(6) y(5)+x(7)y(4)+x(8)y(3)+x(9)y(2)+ x(10)y(1)+x(11)y(0) = 0+0+0+0+0+6+0+0+0+0+0+0 = 6;
F(12)= x(0)y(12)+x(1)y(11)+x(2)y(10)+x(3)y(9)+x(4)y(8)+x(5)y(7) +x(6) y(6)+x(7)y(5)+x(8)y(4)+x(9)y(3)+ x(10)y(2)+x(11)y(1)+x(12)y(0) = 0+0+0+0+0+0+0+0+0+0+0+0+0 = 0;
F(n)={3;0;5;-2;-6;6;11;2;-9;-4;4;6;0}
Знайдемо згортку з використанням z-перетворення:
Перемножаю і отримую результат z-перетворення:
f(0)=3 f(4)=-6 f(8)=-9 f(12)=0
f(1)=0 f(5)=6 f(9)=-4
f(2)=5 f(6)=11 f(10)=4
f(3)=-2 f(7)=2 f(11)=6
Результати обчислень представляю графічно:
Задача №2
Цифровий фільтр описується наступним різницевим рівнянням:
Період дискретизації Т= 2мс.
Знайти системну функцію фільтра, імпульсну характеристику, частотну характеристику (аналітичні вирази). Зобразити розташування нулів і полюсів системної функції на z-площині. Побудувати графік АЧХ фільтра, зобразити структурну схему фільтра, з'ясувати, чи стійкий даний фільтр. Побудувати початкову частину імпульсної характеристики фільтра (не менш 30 відліків).
Знайдемо системну функцію фільтра:
Знайдемо нулі і полюси системної функції:
Нулі:
Полюса
Отже корені комплексні:
Розташування нулів та полюсів системної функції на z-площині (рис. 2.1):
рис. 2.1
По даному графіку можна зробити висновок, що наш фільтр стійкий, оскільки його полюси лежать в межах кола одиничного радіуса.
Знайдемо імпульсну характеристику:
Кінцевий результат:
Визначимо початкову частину імпульсної характеристики фільтра (30 відліків) (таблиця 2.1. і рис. 2.2):
таблиця 2.1.
n |
h(n) |
n |
h(n) |
n |
h(n) |
|
0 |
0,12 |
10 |
-0,33 |
20 |
-0,05 |
|
1 |
-1,46 |
11 |
0,13 |
21 |
0,04 |
|
2 |
1,96 |
12 |
0,04 |
22 |
-0,02 |
|
3 |
-1,78 |
13 |
-0,13 |
23 |
0,08 |
|
4 |
1,20 |
14 |
0,16 |
24 |
0,05 |
|
5 |
-0,50 |
15 |
-0,14 |
25 |
-0,01 |
|
6 |
-0,08 |
16 |
0,09 |
26 |
0,01 |
|
7 |
0,44 |
17 |
-0,03 |
27 |
-0,01 |
|
8 |
-0,57 |
18 |
-0,01 |
28 |
0,06 |
|
9 |
0,5 |
19 |
0,04 |
29 |
-0,02 |
30 -0,02
рис. 2.2
Знайдемо частотну характеристику:
Побудуємо графік АЧХ фільтра (рис. 2.3):
рис. 2.3
Структурна схема фільтра (рис. 2.4):
рис. 2.4
Подобные документы
Отримання карти нулів та полюсів, амплітудно-частотної, фазо-частотної (АЧХ та ФЧХ) та імпульсної характеристик функції аналітично засобами програми Matlab. Основна смуга частот. Аналіз АЧХ та ФЧХ по карті нулів та полюсів. Побудова структурної схеми.
контрольная работа [432,9 K], добавлен 17.01.2014Аналіз статистичних характеристик і параметрів переданого повідомлення. Характеристики і параметри сигналів широко-імпульсної модуляції. Врахування перешкод в лінії зв’язку. Розрахунок характеристик приймача. Вибір схем модулятора і демодулятора.
курсовая работа [173,3 K], добавлен 22.11.2009Основні методи дослідження оптимального методу фільтрації сигналів та шумів. Визначення операторної функції оптимального фільтра та впливу "білого шуму" на вихідний сигнал. Оцінка амплітудно-частотної характеристики згладжуючого лінійного фільтра.
курсовая работа [729,5 K], добавлен 14.04.2012Визначення перехідної функції об’єкта керування. Побудова кривої розгону об’єкта. Обчислення і побудова комплексно-частотної характеристики (КЧХ) об’єкта. Побудова КЧХ розімкнутої автоматичної системи регулювання. Запас сталості за модулем і фазою.
курсовая работа [158,4 K], добавлен 23.06.2010Аналіз і синтез лінійної неперервної САК. Визначення стійкості системи по критерію Гурвіца. Побудова логарифмічної частотної характеристики САК. Визначення періоду дискретизації імпульсного елемента та передаточної функції розімкнутої та замкнутої ДСАК.
курсовая работа [4,9 M], добавлен 13.11.2010Перетворення сигналів довільної форми лінійними динамічними колами першого порядку в часовій та частотній областях. Визначення перехідної характеристики кола та його реакції на сигнал довільної форми методом інтеграла згортки і частотних характеристик.
курсовая работа [870,4 K], добавлен 20.10.2010Сигнал – процес зміни у часі фізичного стану певного об'єкта, який можна зареєструвати, відобразити та передати; види сигналів: детерміновані, випадкові, періодичні, аналогові. Методи перетворення біосигналів з використанням амплітуд гармонік ряду Фур'є.
контрольная работа [79,1 K], добавлен 18.06.2011Моделі шуму та гармонічних сигналів. Особливості та основні характеристики рекурсивних та нерекурсивних цифрових фільтрів. Аналіз результатів виділення сигналів із сигнально-завадної суміші та порівняльний аналіз рекурсивних та нерекурсивних фільтрів.
курсовая работа [6,6 M], добавлен 20.04.2012Математичний опис цифрових фільтрів, їх структурна реалізація, етапи розроблення. Візуалізація вхідного сигналу, методика та напрямки аналізу його частотного складу. Розробка специфікації та синтез цифрового фільтра. Фільтрація вхідного сигналу.
курсовая работа [1,2 M], добавлен 01.06.2013Обробка радіолокаційних сигналів, розсіяних складними об'єктами, на фоні нестаціонарних просторово-часових завад. Підвищення ефективності виявлення й оцінок статистичних характеристик просторово-протяжних об'єктів. Застосування вейвлет-перетворення.
автореферат [139,3 K], добавлен 11.04.2009