Розробка системи автоматичного регулювання

Визначення передаточних функцій об’єкта за різними каналами, його статичних і динамічних характеристик. Розроблення та дослідження CAP. Аналіз стійкості системи за критеріями Рауса-Гурвіца. Параметрична оптимізація системи автоматичного регулювання.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык украинский
Дата добавления 28.12.2014
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Дослідження об'єкта регулювання

Об'єкт заданий системою диференціальних рівнянь:

де індекси і=1,2,3 відносяться відповідно до першої, другої та третьої ємностей об'єкта; - стала часу і - тої ємності; - відхилення вихідної величини і - тої ємності від початкового (нульового, заданого) значення;

- коефіцієнт передачі і - тої ємності об'єкта за каналом керувального діяння; - зміна керувального діяння, прикладеного до і - тої ємності обєкта; - коефіцієнт передачі і - ї ємності об'єкта за каналом збурювання; - зміна збурювального діяння, прикладеного до і - ї ємності об'єкта; - коефіцієнт передачі відповідно від попередньої та наступно ємностей; - час.

Відповідні значення та коефіцієнти беремо відповідно до завдання:

Таблица 1

Показники динамічної характеристики об'єкта

Збурення

K1z

K2z

K3z

K12

K21

K23

K32

10

20

15

0,8

0

0

0,4

0

0,4

0,9

0,2

0,9

0

20

0

30

Після підстановки значень отримаємо наступне:

Приймемо , і після перетворень (зведення подібних, винесення за дужки і Лаплас - перетворення) маємо систему в операторному вигляді:

Визначимо передаточні функції різних ємностей:

Вихідна структурна схема об'єкта має вигляд:

Мал. 1 Структурна схема об'єкта

Після перетворень (згідно з правилами) структурної схеми отримаємо:

Мал. 2 Перетворена структурна схема об'єкта

Запишемо за виглядом структурної схеми еквівалентні передаточні функції об'єкта за каналом управління та збурень

2. Аналіз властивостей об'єкта

Статичні характеристики об'єкта

Статичні характеристики об'єкта визначаються за відповідними передаточними функціями або за диференціальним рівнянням об'єкта з урахуванням початкових умов (якщо не задані у вихідних даних, приймаються рівними нулю). Оскільки в статичному стані об'єкта всі похідні вхідних діянь та вихідних величин дорівнюють нулю, зображення відповідних похідних у передаточних функціях (р3, р2, р і т.д.) також прирівнюються до нуля.

Визначаємо статичні характеристики об'єкта за визначеними передаточними функціями і заданим значенням .

Статична характеристика за каналом управління має вигляд:

.

Статичні характеристики за каналами збурень мають вигляд:

Мал. 3 Статичні характеристики об'єкта за каналами

;

.

Динамічні характеристики об'єкта

Для побудови АЧХ, ФЧХ і АФХ визначимо значення амплітуди і фази в залежності від частоти . і визначаються за формулами:

Для побудови АФХ в кожній із відповідних передаточних функцій виконується формальна підстановка: , де - уявна одиниця.

Запишемо частотну характеристику об'єкта за каналом збурення на основі передаточної функції:

Умовою перетину дійсної осі є виконання рівності: Єдиним дійсним розв'язком цього рівняння є значення: , тобто лише за цього значення частоти існує перетин із дійсною віссю.

Уявну вісь АФХ не перетинає, оскільки дійсних розв'язків рівність не має.

Значення кроку і кінцевого значення візьмемо з процесу визначення частотних характеристик за іншими каналами.

Табл. 1 Зведена таблиця значень для визначення частотних характеристик об'єкта за каналом збурення

Аналогічно отримуємо частотні характеристики за каналом управління :

Умовою перетину дійсної осі є виконання рівності: Звідки:

Уявна вісь перетинається АФХ за умови виконання рівності: Шукане значення: .

Для достатньо точного і повного відображення частотних характеристик задамось крайнім значенням , і, зважаючи на отриманий ряд значень: , приймемо за крок значення частоти 0.015.

Табл. 2 Зведена таблиця значень для визначення частотних характеристик об'єкта за каналом управління

Частотна характеристику об'єкта за другим каналом збурення на основі передаточної функції:

Умовою перетину дійсної осі є виконання рівності:

Звідки:

Уявна вісь перетинається АФХ за умови виконання рівності: Шукане значення: .

За крайнє значення і значення кроку візьмемо значення з процесу визначення частотних характеристик за каналом управління.

Значення проміжних частот і відповідних їм значень та ін. можна побачити в табл. 3.

Графічне зображення частотних характеристик див. у відповідних додатках:

- за каналом збурення : у додатку 1;

- за каналом збурення : у додатку 2;

- за каналом управління : у додатку 3.

Табл. 3 Зведена таблиця значень для визначення частотних характеристик об'єкта за каналом збурення

3. Розроблення та дослідження системи автоматичного регулювання

Вибір закону регулювання

Перевіримо відповідність статичної похибки системи її допустимому значенню:

.

Щоб знайти у відомих відповідних передаточних функціях прирівнюємо p до нуля: p=0, і виконуємо відповідні перетворення, після чого маємо наступний вираз:

Для значення маємо наступний перехідний процес:

Мал. 4 Перехідний процес з П - регулятором

Статична похибка для даного перехідного процесу: , що більше допустимого значення.

Отже, систему необхідно замкнути регулятором з астатичною складовою.

Аналіз стійкості системи

Для перевірки системи на стійкість скористаємося критерієм Рауса - Гурвіца.

Треба скласти визначник Гурвіца за характеристичним рівнянням замкненої системи, для чого спочатку визначимо передаточну функцію замкненої системи за каналом управління:

Складаємо визначник Гурвіца:

Звідси діагональні мінори:

Робимо висновок, що система є стійкою.

При цьому структурна схема замкненої САР з регулятором має вигляд:

Мал. 5 Структурна схема замкненої САР з регулятором

Параметрична оптимізація системи

Параметрична оптимізація розробленої стійкої CAP полягає в знаходженні оптимальних параметрів настройки регулятора (регуляторів), що забезпечує найкраще (мінімальне чи максимальне) значення критерій якості перехідного процесу при додержанні відповідних обмежень.

Залежно від поставленої перед CAP мети критеріями якості можуть бути: час регулювання, інтегральні (поліпшені інтегральні) оцінки, ступінь фільтрації збурень на процес тощо. Обмеженнями, як правило, є такі показники: динамічна похибка, ступінь затухання процесу та ін., які визначають запас стійкості CAP.

Параметрична оптимізація CAP може виконуватися математичним моделюванням на ПЕОМ з використанням частотних або розширених частотних характеристик системи тощо.

Якщо в найпростішій стійкій САР не вдається досягти потрібної якості процесу регулювання при всіх допустимих значеннях параметрів її настройки, переходять до більш складних CAP.

Робота завершується після розроблення CAP, що повністю задовольняє поставленим вимогам.

Початкові значення параметрів настройки регулятора потрібно вибрати такими, щоб система була стійкою.

Для цього побудуємо АФХ розімкненої системи з ПІ - регулятором за умови

Частоти відомі, тому є можливість добудувати вектор l - складової закону регулювання.

Для цього до кожної точки АФХ, якій відповідає певне конкретне значення частоти, проводиться вектор під кутом , довжина якого визначається за формулою:

.

Значення обираємо з діапазону , а в нашому конкретному випадку це значення: .

Після з 'єднання кінців векторів годограф АФХ розімкненої системи побудовано (див. у додатку 6).

Значення довжин векторів для конкретних значень частоти і складової можна побачити в табл. 4.

Табл. 4. Значення довжин векторів

Значення довжини відрізка OA і відповідної частоти Значення складової Ti

0.6679

0.40016

0.31641

0.25315

0.16676

0.09465

0.05698

0.53432

0.32013

0.25313

0.20252

0.13341

0.07572

0.04558

0.48575

0.29103

0.23011

0.18411

0.12128

0.06883

0.04144

0.44527

0.26677

0.21094

0.16877

0.11117

0.0631

0.03799

0.38166

0.22866

0.1808

0.14466

0.09529

0.05408

0.03256

0.33395

0.20008

0.1582

0.12658

0.08338

0.04732

0.02849

0.28122

0.16849

0.13322

0.10659

0.07021

0.03985

0.02399

Для отримання параметрів і системи із заданим запасом стійкості (ступенем затухання) з початку координат проведемо промінь OF під кутом :

,

де M - показник коливальності, однозначно пов'язаний із ступенем затухання і запасом стійкості.

Зазвичай M вибирають рівним M=1.62, що відповідає куту і показнику ступеню затухання . При зменшенні або збільшенні показника коливальності можуть дещо погіршуватися інші показники якості перехідного процесу.

Провівши з центру координат промінь OF під кутом , далі необхідно на від'ємній дійсній піввісі знайти центр такого кола, яке б одночасно дотикалося і до променя OF, і до годографа АФХ системи з ПІ - регулятором. Визначивши графічно радіус цього кола R, ми можемо визначити пропорційну складову регулятора за формулою: . Відповідну інтегральну складову визначаємо за формулою: .

Після виконання всіх описаних дій до всіх АФХ системи з ПІ - регулятором маємо ряд даних, які можна побачити в табл. 5.

Табл. 5. Зведена таблиця настройок регулятора, радіусів дотичних кіл і складових

Значення складової

Радіус відповідного дотичного кола R

Пропорційна складова регулятора

Інтегральна складова регулятора

0.531238

1.88240

0.07051

0.413466

2.41858

0.07248

0.380066

2.63112

0.07168

0.355908

2.80971

0.07017

0.322426

3.10149

0.06639

0.301622

3.31541

0.06210

0.274396

3.64437

0.05748

Далі знаходимо оптимальні настройки ПІ - регулятора.

Для цього побудуємо в площині (y=Kp; x=Ti) область заданого запасу стійкості САР з ПІ - регулятором. При побудові використаємо дані з табл. 5.

Далі проведемо із центру координат до отриманої кривої області запасу стійкості дотичну. З точки дотику опустимо перпендикуляри на вісі, отримаємо оптимальні настройки регулятора:

Графік із заданим запасом стійкості дивіться у додатку 7.

За даних оптимальних настройок маємо наступний перехідний процес з наступними характеристиками: мал.6.

Мал. 6 Перехідний процес з оптимальними настройками ПІ - регулятора

()

Показники якості перехідного процесу з оптимальними настройками:

Динамічна похибка: ;

Степінь затухання: ;

Перерегулювання: ;

Час регулювання: с.

Інтегральний квадратичний критерій: .

Подивимось на динаміку змін перехідного процесу та його характеристик за зміни настройок регулятора +20%-20% від початкових (оптимальних). Перехідний процес за +20% від початкових настройок регулятора має вигляд: мал. 7.

Мал. 7 Перехідний процес з настройками ПІ - регулятора +20% від початкових (оптимальних)

Показники якості перехідного процесу (+20%):

Динамічна похибка: ;

Степінь затухання: ;

Перерегулювання: ;

Час регулювання: с;

Інтегральний квадратичний критерій: .

Перехідний процес за -20% від початкових (оптимальних) настройок регулятора має вигляд: мал. 8.

Мал. 8 Перехідний процес за настройками ПІ - регулятора -20% від початкових (оптимальних)

Показники якості перехідного процесу (-20%):

Динамічна похибка: ;

Степінь затухання: ;

Перерегулювання: ;

Час регулювання: с.

Інтегральний квадратичний критерій:

автоматичний регулювання передаточний

Висновки

В даній курсовій роботі за вихідними даними складено систему диференціальних рівнянь, виведено передаточні функції об'єкта за різними каналами, побудовано на основі системи і передаточних функцій структурну схему об'єкта.

Проведено аналіз властивостей об'єкта, було визначено статичні і динамічні характеристики об'єкта, виведено їх графічні зображення для наочності і кращого аналізу властивостей.

При виборі закону регулювання виявлено необхідність охоплення САР астатичною складовою - інтегральним регулятором, оскільки перехідний процес за роботи П - регулятора є розбіжним - статична похибка більша за допустиму.

Замкнена система проаналізована стійкість, проведена параметрична параметризація об'єкта і визначені оптимальні настройки використовуваного ПІ - регулятора для даної системи:

; .

Цим настройкам відповідають найкращі показники якості процесу.

Література

1. А.П. Ладанюк. Теорія автоматичного керування. - К.: НУХТ, 2004. - 184с.

2. Методичні вказівки до виконання курсового проекту з теорії автоматичного керування.

3. Папушин Ю.Л., Білецький В.С. - Основи автоматизації гірничого виробництва. - Донецьк: Східний видавничий дім, 2007. - 168 с.

4. Сенигов П.Н. Теория автоматического управления: Конспект лекций. - Челябинск: ЮУрГУ, 2000 - 93с.

Додаток 1

Частотні характеристики за каналом збурення :

АЧХ за каналом збурення

ФЧХ за каналом збурення

АФХ за каналом збурення

Додаток 2

Частотні характеристики за каналом збурення :

АЧХ каналом збурення

ФЧХ за каналом збурення

АФХ за каналом збурення

Додаток 3

Частотні характеристики за каналом управління :

АЧХ за каналом управління

ФЧХ за каналом управління

АФХ за каналом управління

Додаток 4

Крива розгону об'єкта за каналом збурення :

Додаток 5

Крива розгону об'єкта за каналом збурення :

Размещено на Allbest.ru


Подобные документы

  • Короткі відомості про системи автоматичного регулювання та їх типи. Регулятори: їх класифікація та закони регулювання. Розробка моделі автоматичного регулювання в MATLAB/Simulink і побудова кривої перехідного процесу. Аналіз якості функціонування системи.

    курсовая работа [402,4 K], добавлен 20.11.2014

  • Методи моделювання динамічних систем. Огляд методів синтезу. Математичне забезпечення вирішення задачі системи управління. Моделювання процесів за допомогою пакету VisSim. Дослідження стійкості системи управління. Реалізація програмного забезпечення.

    дипломная работа [3,8 M], добавлен 07.11.2011

  • Розробка функціональної схеми автоматизації процесу регулювання пари при гранулюванні кормів; побудова систем контролю і обліку. Визначення передаточних функцій елементів структурно-алгоритмічної схеми САУ; розрахунок показників запасу стійкості і якості.

    курсовая работа [984,7 K], добавлен 14.08.2012

  • Основні властивості й функціональне призначення елементів системи автоматичного керування (САК). Принцип дії та структурна схема САК. Дослідження стійкості початкової САК. Синтез коректувального пристрою методом логарифмічних частотних характеристик.

    контрольная работа [937,5 K], добавлен 19.05.2014

  • Передаткова функція замкненої та розімкненої схеми регулювання. Перевірка на стійкість отриманої схеми системи автоматичного регулювання. Оцінка якості процесу регулювання в системі за показниками та допустимої інструментальної похибки в сталому режимі.

    контрольная работа [956,2 K], добавлен 03.12.2013

  • Опис роботи системи автоматичного керування (САК). Аналіз лінійної та дискретної САК. Визначення стійкості системи по критерію Гурвіца. Побудова амплітудно-фазової та логарифмічної частотної характеристики. Моделювання в програмному модулі Simulink.

    курсовая работа [744,8 K], добавлен 19.11.2010

  • Визначення стійкості систем автоматичного керування за алгебраїчними критеріями методом Гурвіца та розрахунок критичного коефіцієнту підсилення замкнутої САК. Алгоритм перевірки вірності всіх обрахунків на графіках, які побудовані за допомогою ЦЕОМ.

    лабораторная работа [859,6 K], добавлен 28.12.2011

  • Опис роботи, аналіз та синтез лінійної неперервної системи автоматичного керування. Особливості її структурної схеми, виконуваних функцій, критерії стійкості та її запаси. Аналіз дискретної системи автокерування: визначення її показників, оцінка якості.

    курсовая работа [482,1 K], добавлен 19.11.2010

  • Характеристика та аналіз функціональних схем систем автоматичного регулювання підсилення (АРП). Різновиди та елементи систем АРП. Методика розрахунку зворотньої системи регулювання підсилення. Порівняльний аналіз між аналоговими та цифровими системами.

    курсовая работа [1,0 M], добавлен 25.01.2010

  • Аналіз стійкості вихідної системи автоматичного управління за критерієм Найквиста. Проектування за допомогою частотного метода корегуючго пристрою. Проведення перевірки виконаних розрахунків за допомогою графіка перехідного процесу (пакети Еxel і МatLab).

    курсовая работа [694,3 K], добавлен 10.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.