Теория и методика подтягиваний на перекладине

Мышцы, производящие подъем/опускание туловища, характер, особенности их работы, изменения в волокнах под влиянием разных тренировочных воздействий. Энергообеспечение динамической работы при подтягивании. Уровень развития силовых способностей и адаптация.

Рубрика Спорт и туризм
Вид учебное пособие
Язык русский
Дата добавления 17.06.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Увеличение числа и объёма митохондрий сопровождается изменением соотношения активности различных ферментов, выражающемся в повышении эффективности окислительного метаболизма. Оба эти явления - гипертрофия и гиперплазия митохондрий и изменение состава ферментативных систем приводят к увеличению окислительного потенциала как медленных так и быстрых мышечных волокон на 100-200% [32].

Изменение активности ключевых ферментов под воздействием соответствующей тренировки изменяет метаболический профиль мышечного волокна (определяемый по соотношению кислительных и гликолитических ферментов), что даёт основание говорить о превращении быстрых гликолитических волокон в быстрые окислительно-гликолитические.

При увеличении массы митохондрий повышается кислородный запрос мышц. В связи с тем, что содержание кислорода в единице объёма крови находится в жёстких пределах, единственной возможностью увеличения количества кислорода, доставляемого к работающим мышцам, является усиление их кровообращения [16]. Хроническая недостаточность в снабжении мышечной ткани кислородом может вызвать специфическое приспособление сосудистой системы, которое проявляется в увеличении числа кровеносных сосудов, особенно капиллярной сети [9].

Повышение окислительной способности быстрых мышечных волокон приводит к снижению уровня лактата в мышечной ткани. Дело в том, что накопление лактата и ионов водорода в мышечной ткани является разницей между скоростью их продукции, обусловленной массой и степенью активизации ключевых ферментов гликолиза и скоростью удаления, определяемой скоростью потребления пирувата митохондриями, скоростью удаления из мышечной клетки и степенью буферизации [32]. Высокая капилляризация облегчает выход лактата в кровь, а повышенное количество митохондрий более активно использует лактат в качестве субстрата окисления, следовательно, два фактора уменьшения продукции лактата из трёх обусловлены аэробными способностями мышечных волокон (третий - степенью их гипертрофии).

Какие же упражнения ведут к увеличению массы митохондрий и повышению окислительного потенциала быстрых мышечных волокон?

По мнению Селуянова [цит. по [32]] при выполнении таких упражнений должны соблюдаться два простых условия: интенсивное функционирование митохондрий и относительно невысокая степень закисления цитозоля мышечных волокон, в которых митохондрии функционируют.

Для обеспечения рекрутирования быстрых окислительных мышечных волокон подтягивания нужно выполнять либо без отягощения, либо с небольшим отягощением, а для предотвращения чрезмерного закисления темп подтягиваний должен быть значительно ниже соревновательного.

Подтягивание со спрыгиванием

Спортсмен выполняет одиночное подтягивание, затем разжимает ладони и спрыгивает с перекладины, после чего встряхивает руками (или оставляет их поднятыми вверх - что более сложно), а затем снова фиксирует хват и выполняет второе подтягивание, снова срыгивает с перекладины и так далее. Упражнение выполняется в темпе примерно 1 раз в 6 секунд в течение 5-10 минут, т.е. за время подхода производится от 50 до 100 подтягиваний.

В таком упражнении большая сила одиночного сокращения в фазе подъёма включает в работу быстрые волокна, а низкий темп выполнения упражнения даёт возможность образующейся молочной кислоте частично окислиться в медленных мышечных волокнах, а частично уйти в кровь и окислиться в миокарде и медленных мышечных волокнах менее активных скелетных мышц [32]. Следовательно, упражнение может выполняться достаточно долго без выраженного закисления, что и подтверждается на практике.

Упражнение можно усложнить, постепенно переходя к выполнению сдвоенных, строенных и т.д. подтягиваний между спрыгиваниями, либо выполняя одиночные подтягивания с небольшим отягощением.

Подтягивание в сверхнизком темпе

Выполняется подтягивание без отягощения в очень низком темпе (от 5 до 10 подтягиваний в минуту) но в течение длительного (более 2,5 минут) времени.

При этом существуют как минимум две разновидности упражнения. В первом случае используется обычный вариант хвата, и тогда это упражнение полностью совпадает с тем, которое описано в главе 6 в качестве упражнения для развития статической выносливости мышц-сгибателей пальцев. При этом параллельно с развитием статики будет происходить повышение окислительного потенциала быстрых окислительных волокон мышц, выполняющих подъём / опускание туловища.

Во втором случае для увеличения длительности подхода используется хват в облегчённых условиях. В качестве облегчения могут использоваться клеящие вещества, нанесённые на гриф, или какой-либо вариант тягового замка. Как пример можно привести петлю из прочного материала, подобно той, которую используют гимнасты (рисунок 7.9). Для предотвращения травм рекомендуется дополнительно наматывать на кисти рук мягкий (боксёрский) бинт (рис 7.9, поз. 4) и выполнять подтягивания на перекладине, до грифа которой можно дотянуться, стоя на полу.

Простейший вариант тягового замка

1 - капроновая лента, сшитая в виде петли

2, 3 - последовательность действий при фиксации хвата с помощью тягового замка

4 - тяговый замок в комбинации с боксёрской лентой (для предотвращения травм)

Постепенное увеличение темпа подтягиваний при отсутствии выраженного закисления динамически работающий мышц также будет способствовать увеличению окислительного потенциала быстрых мышечных волокон.

«Лесенки» и «пирамиды»

При использовании «лесенки» выполняется серия подходов таким образом, что количество подтягиваний в каждом последующем подходе увеличивается на некоторое число, в простейшем случае - на единицу, относительно первого подхода серии, число подтягиваний в котором может также может быть равно единице (обычно от 1 до 5). Таким образом, в случае «лесенки» серия подходов может выглядеть как 1, 2, 3, …N, где N - наибольшее количество подтягиваний, выполняемых в последнем подходе.

После каждого подхода спортсмен спрыгивает с перекладины и делает небольшую паузу отдыха, которая может увеличиваться от подхода к подходу вместе с ростом числа повторений в подходе.

Чем большее количество подтягиваний будет выполняться в подходе, тем в большей степени будут рекрутироваться более высокопороговые мышечные волокна, а ресинтез АТФ в мышцах всё больше будет смещаться в сторону анаэробного гликолиза.

Механизм аэробного окисления, функционирующий в паузах отдыха между подходами, постепенно увеличивает мощность энергопродукции, а когда все окислительные мышечные волокна (и быстрые и медленные) оказываются вовлечены в работу, выходит на свой максимальный уровень. Подключение к работе быстрых гликолитических волокон по мере нарастающего утомления приводит к тому, что, начиная с некоторого подхода (в зависимости от уровня тренированности спортсмена) количество производимого в мышцах лактата начинает превышать возможности организма по его утилизации, в связи с чем начинается закисление рабочих мышц.

Для спортсмена важно не пропустить этот момент и прервать серию - в случае использования «лесенки», либо начать уменьшение количества подтягиваний в последующих подходах - при достижении пика «пирамиды». Уменьшение количества подтягиваний в подходах на нисходящей части «пирамиды» не обязательно будет происходить с тем же шагом, что и на её восходящем участке. Шаг снижения нагрузки должен соответствовать скорости нарастания утомления и обеспечивать работу мышц в условиях относительно небольшого их закисления при интенсивном функционировании митохондрий, поскольку в противном случае будут развиваться не окислительные, а гликолитические возможности (в ущерб окислительным).

Параллельное увеличение количества митохондрий и миофибрилл в быстрых мышечных волокнах

Одной из главных причин отказа от выполнения упражнения при подтягивании на перекладине является закисление рабочих мышц. Миофибриллярная гипертрофия быстрых мышечных волокон, сопровождающаяся увеличением мощности и ёмкости анаэробных механизмов энергообеспечения, связана также и с повышением продукции лактата в ходе протекания реакций анаэробного гликолиза. Поэтому значительное улучшение результата в подтягивании только за счёт гипертрофии быстрых мышечных волокон возможно только в том случае, когда длительность подхода не превышает 1-2 минуты.

Если же спортсмен серьёзно настроен на четырёхминутный подход, ему необходимо добиться увеличения окислительного потенциала мышц, поскольку накопление лактата определяется разницей между его производством и утилизацией. Более высокая мощность окислительной системы позволит отдалить момент наступления критического утомления при работе в высоком темпе. Таким образом, длительность работы в соревновательном темпе с участием быстрых окислительных волокон будет пропорциональна их окислительному потенциалу.

Величина поддерживаемого темпа в данном случае будет являться критерием мощности процессов ресинтеза АТФ, а скорость его снижения - показателем соотношения производительностей анаэробных и аэробных механизмов энергообеспечения. В этом случае задача повышения силовых или анаэробных способностей будет являться корректно поставленной только тогда, когда она является составной частью аэробной подготовки или, по крайней мере, не противоречит ей [32].

Тренировка со ступенчатым изменением величины отягощения.

Тренировочный процесс включает несколько тренировочных циклов, проводимых по однотипной схеме. На первой тренировке цикла выполняется 3-5 подходов с количеством подтягиваний, равным примерно половине от максимально возможного. Так, для спортсмена, имеющего лучший результат в районе 40 раз, это будет 20 подтягиваний. Для того чтобы не происходило чрезмерного закисления мышц, интервал отдыха между подходами должен быть не менее 10 минут. Темп выполнения подтягиваний должен быть строго фиксированным - это нужно для облегчения контроля за текущим изменением тренированности спортсмена. И желательно, чтобы он был ниже соревновательного. Задавать темп можно с помощью компьютерного темполидера [33, 34], либо отслеживая время по секундомеру, размещённому в зоне видимости. Допустим, что раскладка по темпу будет такой: 5 подтягиваний в темпе 1 раз в 3 секунды, затем 10 подтягиваний в темпе 1 раз в 4 секунды, затем 5 подтягиваний в темпе 1 раз в 5 секунд, т.е. 20 раз за 1 минуту 20 секунд (16 раз за минуту).

На следующей тренировке спортсмен работает по той же схеме, но подтягивания выполняются с небольшим (0,5-1 Кг) отягощением, размещённым на поясе. Стремление поддерживать заданный темп при работе в слегка отягощённых условиях обеспечивает более напряжённую работу окислительного механизма энергообеспечения, активизирую процессы повышения окислительного потенциала мышц.

На третьей тренировке спортсмен снова увеличивает вес отягощения на 0,5-1 Кг и работает в заданном теме уже на пределе аэробных возможностей.

Поскольку прирост величины отягощения опережает процессы адаптации организма спортсмена к изменяющейся нагрузке, то увеличение веса груза на заданную величину на последующей тренировке и необходимость поддержания выбранного темпа подтягиваний приводят к вовлечению в работу всё большего количества быстрых гликолитических волокон, нарастанию степени закисления мышц и - при сохранении длительности интервалов отдыха между подходами - к активизации процессов гипертрофии мышечных волокон.

Следовательно, последующие тренировки, проводимые по той же схеме, но с большей величиной отягощения, будут создавать ещё большие стимулы для увеличения сократительного аппарата мышечных клеток. Вместе с тем окислительные возможности мышц будут задействованы на полную мощность.

Проведя 5-6 тренировок в течение 3-4 недель по описанной схеме, на следующей неделе следует сбросить нагрузку для того, чтобы дать возможность организму осуществить синтез белковых структур сократительного аппарата мышечных клеток.

Предполагается, что после разгрузочного периода (в нашем случае - одной недели) спортсмен выходит на новый уровень силовых и аэробных возможностей, что позволит ему на том же уровне волевых усилий в каждом тренировочном подходе выполнять в заданном темпе уже не 20, а, допустим, 25 подтягиваний.

Таким образом, каждый последующий тренировочный цикл выполняется по той же схеме, что и предыдущий, за исключением количества подтягиваний в подходе и коррекции раскладки в связи с изменением этого количества и длительности самого подхода.

Можно отметить, что первые две-три тренировки каждого цикла направлены на преимущественное развитие окислительных возможностей мышц, а следующие, особенно две последние (самые тяжёлые) - на развитие их силовых способностей. Увеличение количества миофибрилл (происходящее под влиянием двух последних тренировок каждого цикла) в течение разгрузочного периода между тренировочными циклами будет сопровождаться ростом числа митохондрий (располагающихся вокруг этих новых миофибрилл) в течение первой половины каждого следующего тренировочного цикла.

В итоге мы будем иметь параллельное увеличение окислительных и силовых возможностей мышечных волокон, приводящее к росту длительности выполнения упражнения в заданном темпе. Именно это мы и наблюдаем в нашем примере, когда после четырёх тренировочных циклов спортсмен от 20 подтягиваний в подходе, выполняемых без напряжения в начале тренировочного процесса, переходит к выполнению 40 подтягиваний в подходе, выполняемых на том же низком уровне волевых усилий.

Увеличение количества миофибрилл в медленных мышечных волокнах

Из сравнения величин площади поперечного сечения медленных мышечных волокон, проведённым по данным гистохимических исследований [32] следует, что гипертрофия ММВ у представителей циклических видов спорта выражена в такой же степени, что и у представителей силовых видов спорта, например, бодибилдеров.

Предполагается, что гипертрофия ММВ необходима не столько для противодействия механической нагрузке, сколько для повышения в дальнейшем аэробной мощности мышц, т.е. гипертрофия ММВ за счёт сократительных элементов (миофибрилл) и сопутствующих им органелл обеспечивает высокую работоспособность мышц при условии одновременного повышения их окислительного потенциала за счёт гиперплазии и гипертрофии митохондрий.

По мнению В.Н. Селуянова и Е.Б. Мякинченко гипертрофии медленных мышечных волокон будут способствовать изотонические и статодинамические упражнения, выполняемые при строгом соблюдении следующих правил:

· медленный и плавный характер движений;

· относительно небольшая величина преодолеваемой силы или степени напряжения мышц (40-70% от максимальной произвольной силы);

· отсутствие расслабления мышц в течение всего подхода; выполнение подхода до «отказа»;

· проведение тренировки как правило с применением суперсетов на все основные мышечные группы;

· достаточно большая длительность всей тренировки (не менее часа).

Такой характер тренировки приводит к тому, что: первоначально и главным образом будут рекрутироваться медленные мышечные волокна; затрудняется доступ кислорода в ММВ, ускоряется снижение концентрации креатинфосфата и происходит накопление ионов водорода (закисление) именно в этих волокнах; достаточно большая длительность подходов (60-90 секунд) и большое число подходов (4-15) обеспечивает длительное действие указанных стимулов в ММВ [32].

Увеличение силы мышц-сгибателей пальцев

Несмотря на то, что мышцы-сгибатели пальцев работают, в основном, в статическом режиме, а в данной главе рассматриваются особенности динамического режима работы мышц, мы отступим от правила и вернёмся к статике вследствие высокой значимости надёжного хвата для подтягиваний на перекладине.

Описанным выше правилам в какой-то степени подчиняется тренировка статической выносливости мышц-сгибателей пальцев, подробно рассмотренная в шестой главе. Величина силы мышц-сгибателей пальцев, развиваемой ими в висе, не превышает 50% от максимальной произвольной силы, поскольку любой квалифицированный полиатлонист может выполнить вис на перекладине с дополнительным отягощением, равным весу его тела (см. п. 2.4.3 и рисунок 2.4).

Существенное отличие состоит в том, что количество подходов, выполняемых до отказа при развитии статической выносливости, обычно не превышает 4-5. Это связано с особенностями подтягиваний. Во-первых, упражнение на развитие времени удержания надёжного виса является одним из основных в подтягивании, в отличие от статодинамических упражнений, которые в циклических видах спорта рекомендуется использовать в качестве дополнительных. Во-вторых, работа мышц только в уступающем режиме при выполнении висов отдаляет момент наступления отказа, а затруднённый отток крови от этих расположенных на самой периферии мышц вызывает значительное их закисление, требующее для восстановления более длительного промежутка времени (до часа).

В принципе, если подход заканчивать не в момент срыва с перекладины, а раньше, например, в момент первого перехвата, степень закисления мышц будет меньше, интервалы отдыха - короче, а подходов можно будет сделать больше. Но при этом не нужно забывать, что целью тренировки по развитию статической выносливости является не увеличение количества подходов, а увеличение длительности одного подхода.

Развитие силы ММВ мышц, выполняющих подъём туловища

Статодинамическая тренировка по развитию силы медленных мышечных волокон мышц, выполняющих подъём туловища может выглядеть следующим образом.

В течении 40-60 секунд выполняется 5-10 (в зависимости от исходного уровня тренированности) медленных подъёмов / опусканий туловища без паузы отдыха в висе и неполным выпрямлением рук в нижней части траектории движения для исключения фазы расслабления динамически работающих мышц. Отдых между подходами составляет 8 минут, всего выполняется 4-8 подходов. Подход прерывается при появлении чувства боли и жжения в мышцах, сигнализирующих об их закислении.

Поскольку резерв мышечной силы в верхней части траектории движения существенно меньше, чем в нижней, для прохождения верхнего участка необходимо вовлечение в работу дополнительных мышечных волокон, причём это будут более высокопороговые, т.е. быстрые мышечные волокна. Для уменьшения степени их участия упражнение желательно делать в облегчённых условиях, используя в качестве облегчения, например, груз, переброшенный через блок и закреплённый с помощью троса (верёвки) на поясе спортсмена [20, 35].

Увеличение количества митохондрий в медленных мышечных волокнах

Задача повышения силовых или анаэробных способностей будет являться корректно поставленной только в том случае, если она является составной частью аэробной подготовки или по крайней мере не противоречит ей [32].

Следовательно, конечной целью гипертрофии медленных мышечных волокон будет являться не столько увеличение их силы, сколько увеличение их окислительного потенциала (за счёт увеличения объёма и количества митохондрий, повышения активности окислительных ферментов, увеличения степени капилляризации мышц), производимое на базе увеличения объёма сократительных структур.

Наиболее очевидным признаком повышения дыхательных способностей мышц является увеличение объёма и числа митохондрий, которые могут составлять до 13% объёма медленных мышечных волокон [32].

Для того чтобы в подтягивании участвовали, в основном, медленные мышечные волокна, нужно выполнять упражнение в существенно облегчённых условиях, причём настолько облегчённых, чтобы спортсмен без труда мог подтягиваться в заданном темпе не менее 10 минут.

Подтягивание в облегчённых условиях

Выполняется подтягивание на перекладине с переброшенным через блок грузом, либо тяга верхнего блока к груди на тренажёре.

В условиях тренажёрного зала подтягивание в облегчённых условиях также можно выполнять на специально предназначенном для этого тренажёре «Гравитрон».

Длительность подхода и количество подтягиваний в подходе зависят от величины облегчения (силы сопротивления механизма тренажёра).

Поскольку в соответствии с «правилом размера» Э. Хеннемана самые медленные двигательные единицы (состоящие из ММВ) активны при любом напряжении мышцы, в то время как быстрые двигательные единицы активны лишь при сильных мышечных напряжениях [9], считается, что окислительные возможности медленных мышечных волокон будут развиваться при выполнении любой силовой нагрузки не максимальной мощности. Это означает, что подтягиванию в облегчённых условиях в тренировке квалифицированных спортсменов не следует уделять слишком много времени.

В тоже время подтягивание в облегчённых условиях идеально подходит для разминки перед соревнованиями. В этом случае при подтягивании на низкой перекладине или шведской стенке облегчение веса можно создать за счёт того, что ноги спортсмена в процессе подтягиваний не отрываются от пола (или ступеней шведской стенки).

Также подтягивание с облегчением подходит для начинающих спортсменов (при условии постепенного уменьшения величины облегчения), которые пока не в состоянии подтянуться ни одного раза. Правда в этом случае в работу будут задействованы не только медленные мышечные волокна, но и быстрые, поэтому силовые и аэробные возможности мышц будут, вероятно, развиваться параллельно.

Схема изменений в мышечных волокнах под воздействием нагрузки

На рисунке 10 в условном виде изображены изменения, происходящие в мышечных волокнах разных типов под воздействием только что рассмотренных нами тренировочных нагрузок различной направленности.

Условная схема изменений в мышечных волокнах разных типов под воздействием нагрузки различной направленности.

ОП - окислительный потенциал

ММВ - медленные мышечные волокна (тип I - красного цвета)

БМВ - быстрые мышечные волокна (типы IIA - розового и IIB - жёлтого цветов)

Митохондрии изображены кружками голубого цвета, располагающимися по периметру мышечного волокна;

Миофибриллы изображены точками фиолетового цвета, расположенными внутри мышечного волокна.

1 - Увеличение силы быстрых мышечных волокон

2 - Увеличение окислительного потенциала быстрых мышечных волокон

1 и 2 - Последовательное или параллельное увеличение силы и окислительного потенциала быстрых мышечных волокон, приводящее к увеличению их производительности

3 - Увеличение только окислительного потенциала быстрых мышечных волокон

4 - Увеличение силы медленных мышечных волокон

5 - Увеличение окислительного потенциала медленных мышечных волокон

4 и 5 - Последовательное или параллельное увеличение силы и окислительного потенциала медленных мышечных волокон, приводящее к увеличению их производительности

6 - Увеличение только окислительного потенциала медленных мышечных волокон

Под производительностью мышечных волокон в данном случае будет пониматься не мощность ресинтеза АТФ, а способность выполнять работу на заданном уровне интенсивности. Так, увеличение производительности быстрых мышечных волокон связано как с увеличением их анаэробных возможностей (мощности анаэробного ресинтеза АТФ), так и с увеличением их окислительного потенциала, поскольку повышенные аэробные возможности быстрых окислительно-гликолитических волокон позволяют увеличить время работы мышцы за счёт снижения степени её закисления.

В случае с медленными мышечными волокнами повышение производительности также происходит как за счёт синтеза дополнительной массы сократительных белков (миофибрилл), так и за счёт образования новых митохондрий вокруг этих миофибрилл.

4. Энергообеспечение динамической работы при подтягивании

Для того чтобы подъём туловища происходил с оптимальной скоростью, необходимо, чтобы механизм энергообеспечения, за счёт которого производится работа в фазе подъёма, обладал необходимой мощностью. В параграфе 1.2.3.4 мы уже производили расчёт мощности в фазе подъёма и получили её значение около 350 Вт. Именно такую полезную мощность должны развивать мышцы, чтобы произвести подъём в течение 1 секунды. При более быстром подъёме мощность возрастает за счёт дополнительных энергозатрат при разгоне и более высокого «вылета» над грифом перекладины. При слишком медленном подъёме возрастает доля энергозатрат на обеспечение «скользящего» виса.

Энергия для мышечного сокращения образуется при расщеплении аденозинтрифосфата (АТФ). Но содержание АТФ в мышцах таково, что его достаточно для выполнения одного-двух интенсивных сокращений. Для того чтобы мышцы могли поддерживать более длительное сокращение, необходимо обеспечить непрерывное восстановление (ресинтез) АТФ примерно с такой же скоростью, с которой она расходуется в процессе мышечной работы. Мышцы обладают механизмом ресинтеза АТФ, который способен обеспечить её быструю регенерацию в анаэробных условиях. Речь идёт о креатинфосфатном механизме энергообеспечения, который осуществляет ресинтез АТФ при взаимодействии креатинфосфата с молекулами АДФ, появляющимися в мышцах в результате расщепления АТФ при физической работе. Однако содержание креатинфосфата в мышечных клетках ограничено, в связи с чем ресинтез АТФ за счёт креатинфосфата может идти всего несколько десятков секунд. Поэтому поддержание процесса ресинтеза АТФ во время напряжённой мышечной работы происходит при участии ещё одного анаэробного механизма энергопродукции - гликолитического, при включении которого в ходе ряда анаэробных реакций происходит расщепление мышечного гликогена (или глюкозы) до молочной кислоты с образованием АТФ. Гликолитические реакции могут идти до тех пор, пока не истощатся запасы мышечного гликогена, либо повышение уровня кислотности внутри мышечных клеток в результате накопления молочной кислоты не приведёт к прекращению мышечной активности. Дальнейшее продолжение работы (при условии снижения её интенсивности) возможно лишь при участии аэробного окисления, при котором за счёт энергии, образующейся в ходе окислительных реакций, происходит синтез АТФ из АДФ и фосфорной кислоты. Если мощность аэробного окисления достаточна для производства АТФ в таком количестве, которого хватает и на обеспечение сократительной функции мышечных клеток и на восполнение запасов креатинфосфата, то во время выполнения физической работы креатинфосфатная реакция может включаться многократно.

Поскольку пути и возможности по ресинтезу АТФ при подтягивании в большой степени определяются длительностью паузы отдыха в висе в ИП, а значит и темпом выполнения упражнения, рассмотрим режимы энергообеспечения динамической работы мышц, выполняющих подъём / опускание туловища в зависимости от темпа выполнения подтягиваний.

Энергообеспечение динамической работы при подтягивании в оптимальном соревновательном темпе

При подтягивании в оптимальном соревновательном темпе первое подтягивание выполняется за счёт имеющихся в мышцах запасов АТФ. При этом концентрация АТФ понижается, а концентрация АДФ (которая появляется вследствие гидролиза АТФ при мышечном сокращении) увеличивается, что вызывает включение анаэробного креатинфосфатного механизма ресинтеза АТФ, который в последующие 15-20 секунд является ведущим механизмом энергообеспечения. В процессе работы происходит непрерывное уменьшение концентрации креатинфосфата, а поскольку его запасы в мышцах невелики, для поддержания процесса ресинтеза АТФ в работу включается гликолиз, в ходе которого происходит анаэробное окисление глюкозы до молочной кислоты. К факторам, способствующим запуску гликолиза, относят активизацию ферментов гликолиза адреналином и многократное увеличение концентрации ионов кальция в саркоплазме мышечных клеток под воздействием двигательного нервного импульса в начале интенсивной работы.

Примерно с середины первой и до середины второй минуты гликолиз является преимущественным механизмом ресинтеза АТФ. Протекание гликолиза с высокой скоростью (для обеспечения работы в энергоёмкой фазе подъёма туловища) сопровождается уменьшением в мышцах концентрации гликогена, который является «топливом» для гликолитических реакций. Кроме того, - и это, пожалуй, имеет первостепенное значение для подтягиваний - в процессе гликолиза образуется молочная кислота, накопление которой приводит к повышению кислотности внутри мышечных клеток и вызывает снижение каталитической активности ферментов того же гликолиза и уменьшение скорости энергопродукции этого пути ресинтеза АТФ. Для предотвращения данного негативного явления спортсмен при первых признаках «задубения» мышц снижает темп выполнения подтягиваний за счёт увеличения пауз отдыха в висе и подтягивается в пониженном темпе до тех пор, пока мышцы не «отпустит», что будет свидетельствовать о снижении уровня лактата до безопасной величины.

Подтягивание в темпе, при котором с одной стороны обеспечиваются потребности в АТФ в фазах подъёма / опускания и с другой стороны не происходит увеличения уровня молочной кислоты до опасной черты, продолжаются до тех пор, пока не разворачивается самый медленный (но в то же время и самый экономичный) механизм энергообеспечения - аэробный механизм ресинтеза АТФ.

Активация механизма аэробного окисления осуществляется вследствие образования и накопления АДФ, а также вследствие избытка углекислого газа, который активизирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровотока и улучшению снабжения мышц кислородом. Поскольку для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода к митохондриям мышц, время развёртывания механизма аэробного окисления достаточно велико, поэтому о его сокращении нужно позаботиться заранее, проведя соответствующую разминку. Но даже после выхода механизма аэробного ресинтеза АТФ на максимальную мощность, суммарная энергопродукция в ходе выполнения подтягиваний уменьшается, поэтому даже при сохранении длительности фазы подъёма в оптимальных пределах, спортсмен вынужден увеличивать паузу отдыха, чтобы успеть выработать необходимое количество АТФ. Для сравнения можно привести следующие данные [11]: максимальная мощность энергопродукции креатинфосфатного механизма составляет 900-1100 кал/мин/кг, гликолитического - 750-850 кал/мин/кг, а аэробного - всего 350-450 кал/мин/кг, т.е. примерно в 3 раза ниже, чем у креатинфосфатного и в 2 раза ниже, чем у гликолитического механизма энергопродукции.

Кроме того, интенсивность дыхания в процессе подтягиваний возрастает, поэтому увеличение паузы отдыха также связано ещё и с необходимостью согласования циклов подтягиваний с циклами дыхания. Хотя нужно отметить, что хорошо тренированные спортсмены способны выполнять подтягивания не более чем на 2 цикла дыхания практически до конца упражнения. Если же уровень подготовки спортсмена недостаточно высок, его мышцы неспособны утилизировать кислород, несмотря на непрерывное увеличение интенсивности дыхания.

Выполняя подтягивания в темпе, соответствующем аэробным возможностям мышц, спортсмен может позволить себе в середине четвёртой минуты начать финишное ускорение, увеличив темп выполнения подтягиваний за счёт сокращения интервалов отдыха в висе. При этом резко возрастает кислородный запрос, активизируется гликолиз и выделяется лактат, но спортсмен уже не обращает на это внимания, выполняя подтягивания в максимально возможном на тот момент темпе. Если к моменту финишного рывка в мышцах спортсмена осталось достаточное количество креатинфосфата, он не будет испытывать затруднений в верхней части траектории движения и закончит упражнение по истечении отведённого времени (при этом ему может потребоваться несколько минут, чтобы отдышаться после окончания упражнения). В противном случае дисбаланс между расходом энергии вследствие увеличения интенсивности работы и её приходом от гликолиза и аэробного окисления быстро приводит к снижению концентрации креатинфосфата, уменьшению уровня АТФ в миофибриллах мышечных волокон и, как следствие, к «зависанию» в верхней части траектории движения и преждевременному окончанию упражнения.

Энергообеспечение динамической работы при подтягивании в низком темпе

Темп подтягиваний будем считать низким, если уровень развития аэробных возможностей мышц спортсмена превышает уровень, необходимый для поддержания выбранного темпа выполнения упражнения.

Допустим, что спортсмен выполняет подтягивания в низком темпе. Первое подтягивание производится за счёт запасов АТФ в мышечных клетках, которых достаточно для мышечной работы в течение 1-2 секунд. Для дальнейшего выполнения работы по подъёму / опусканию туловища должно производиться восполнение запасов АТФ за счёт быстрой креатинфосфатной реакции, во время которой имеющийся в мышечных клетках креатинфосфат вступает во взаимодействие с АДФ (образовавшейся ранее при расщеплении АТФ) с образованием креатина и АТФ. Несколько первых подтягиваний - пока ещё не включился гликолитический механизм ресинтеза - происходят при непрерывном снижении запасов креатинфосфата, но постепенно разворачивающийся гликолиз (время выхода на максимальную мощность которого составляет около 30 секунд) начинает ресинтезировать в единицу времени всё большее количество молекул АТФ, в связи с чем скорость снижения запасов креатинфосфата начинает уменьшаться. Поскольку темп выполнения подтягиваний невысок, скорость образования лактата в мышцах также невелика, поэтому аэробный механизм энергопродукции успевает развернуться раньше, чем произойдёт «закисление» мышц. Если максимальная мощность энергопродукции механизма аэробного окисления достаточно высока, подтягивание переходит в относительно спокойное русло, когда спортсмен длительное время (по меркам подтягиваний) поддерживает ритм выполнения упражнения в режиме «1 подтягивание на 2 цикла дыхания». При этом если за счёт тканевого дыхания в паузе отдыха в висе синтезируется такое количество АТФ, что его хватает не только на обеспечение сокращений мышц, но и на частичное восполнение запасов креатинфосфата, спортсмен не будет испытывать трудностей в верхней части траектории движения и подтягивания будут производиться в течение всех 4 минут. Образовавшийся кислородный долг при этом будет невелик и спортсмену потребуется немного времени на то, чтобы восстановить дыхание после окончания подтягиваний.

Таким образом, при выполнении подтягиваний в медленном темпе аэробное окисление успевает выйти на максимальный уровень энергопродукции, и в этом случае подтягивание в целом производится в смешанном аэробно-анаэробном режиме.

Энергообеспечение динамической работы при подтягивании в повышенном темпе

Темп подтягиваний будем считать повышенным, если уровень развития аэробных возможностей мышц спортсмена недостаточен для поддержания выбранного темпа выполнения упражнения.

При подтягивании в повышенном темпе происходит следующее. Первое подтягивание выполняется за счёт запасов АТФ, имеющегося в мышечной ткани, вследствие чего концентрация АТФ уменьшается, а концентрация АДФ - увеличивается. Включается анаэробный креатинфосфатный механизм ресинтеза АТФ. В последующие 15-20 секунд подтягивание выполняется при непрерывном уменьшении запасов креатинфосфата. Снижение концентрации креатинфосфата приводит к тому, что в мышечных волокнах снижается уровень АТФ и повышается уровень АДФ. В результате этого и других процессов, происходящих в мышечных волокнах в начальный период работы (которые подробно описаны, например, в [24]), запускается следующий анаэробный механизм ресинтеза АТФ - гликолитический. В ходе гликолиза образуется молочная кислота, которая вследствие повышенного темпа выполнения подтягиваний (малых интервалов отдыха в висе в ИП) будет накапливаться в работающих мышцах во всю больших количествах. При этом концентрация креатинфосфата продолжает снижаться, поскольку гликолитические реакции при выбранном темпе выполнения упражнения не могут обеспечить ресинтез всей расходуемой АТФ, а механизм аэробного окисления ещё не успел выйти на максимальную мощность.

В итоге, поддержание темпа подтягиваний, не соответствующего уровню физической работоспособности спортсмена, приводит к печальным последствиям. Ещё то того, как механизм аэробного окисления начал бы играть существенную роль в энергообеспечении мышечных сокращений, пониженное содержание креатинфосфата и АТФ с одной стороны и повышенное содержание молочной кислоты - с другой, приводят к тому, что спортсмен начинает испытывать значительные трудности при прохождении верхнего участка траектории движения. «Зависание» на верхнем участке ещё больше усугубляет ситуацию, вызывая лавинообразное нарастание утомления, в результате чего спортсмен оказывается не в состоянии вытянуть очередное подтягивание и вынужден подолгу отдыхать в висе в ИП, чтобы восстановить силовые способности до уровня, который позволит выполнить подъём туловища. Как-то раз на городских соревнованиях доводилось наблюдать за спортсменом, который 6 (!) раз подряд пытался дотянуться подбородком до грифа, но так и не смог этого сделать, каждый раз «зависая» всё раньше и раньше.

Таким образом, при повышенном темпе выполнения подтягиваний «закисление» мышц возникает ещё до того, как механизм аэробного окисления успевает выйти на максимальный уровень энергопродукции, т.е. в этом случае гликолиз является ведущим механизмом ресинтеза АТФ.

При этом спортсмен интенсивно дышит, что не помогает, т.к. несмотря на то, что кислород в мышцы поступает, он не может использоваться во-первых, вследствие низкой активности аэробного окисления в начальной части выполнения упражнения и, во-вторых - из-за накопления лактата в мышечных клетках и (связанного с этим) снижения сократительной способности мышц вследствие повышения кислотности.

Энергообеспечение динамической работы при подтягивании в максимальном темпе

При выполнении подтягиваний в предельном темпе процессы, происходящие в течение первых 15-20 секунд (этот временной отрезок ещё называют пусковой фазой) аналогичны рассмотренным ранее. Разница же состоит в том, что когда интенсивность мышечной деятельности максимальна, она и заканчивается на пусковой фазе. Вследствие максимальной интенсивности работы, гликолиз не может обеспечить потребности в АТФ, поэтому уровни креатинфосфата и АТФ в мышечных волокнах быстро снижаются до такого уровня, что спортсмен оказывается не в состоянии поддерживать необходимые усилия при заданном темпе выполнения нагрузки.

Подтягивание в максимально возможном темпе может использоваться при проведении различных тестов, например, теста на максимальное количество подтягиваний за 1 минуту. И в качестве ориентира здесь может выступать мировой рекорд Мэтта Богдановича, установленный им 25 октября 2007 года, когда за одну минуту он успел подтянуться 46 раз. Конечно, техника скоростных подтягиваний отличается от классической техники выполнения подтягиваний, принятой в полиатлоне, но о какой технике вообще можно говорить, когда на 46 подтягиваний у Вас есть всего 60 секунд?

5. Оценка уровня развития силовых способностей по внешним признакам

Зададимся вопросом, а можно ли, наблюдая за тем, как спортсмен выполняет соревновательный подход, определить каких способностей ему не хватает для достижения высокого результата и в каком направлении нужно строить тренировочный процесс, чтобы улучшить спортивный результат. Другими словами - можно ли по внешним признакам определить сильные и слабые стороны подготовки спортсмена и дать ему конкретные рекомендации по построению тренировочного процесса.

В принципе, это возможно. Чем ниже квалификация спортсмена, тем в большей степени процессы, происходящие в мышцах, навязывают спортсмену технику и темп выполнения подтягиваний. Поэтому, наблюдая за поведением спортсмена на перекладине во время выполнения соревновательного упражнения можно понять, каковы возможности различных механизмов энергообеспечения, участвующих в работе по подъёму / опусканию туловища.

Ранее мы уже отмечали, что на результат в подтягивании оказывают влияние три основных фактора: уровень развития статической силовой выносливости (от него зависит длительность виса), уровень развития анаэробного компонента динамической силовой выносливости (от него зависит способность к многократному проявлению силовых напряжений, т.е. тяга) и уровень развития аэробного компонента динамической силовой выносливости (от него зависит средний темп выполнения упражнения). Когда спортсмен находится в хорошей форме, грамотно проводит разминку и обработку ладоней и грифа, он может в полной мере реализовать достигнутые им уровни развития виса и тяги, если конечно сможет правильно выбрать темп выполнения подтягиваний. Темп подтягиваний - это тот самый параметр, который спортсмен может произвольно изменять в ходе выполнения упражнения, подбирая его таким образом, чтобы аэробные возможности динамически работающих мышц соответствовали средней мощности выполняемой работы. Оптимальный темп помогает показать максимальный результат, слишком низкий - ведёт к неоправданным потерям времени, слишком высокий - чреват преждевременным отказом или срывом с перекладины.

В простейшем случае уровень развития любого из физических качеств может быть достаточным или недостаточным для выполнения поставленной задачи.

Так, если спортсмен на соревнованиях способен удерживать хват на протяжении 4 минут, уровень развития статической силовой выносливости будем считать достаточным, а при срыве с перекладины менее чем через 3,5 минуты - недостаточным.

Уровень развития анаэробной динамической выносливости будем считать достаточным, если длительность фазы подъёма по мере выполнения подтягиваний увеличивается постепенно и незначительно - так, что это не бросается в глаза, а движение в фазе подъёма происходит без видимого напряжения и уж тем более без «зависания» в верхней части траектории. Если же длительность фазы подъёма увеличивается так, что даже невооружённым глазом становится видно, как от подтягивания к подтягиванию спортсмен напрягается всё сильнее и сильнее и проходит фазу подъёма всё медленнее и медленнее - уровень развития анаэробного компонента динамической силовой выносливости будем считать недостаточным.

Произвольно изменяя темп выполнения упражнения, спортсмен может привести в соответствие свой уровень развития аэробного компонента динамической выносливости и величину выполняемой нагрузки. Судить же о том, насколько возможности аэробного окисления соответствуют уровню притязаний спортсмена (т.е. насколько правильно выбран темп) можно различными способами, в частности, по интенсивности дыхания. Если дыхание ровное или слегка учащённое, будем считать темп нормальным, а уровень развития аэробных возможностей - достаточным для выполнения подтягиваний в выбранном темпе. Если же дыхание учащённое и к началу очередного подтягивания спортсмен явно не успевает отдышаться, темп подтягиваний будем считать повышенным, а уровень развития аэробных возможностей - недостаточным для поддержания выбранного темпа выполнения упражнения.

При переборе всех возможных комбинаций из трёх параметров, каждый из которых может принимать два значения, получается восемь различных сочетаний, которые приведены и охарактеризованы ниже.

Вариант 1

Вис

Тяга

Темп

Недостаточный

Недостаточная

Повышенный

Вис менее 3,5 минут; длительность фазы подъёма постепенно увеличивается, при этом в конечной части выполнения упражнения спортсмен начинает испытывать значительные трудности как при прохождении верхнего участка траектории так и при удержании хвата; интенсивность дыхания увеличивается быстрее, чем растёт длительность пауз отдыха в висе в ИП, поэтому спортсмен выполняет подтягивание в условиях непрерывного роста кислородного долга.

Зная об ограниченных возможностях по удержанию хвата, спортсмен начинает выполнение подтягиваний в заведомо высоком темпе, не заботясь о дыхании и накоплении кислородного долга и рассчитывая только на анаэробные возможности мышц. Подтягивания в высоком темпе происходят в условиях быстрого снижения концентрации креатинфосфата и могут поддерживаться до тех пор, пока гликолитический механизм энергообеспечения не выходит на максимальную мощность энергопродукции. После чего мышцы быстро закисляются, их сократительные способности падают, что приводит сначала к увеличению длительности фазы подъёма, а затем и к «зависанию» в этой фазе. Не справляясь с прогрессирующим утомлением и резко усиливающимся дыханием, спортсмен вынужден увеличивать паузы отдыха, причём их длительность может резко возрастать до значительных величин. Упражнение прекращается либо тогда, когда спортсмен не сможет вытянуть очередное подтягивание, либо когда поползут кисти.

Для улучшения спортивного результата спортсмену необходимо работать над развитием как статической так и динамической выносливости мышц, участвующих в подтягивании.

Вариант 2

Вис

Тяга

Темп

Недостаточный

Недостаточная

Нормальный

Вис менее 3,5 минут; длительность фазы подъёма постепенно увеличивается, при этом в конечной части выполнения упражнения спортсмен начинает испытывать значительные трудности как при прохождении верхнего участка траектории так и при удержании хвата; длительность пауз отдыха в висе увеличивается пропорционально степени нарастающего утомления.

Непрерывно отслеживая своё состояние, спортсмен старается оперативно изменить темп подтягиваний таким образом, чтобы избежать «зависания» в фазе подъёма. Но поскольку развитие динамической выносливости мышц находится не на должном уровне, рано или поздно спортсмен начинает «зависать» на верхнем участке траектории движения, что приводит к ускорению процессов утомления и требует всё более длительных пауз отдыха в висе для восстановления уровня АТФ, достаточного для выполнения очередного подтягивания. В связи с тем, что уровень развития статической выносливости спортсмена также не очень высок, «зависание» в висе на согнутых руках ускоряет процессы утомления и в статически работающих мышцах, вызывая ослабление хвата, перехваты в висе в ИП и неизбежный срыв с перекладины.

Для улучшения спортивного результата спортсмену необходимо работать над развитием как статической так и динамической выносливости мышц, участвующих в подтягивании.

Вариант 3

Вис

Тяга

Темп

Недостаточный

Достаточная

Повышенный

Вис менее 3,5 минут; движение в фазе подъёма без видимых усилий, несмотря на постепенное увеличение длительности фазы подъёма; глубина и частота дыхания увеличиваются постепенно, но спортсмен начинает тяжело дышать ещё задолго до окончания упражнения.

Зная о том, что он не сможет отвисеть больше, чем 3-3,5 минуты, спортсмен сознательно задаёт повышенный темп подтягиваний, чтобы успеть выполнить как можно большее их количество (используя своё преимущество в динамике) до того момента, когда поползут кисти. В связи с тем, что выбранный темп не соответствует аэробным возможностям мышц, интенсивность дыхания быстро выходит на свои предельные (по меркам подтягивания) значения. Поскольку спортсмен стремится поддерживать выбранный им высокий темп подтягиваний, происходит постепенное накопление кислородного долга - после окончания упражнения спортсмен ещё долго не может отдышаться. При таком режиме упражнение обычно прерывается сразу после того, как ослабевает хват, так как в условиях большого кислородного дефицита выполнять подъём туловища на сползающих кистях на задержке дыхания становится невозможно.

Для улучшения спортивного результата спортсмену в первую очередь необходимо поработать над увеличением уровня развития статической силовой выносливости мышц-сгибателей пальцев. Увеличение времени надёжного виса при условии сохранения имеющегося уровня развития динамических способностей позволит показать более высокий результат даже при некотором снижении темпа подтягиваний.

Вариант 4

Вис

Тяга

Темп

Недостаточный

Достаточная

Нормальный

Вис менее 3,5 минут; движение в фазе подъёма без видимых усилий; глубина и частота дыхания увеличиваются постепенно. Спортсмен легко выполняет подъём / опускание туловища, при этом длительность фазы подъёма в ходе подтягиваний изменяется незначительно. Выбранный темп выполнения упражнения соответствует аэробным возможностям динамически работающих мышц, поэтому длительность паузы отдыха в висе достаточна для того, чтобы спортсмен успел отдышаться к началу очередного подтягивания.

Недостаточный уровень развития статической выносливости проявляется в том, что на фоне ритмично выполняемых подтягиваний происходит быстро прогрессирующее утомление мышц-сгибателей пальцев, вследствие чего хват ослабевает, спортсмен начинает выполнять перехваты и, в конце концов, срывается с перекладины. Ограниченные возможности по удержанию хвата не дают возможности спортсмену полностью использовать имеющийся у него потенциал, поэтому в момент срыва с перекладины он имеет большой неиспользованный резерв силы.

Для улучшения спортивного результата спортсмену в первую очередь необходимо поработать над увеличением уровня развития статической силовой выносливости мышц-сгибателей пальцев.

Вариант 5

Вис

Тяга

Темп

Достаточный

Недостаточная

Повышенный

Вис 4 минуты и более; длительность фазы подъёма непрерывно увеличивается, при этом спортсмен начинает «зависать» в верхней части траектории движения ещё задолго до окончания упражнения; интенсивность дыхания увеличивается быстрее, чем растёт длительность пауз отдыха в висе в ИП, поэтому спортсмену не хватает времени в висе, чтобы отдышаться.

Несмотря на высокий уровень развития статики, спортсмен не использует это преимущество для того, чтобы увеличивать паузы отдыха в висе во избежание «зависания» в фазе подъёма, а поспешно начинает очередное подтягивание, не отдышавшись. Поскольку выбранный темп подтягиваний не соответствует физическим возможностям спортсмена (по динамике), рано или поздно он оказывается не в состоянии вытянуть очередное подтягивание, опускается в вис и, толком не отдышавшись, пытается повторить попытку, иногда несколько раз подряд.

Во-первых, для увеличения спортивного результата в данном случае иногда бывает достаточно снизить темп выполнения подтягиваний,максимально использовав преимущество высокого уровня развития статической выносливости мышц-сгибателей пальцев. Во-вторых, для дальнейшего увеличения спортивного результата спортсменам необходимо развивать динамическую силовую выносливость, что позволит выполнять подъём туловища с меньшими энергозатратами и даст возможность снизить длительность пауз отдыха в висе.

Вариант 6

Вис

Тяга

Темп

Достаточный

Недостаточная


Подобные документы

  • Характеристика воспитания скоростно-силовых способностей и силовой выносливости с использованием непредельных отягощений. Изучение контрольных упражнений для определения уровня развития силовых возможностей спортсмена: прыжков, подтягиваний, отжиманий.

    лекция [1,0 M], добавлен 10.06.2011

  • Общая характеристика силовой подготовки в пауэрлифтинге. Методы развития силовых способностей. Методика планирования начинающих пауэрлифтеров. Анализ силовых способностей в пауэрлифтинге и факторы, определяющие высоки уровень подготовленности спортсменов.

    контрольная работа [32,7 K], добавлен 28.05.2014

  • Особенности развития силовых способностей у старшеклассников. Физиологические и психологические особенности, влияющие на развитие силовых способностей учащихся 10-11 классов. Сила как физическое качество человека. Методики развития силовых способностей.

    курсовая работа [59,9 K], добавлен 14.02.2010

  • Характеристика силовых способностей. Методика воспитания силовых способностей. Уровень развития силы основных мышечных групп и его динамика у юношей старших классов. Направления отбора средств для развития силы основных мышечных групп у юношей.

    дипломная работа [267,3 K], добавлен 13.08.2011

  • История развития бокса как вида спорта. Характеристика скоростно-силовых способностей, особенности их проявления и методика развития. Анализ эффективных подходов и упражнений, направленных на формирование у боксеров скоростно-силовых способностей.

    дипломная работа [205,9 K], добавлен 07.10.2016

  • Общая характеристика и технология регулирования тренировочного усилия при воспитании силовых способностей, возрастные особенности их развития. Характеристика основных средств и методов воспитания, методик воспитания силовых способностей у детей 14-16 лет.

    курсовая работа [35,4 K], добавлен 22.10.2012

  • Оценка уровня развития скоростно-силовых способностей и способы измерения силы движений. Анализ функционального состояния лыжниц-гонщиц. Спортивно-технические результаты и скоростно-силовые показатели. Приемы изменения режима дистанционной работы.

    курсовая работа [32,8 K], добавлен 05.12.2014

  • Сила как физическое качество человека. Понятие силовых способностей в пауэрлифтинге. Анатомо-физиологические особенности организма юных пауэрлифтеров в возрасте 13-14 лет. Система отбора в пауэрлифтинге. Средства и методы развития силовых способностей.

    курсовая работа [40,4 K], добавлен 05.10.2012

  • Общая характеристика силовых способностей, их динамометрические и целостные показатели. Упражнения, по ходу которых преодолевается тяжесть собственного тела. Строгое дозирование отягощения в силовых упражнениях. Методика скоростно-силовых способностей.

    дипломная работа [1,7 M], добавлен 08.12.2016

  • Физическая сила и её виды. Структура силовых способностей человека. Средства и методы развития силовых способностей. Методика развития силы детей старшего школьного возраста. Экспериментальное обоснование эффективности внедрения методики развития силы.

    курсовая работа [555,0 K], добавлен 24.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.