Теория и методика подтягиваний на перекладине
Мышцы, производящие подъем/опускание туловища, характер, особенности их работы, изменения в волокнах под влиянием разных тренировочных воздействий. Энергообеспечение динамической работы при подтягивании. Уровень развития силовых способностей и адаптация.
Рубрика | Спорт и туризм |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 17.06.2014 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Нормальный
Вис 4 минуты и более; длительность фазы подъёма постепенно увеличивается, при этом в конечной части выполнения упражнения спортсмен начинает испытывать значительные трудности при прохождении верхнего участка траектории; длительность пауз отдыха в висе увеличивается пропорционально увеличению интенсивности дыхания.
Поскольку уровень развития динамики отстаёт от уровня развития статики, спортсмен стремится избежать «зависания» в фазе подъёма путём снижения темпа выполнения подтягиваний за счёт увеличения пауз отдыха в висе. Такой вариант характерен для спортсменов-ветеранов, силовые способности которых начинают снижаться в силу возрастных изменений мышечной системы. Раньше, когда спортсмены подтягивались с использованием клеящих веществ и без учёта времени, затягивание паузы отдыха при условии надёжного виса было стандартным тактическим приёмом.
Для увеличения спортивного результата в данном случае спортсменам в первую очередь нужно не допускать снижения динамической силы и развивать динамическую силовую выносливость, что позволит выполнять подъём туловища с меньшими энергозатратами и даст возможность снизить длительность пауз отдыха.
Вариант 7 |
Вис |
Тяга |
Темп |
|
Достаточный |
Достаточная |
Повышенный |
Вис 4 минуты и более; движение в фазе подъёма без видимых усилий, несмотря на постепенное увеличение длительности фазы подъёма; глубина и частота дыхания увеличиваются постепенно, но спортсмен начинает тяжело дышать ещё задолго до окончания упражнения.
Такой вариант подтягиваний можно наблюдать в условиях, когда соперники навязывают спортсмену необходимость достижения определённого результата. При этом выбранный темп выполнения подтягиваний не соответствует аэробным возможностям мышц, уровень развития которых в сложившейся ситуации отстаёт от уровня развития анаэробной динамической выносливости (тяги). Спортсмену не хватает времени отдыха в висе для адекватного ресинтеза АТФ, поэтому происходит постепенное накопление кислородного долга.
Для улучшения спортивного результата спортсмену необходимо увеличить возможности аэробного окисления в динамически работающих мышцах. Не исключено, что результат может быть улучшен при некотором снижении темпа подтягиваний в начале упражнения, что снизит кислородный долг и позволит сократить паузы отдыха в дальнейшем (на 3 и 4 минутах).
Вариант 8 |
Вис |
Тяга |
Темп |
|
Достаточный |
Достаточная |
Нормальный |
Вис 4 минуты и более; движение в фазе подъёма производится без видимых усилий; глубина и частота дыхания увеличиваются постепенно и спортсмен начинает тяжело дышать только в конечной части подхода - при выполнении финишного ускорения. Спортсмен находится в хорошей форме; выбранный темп соответствует уровню его подготовки.
Дальнейшее улучшение спортивного результата возможно за счёт увеличения силовых (анаэробных) возможностей рабочих мышц с последующим обязательным повышением их окислительного потенциала.
6. Динамические силовые способности и результат в подтягивании
Итак, приступив к изучению проблемы развития динамической выносливости мышц, выполняющих подъём / опускание туловища, мы последовательно рассмотрели её под различными углами зрения. Сначала вопрос развития динамики был исследован с точки зрения структурных изменений в мышечных волокнах, происходящих под воздействием различных тренировочных нагрузок. Затем мы проследили за энергообеспечением динамической работы при выполнении подтягиваний в различном темпе. Влияние процессов, происходящих внутри мышц, на технику и тактику выполнения соревновательного подхода было исследовано в предыдущем разделе. Попробуем теперь рассмотреть проблему развития динамической выносливости мышц, участвующих в подтягивании, на теоретическом уровне.
В параграфе 2.7 была получена формула, связывающая результат в подтягивании со скоростью расходования резерва силовых способностей. Нужно сказать, что эта формула описывает процессы, происходящие в любом циклическом упражнении, но результаты её анализа мы будем использовать только применительно к подтягиванию на перекладине. Перепишем формулу, наполнив её конкретным содержанием и введя новые величины.
(1)
где: N - количество подтягиваний, раз;
- максимальная произвольная сила спортсмена в конце фазы подъёма (подбородок на уровне грифа), Кг;
- собственный вес тела спортсмена, Кг;
- величина снижения силовых способностей в фазах подъёма / опускания туловища, Кг;
- величина восстановления силовых способностей спортсмена в висе в ИП, Кг;
R = - резерв силы, равный разнице между максимальной произвольной силой и весом тела спортсмена, Кг;
ДF = величина снижения резерва силы в расчёте на один цикл подтягиваний, Кг.
В результате усилий, затраченных спортсменом на подъём и опускание туловища, его резерв силы снижается за счёт того, что силовые способности уменьшаются на величину ДFраб. В паузе отдыха происходит восстановление силовых способностей на величину ДFотд. Таким образом, в каждом цикле подтягиваний силовые способности спортсмена снижаются на определённую величину ДF= ДFраб - ДFотд. Для упрощения анализа формулы будем считать, что когда через некоторое количество циклов подтягиваний N силовой потенциал спортсмена снизится от начального (максимального) значения до порогового значения , подтягивание прекращается.
Формула 7.1 устанавливает тот факт, что в конечном итоге количество циклов подтягиваний, в течение которых силовой потенциал спортсмена снизится от максимальной до пороговой величины, определяется величиной расходования резерва силы в расчёте на один цикл подтягиваний.
В соответствии с формулой (7.1) количество подтягиваний растёт прямо пропорционально максимальной произвольной силе спортсмена , а значит, и резерву силы R (при условии постоянства собственного веса спортсмена). Но возникает вопрос: является ли путь непрерывного роста резерва силы оптимальным для улучшения результата подтягивании? С одной стороны, у человека, который не может подтянуться ни одного раза, резерв силы отсутствует, а у квалифицированных полиатлонистов он составляет (в верхней части траектории) как минимум 30% от собственного веса. Но с другой стороны, у спортсменов, имеющих одинаково высокие результаты в подтягивании (рисунок 7.8 кривые 2 и 6), величина резерва силы может существенно отличаться. Поэтому, видимо, рост величины резерва силы важен лишь для начинающих, а у квалифицированных спортсменов его величина не имеет решающего значения и зависит от преимущественной направленности используемых тренировочных упражнений.
Нельзя также исключать и вероятность того, что рост максимальной силы мышц спортсмена , происходящий за счёт гипертрофии быстрых мышечных волокон, в большинстве случаев будет сопровождаться ростом величины (эти величины стоят в числителе и знаменателе формулы и будут действовать на результат противоположно друг другу), поскольку развитие максимальной силы связано с изменением «метаболического профиля» мышцы и увеличением доли быстрых мышечных волокон, использующих анаэробые (наиболее мощные) механизмы энергопродукции. В связи с этим можно ожидать, что параллельно с ростом резерва силы будет увеличиваться и скорость его снижения
Другое дело, если рост максимальной силы будет происходить за счёт силы медленных мышечных волокон, использующих аэробный механизм энергообеспечения. В этом случае рост величины , стоящей в числителе формулы, будет сопровождаться ростом стоящей в знаменателе величины , уменьшая величину знаменателя и приводя к росту спортивного результата. Таким образом, теоретически гипертрофия медленных мышечных волокон (с последующим увеличением их окислительного потенциала) является более предпочтительным вариантом, поскольку одновременно ведёт к увеличению как резерва силы R, так и к уменьшению величины снижения резерва силы в расчёте на один цикл подтягиваний .
Формула (7.1) позволяет также предложить наиболее простой способ тренировки для начинающих спортсменов, которые не могут выполнить ни одного подтягивания. Дело в том, что из четырёх величин, стоящих в числителе и знаменателе формулы, только является характеристикой нагрузки, а значит, не зависит от имеющихся энергетических возможностей мышц и может задаваться произвольным образом. Уменьшение величины (путём подбора соответствующей степени облегчения) даёт возможность начинающему спортсмену на первой же тренировке выполнять в подходе любое заданное количество подтягиваний.
Теперь обратим своё внимание на знаменатель формулы (7.1). Чтобы увеличить количество подтягиваний, нужно стремиться к уменьшению и увеличению . Величина характеризует степень снижения резерва силы в фазах подъёма / опускания, а величина - степень его восстановления во время отдыха в фазе виса в ИП. Чем меньше энергозатраты в фазах подъёма / опускания туловища и чем быстрее и эффективнее идут процессы ресинтеза АТФ в паузе отдыха, тем лучше должен быть спортивный результат.
Независимо от величины максимальной силы (минимально допустимый уровень которой должен превышать вес спортсмена) характер проявления силы в фазе подъёма туловища должен быть таким, чтобы обеспечить минимальные энергозатраты. Разгон тела и его движение в фазе подъёма туловища производятся за счёт мышечных усилий, поэтому скорость движения тела спортсмена в фазе подъёма, особенно на участке разгона, оказывает значительное влияние на результат в подтягивании (более подробно этот вопрос рассматривался в п. 1.2.1.3). Кроме того, при увеличении скорости подъёма изменяется режим энергообеспечения, поскольку увеличивается доля включения в работу быстрых мышечных волокон.
Но с другой стороны, уменьшение скорости подъёма (увеличение длительности фазы подъёма) сопровождается увеличением длительности статического напряжения мышц, выполняющих подъём туловища. Статическое напряжение при «скользящем» висе на согнутых руках также сопровождается повышенным расходом метаболической энергии, и хотя с физической точки зрения при статическом напряжении мышц механическая работа не производится, физиологическая стоимость такого напряжения пропорциональна времени поддержания статических усилий.
Таким образом, как неоправданное увеличение скорости подъёма (сопровождающееся «вылетом» над перекладиной), так и чрезмерное её снижение связано с повышенным расходом энергии. И в обоих случаях происходит возрастание величины в формуле (7.1), что ведёт к падению спортивного результата.
Нужно отметить, что величина изменяется в ходе выполнения подтягиваний, начиная увеличиваться после того, как все имеющиеся в наличие мышечные волокна будут подключены к работе. Поэтому, чем больше резерв мышечных волокон, тем позже наступит этот момент. Видимо, смысл увеличения максимальной силы мышечных волокон как раз и состоит в том, чтобы как можно дольше не допустить увеличения , т.е. отдалить момент «зависания» в верхней части траектории движения.
Теперь поговорим о величине . Ресинтез АТФ может идти как анаэробным, так и аэробным способом. В начале подтягиваний, пока концентрация креатинфосфата в мышечных волокнах ещё существенно не снизилась, восстановление запасов АТФ происходит преимущественно за счёт быстрой креатинкиназной реакции.
Чем выше исходная концентрация креатинфосфата, тем дольше будет продолжаться период работы за счёт креатинфосфатного источника и тем большее количество подтягиваний успеет сделать спортсмен до тех пор, пока уровень креатинфосфата снизится до такой величины, когда начнёт ощущаться дефицит АТФ, вследствие чего спортсмен будет вынужден снижать темп выполнения подтягиваний, сначала затягивая паузу отдыха, а затем и переходя на два цикла дыхания на один цикл подтягиваний.
Если аэробные возможности мышц развиты в достаточной степени и отсутствуют препятствия по доставке кислорода, спортсмен будет способен достаточно долго выполнять подтягивания в таком режиме и в условиях минимального закисления мышц (не препятствующего их работе в выбранном темпе).
В противном случае будет наблюдаться увеличение затрат в фазе подъёма / опускания туловища (т.е. увеличение ) и снижение степени восстановления в фазе отдыха в ИП (т.е. снижение ), что на фоне непрерывного уменьшения резерва силы приводит к лавинообразному нарастанию утомления и отказу от продолжения работы.
Таким образом, для минимизации вклада анаэробного гликолиза в энергообеспечение мышечной деятельности, нам желательно иметь изначально высокую концентрацию креатинфосфата в мышечных волокнах и высокую аэробную производительность рабочих мышц.
7. Условия для повышения динамических силовых способностей
Предположим, что в результате длительной целенаправленной тренировки спортсмену удалось повысить уровень статической выносливости мышц-сгибателей пальцев до такой степени, что он может выполнять подтягивания в темпе 1 раз в 8 секунд в течение 4 минут (см. глава 6). Количество подтягиваний в одном подходе теперь составляет 30 раз, что совсем неплохо. Неплохо для того, чтобы задуматься о переходе к развитию динамической выносливости мышц, выполняющих подъём туловища для того, чтобы за те же 4 минуты подтягиваться не 30, а, как минимум, 50 раз.
Давайте рассмотрим, какими энергетическими способностями должны располагать мышцы, выполняющие подъём / опускание туловища, чтобы реализовать такую возможность.
Во-первых, уровень развития силы в любой точке траектории движения должен превышать вес тела спортсмена, в противном случае он не сможет вытянуть очередное подтягивание. Поскольку напряжение, развиваемое спортсменом в фазе подъёма, превышает аэробные возможности мышц, подъём туловища производится в основном за счёт анаэробных источников энергообеспечения. При этом, чем выше исходный уровень креатинфосфата, тем большее количество сокращений могут произвести мышцы без участия механизма анаэробного гликолиза (и продукции лактата). Поэтому необходимо обеспечить высокую исходную концентрацию креатинфосфата в рабочих мышцах, что позволит выполнять подтягивания на первой минуте в более высоком темпе без закисления мышц.
Во-вторых, в ходе выполнения подтягиваний необходимо многократное проявление заданного силового напряжения (в фазе подъёма), поэтому наряду с необходимой мощностью анаэробные механизмы энергообеспечения должны обладать достаточной ёмкостью. Соответственно, спортсмен наряду с силой должен обладать необходимым уровнем силовой выносливости. Следовательно, необходимо обеспечить достаточный резерв быстрых мышечных волокон, что позволит подключать их к работе порциями по мере необходимости, т.е. по мере снижения концентрации креатинфосфата, закисления и выключения из работы предыдущей порции мышечных волокон.
В-третьих, поскольку ресинтез молекул АТФ, потраченных в фазах подъёма / опускания туловища, происходит в паузе отдыха в висе в ИП, необходимо развивать мощность аэробного механизма энергообеспечения динамически работающих мышц. В противном случае ресинтез АТФ будет в основном проходить анаэробным гликолитическим способом, что приведёт к быстрому закислению динамически работающих мышц, снижению их силового потенциала, «зависанию» в верхней части траектории и отказу от продолжения подтягиваний. Чем лучшего результата хочет добиться спортсмен, тем в более высоком темпе он будет вынужден подтягиваться, а значит, тем меньшими будут интервалы отдыха в висе, и соответственно, тем большей аэробной мощностью должны обладать динамически работающие мышцы.
В-четвёртых, необходимо добиться уменьшения времени развёртывания механизма аэробного ресинтеза АТФ (этот вопрос применительно к статически работающим мышцам подробно рассматривался в параграфе 6.1.6). Быстрый выход аэробного окисления на максимальную мощность энергопродукции позволит предотвратить закисление работающих мышц избытком молочной кислоты, их «задубения» и снижения сократительных возможностей.
Таким образом, динамический компонент специальной силовой выносливости спортсмена, тренирующегося в подтягивании на перекладине, включает как анаэробную так и аэробную составляющие. При этом в фазах подъёма / опускания туловища работа производится за счёт анаэробных алактатных источников энергообеспечения, а ресинтез АТФ, потраченной в этих фазах, происходит в паузе отдыха в висе в ИП, причём в зависимости от темпа выполнения подтягиваний он может (начиная с середины первой минуты) проходить или аэробным или анаэробным гликолитическим способом. Если темп выполнения подтягиваний превышает аэробные возможности мышц, ресинтез АТФ протекает преимущественно за счёт анаэробных источников. В противном случае восстановление запасов АТФ происходит преимущественно аэробным способом.
Получается, что в одних и тех же мышцах должны интенсивно протекать как анаэробные, так и аэробные реакции. Вертикальное перемещение туловища обеспечивается за счёт энергии АТФ и обладающего необходимой скоростью энергопродукции креатинфосфатного механизма энергообеспечения, а ресинтез АТФ в висе в ИП в зависимости от выбранного темпа подтягиваний идёт или за счёт гликолиза или аэробного окисления, причём последнее для нас более предпочтительно.
8. Об адаптации к физической нагрузке
Адаптацией называют процесс приспособления организма к изменяющимся условиям внешней среды. В процессе адаптации принято выделять два этапа: начальный этап - срочная, но несовершенная адаптация и последующий этап - совершенная долговременная адаптация.
Срочная адаптация разворачивается на основе уже готовых ранее сформировавшихся механизмах, причём хотя деятельность организма протекает на пределе его физиологических возможностей, необходимый адаптационный эффект обеспечивается далеко не в полной мере. Долговременный этап адаптации возникает постепенно, в результате длительного или многократного действия на организм факторов окружающей среды, вследствие чего организм приобретает устойчивость к этим факторам, получая возможность решать ранее неразрешимые задачи [37].
Переход от срочной к долговременной адаптации осуществляется через процесс активации синтеза нуклеиновых кислот и белков, возникающий в клетках, ответственных за адаптацию систем, обеспечивая формирование там так называемого системного структурного следа. Важно то, что структурные изменения происходят только в системах, ответственных за адаптацию организма к конкретным факторам окружающей среды, т.е. в доминирующих системах.
В клетках доминирующей функциональной системы, специфически ответственной за адаптацию, увеличенная физиологическая функция активирует генетический аппарат; возникает активация синтеза нуклеиновых кислот и белков, образующих ключевые структуры клеток, лимитирующих функцию. В итоге избирательного роста этих ключевых структур и формируется системный структурный «след», который приводит к увеличению функциональной мощности системы, ответственной за адаптацию, и создает возможность превращения первоначальной, «срочной», но ненадежной адаптации в устойчивую, «долговременную». Формирование системного структурного «следа» и устойчивой адаптации осуществляется при потенцирующем участии стресс-реакции, которая играет важную роль именно на этапе перехода «срочной» адаптации в «долговременную». Существенно, что после того, как системный структурный «след» полностью сформировался и стал основой адаптации, например к физической нагрузке, к холоду или гипоксии, устойчивая адаптация устраняет нарушения гомеостаза, и как следствие исчезает ставшая излишней стресс-реакция [37].
Тренировочное воздействие заключается в стимулировании процессов в объекте воздействия в организме спортсмена. Ответственным за развёртывание всех процессов адаптации и деадаптации является генетический аппарат клеток организма. Следовательно, суть управления тренировочным процессом - это управление функционированием генетического аппарата клеток и создание условий для облегчения синтеза специфических белков цитозоля, мембран и органелл клеток в зависимости от целей тренировки [32].
Архитектура системного структурного следа есть отражение задачи, которую среда выдвигает перед организмом [40]. Спортивная тренировка фактически является изменением условий существования организма спортсмена, призванным добиться в нём определённых спецификой спорта адаптационных изменений [39]. При этом характер и параметры тренировочной нагрузки должны нести всю необходимую информацию как о локализации, так и о характере необходимых адаптационных перестроек. Изменяя параметры нагрузки, мы фактически меняем параметры стимула, тем самым получая возможность целенаправленно влиять на течение процесса адаптационных перестроек.
Адаптационные перестройки, с одной стороны, направлены в соответствии с тренировочным стимулом, а с другой - против нежелательных (выходящих за допустимые пределы) изменений внутренней среды организма. Поэтому возникает вопрос: а тренировочная нагрузка, создающая стимул для адаптационных перестроек, должна быть направлена на регулярное создание этих самых нежелательных изменений для того, чтобы обеспечить возможность организму к ним заранее приспособиться? Или наоборот, тренировочную нагрузку следует подбирать так, чтобы создать условия, при которых организму удастся избежать (или отдалить момент наступления) таких нежелательных изменений внутренней среды, при которых наступает отказ от продолжения работы с заданной интенсивностью?
Оказывается, что улучшения спортивного результата можно добиться и в том и в другом случае.
Так, если необходимо обеспечить возможность организму заранее приспособиться к работе в неблагоприятных условиях - например, в условиях прогрессирующего закисления - акцент делается на тренировочные воздействия, которые создают в организме спортсмена такие же изменения внутренней среды, которые наблюдаются и в соревновательных условиях. Так, бегуны на средние дистанции (400 и 800 м), где основным механизмом энергообеспечения является анаэробный гликолиз, на предсоревновательном этапе подготовки выполняют большой объём анаэробной работы, что увеличивает возможности анаэробной гликолитической системы энергообеспечения.
Если же подобрать тренировочные нагрузки так, чтобы стимулировать увеличение возможностей организма по утилизации молочной кислоты, то тренировка тех же средневиков будет построена уже не на увеличении гликолитических возможностей, а на повышении возможностей механизма аэробного окисления, что также позволит на соревнованиях отдалить момент закисления мышц до критического уровня, причём способом, принципиально отличным от предыдущего. И тренировочная нагрузка в этом случае также будет серьёзно отличаться по характеру от предыдущей. Парадокс же в этом случае заключается в том, что для того, чтобы мышцы в гликолитическом режиме работали более длительное время, они должны иметь высокие окислительные возможности.
Системный структурный «след» образуется при адаптации к самым различным факторам окружающей среды и вместе с тем конкретная архитектура этого «следа» различна для каждого из этих факторов [37]. Формирование системного структурного «следа» обеспечивает увеличение физиологических возможностей доминирующей системы отнюдь не за счет глобального роста массы ее клеток, а, напротив, за счет избирательного увеличения экспрессии определенных генов и роста именно тех клеточных структур, которые лимитируют функцию доминирующей системы.
Так, при адаптации к физическим нагрузкам на выносливость в скелетных мышцах избирательно в 1,5-2 раза возрастает число митохондрий, активность различных ферментов дыхательной цепи, при адаптации к гипоксии происходит увеличение числа альвеол в легких и концентрации миоглобина в миокарде и гемоглобина в крови. При адаптации к нагрузкам силового характера избирательная гипертрофия различных мышечных волокон обеспечивается в результате силовых тренировок в различных режимах.
9. Взаимосвязь процессов образования и удаления молочной кислоты при выполнении подтягиваний
При выполнении подтягиваний на перекладине для спортсменов, способных подтянутся более 10 раз, основной причиной отказа является накопление молочной кислоты и связанное с этим закисление рабочих мышц.
Когда организм производит молочную кислоту, он расщепляет ее на лактатные ионы (лактат) и ионы водорода (Н+ - гидроген ион). Водородные ионы приводят к изменению кислотно-щелочного равновесия, понижая внутриклеточный pH, что отрицательно сказывается на сократительных способностях мышц. При снижении pH активность ключевых ферментов реакций ресинтеза АТФ угнетается, выработка энергии сокращается. При снижении внутриклеточной pH до критического уровня резерв силы опускается до порогового значения и происходит так называемый мышечный отказ.
Если закисление достигает критического уровня в мышцах-сгибателях пальцев, отказ от продолжения работы происходит вследствие срыва с перекладины; при закислении мышц, выполняющих подъём туловища, спортсмен заканчивает выполнение упражнения после того, как не сможет вытянуть очередное подтягивание.
Скорость накопления лактата и ионов водорода (а значит и время накопления до критического уровня) определяется разностью между скоростями их образования и удаления.
Удаление молочной кислоты из рабочих мышц происходит за счёт
· окисления в митохондриях,
· выхода её в кровяное русло,
· нейтрализации буферными системами.
Известно также, что заметного увеличения молочной кислоты в мышцах не наблюдается до тех пор, пока уровень креатинфосфата в рабочих мышцах не снизится как минимум на 1/3 или даже на 1/2 от исходной величины [38]. Считается, что до тех пор, пока необходимая скорость ресинтеза АТФ может поддерживаться за счёт креатинфосфокиназной реакции, лактат не образуется.
Таким образом, если принять в качестве основной причины отказа при подтягивании накопление молочной кислоты до критического уровня, можно ориентироваться на следующую словесную формулу для процесса накопления молочной кислоты:
накопление до критического уровня = образование - удаление = образование - окисление - удаление с потоком крови - буферизация.
Молочная кислота образуется в ходе реакций анаэробного гликолиза. Как только в процессе анаэробной мышечной работы креатинфосфокиназный механизм перестаёт обеспечивать необходимую скорость восстановления АТФ в мышцах, в энергообеспечение работы вовлекается анаэробный гликолитический механизм ресинтеза АТФ [41]. Следовательно, силение гликолиза вытекает из необходимости поддержания высокой скорости ресинтеза АТФ и, значит, скорость образования молочной кислоты определяется требуемой мощностью ресинтеза АТФ, которая, в свою очередь, зависит от выбранного темпа подтягиваний.
Скорость удаления молочной кислоты определяется скоростью окислительных реакций в митохондриях, скоростью выведения её из мышечной клетки в кровяное русло и степенью буферизации.
Скорость окисления в митохондриях зависит от митохондриальной массы, активности окислительных ферментов, доступности кислорода и энергетических субстратов.
Скорость выведения в кровяное русло зависит от плотности капиллярной сети и степени раскрытия капилляров, а также от степени активизации деятельности миокарда, дыхательных мышц и медленных мышечных волокон неосновных мышц, потребляющих лактат из крови [32].
Степень буферизации зависит от внутримышечной буферной ёмкости мышцы, которая определяется бикарбонатными, белковыми, фосфатными буферами и гистидин содержащими дипептидами и белками. Буферная ёмкость возрастает параллельно массе белков органелл клетки [32]. В случае поступлении молочной кислоты в кровь, она нейтрализуется путём взаимодействия с буферными системами крови, понижая её щелочной резерв.
Понятно, что чем медленнее будет происходить накопление молочной кислоты до критического уровня (при заданной мощности работы), тем дольше спортсмен сможет выполнять подтягивания в заданном темпе и тем большим будет их общее количество.
При этом возможно увеличение длительности работы как за счёт повышения критического уровня лактата, при котором наступает отказ от продолжения работы (при неизменной скорости его накопления), так и за счёт уменьшения скорости накопления (при неизменном критическом уровне).
Так, в ходе систематических тренировок гликолитической направленности в мышечных клетках спортсмена увеличивается активность ферментов гликолиза, увеличивается буферная ёмкость крови, а также развивается резидентность (нечувствительность) тканей и крови к снижению величины pH. В результате развития гликолитических возможностей спортсмена происходит увеличение продолжительности работы заданной мощности.
О повышении возможностей гликолитического энергообразования у спортсменов свидетельствует более поздний выход на максимальное количество лактата в крови при предельных физических нагрузках, а также более высокий его уровень. По данным Н.И. Волкова [41] у высококвалифицированных спортсменов, специализирующихся в скоростных видах спорта, количество лактата в крови при интенсивных физических нагрузках может возрастать до 26 ммоль/л и более, в то время как у нетренированных людей максимально переносимое количество лактата составляет 5-6 ммоль/л.
Тренировка для развития силовых способностей, базирующихся на гликолитическом энергообеспечении, должна отвечать следующим требованиям: она должна приводить к резкому снижению содержания гликогена в мышцах с последующей его суперкомпенацией; во время тренировки в мышцах и крови должна накапливаться молочная кислота для последующего развития к ней резидентности организма [11].
Если же тренировки спортсмена носят антигликолитическую направленность, увеличение продолжительности работы будет происходить уже не за счёт увеличения критического уровня молочной кислоты, а за счёт снижения скорости её накопления вследствие увеличения окислительного потенциала рабочих мышц.
Интересно, что тренируясь по одной и той же тренировочной схеме, но варьируя величину нагрузки, а также соотношения длительностей работы и отдыха, можно обеспечить как анаэробный, так и аэробный режим энергообеспечения, а, значит, изменять направленность тренировочного процесса.
Повторно-серийный метод - как раз один из таких тренировочных методов, которые позволяют в широком диапазоне управлять адаптационными перестройками в зависимости от изменения параметров нагрузки.
10. Развитие динамической выносливости повторно-серийным методом
Тренировки в подтягивании могут иметь различную организационную структуру.
Так, тренировка может состоять из некоторого количества серий, каждая из которых включает в себя несколько подходов. Метод тренировки с такой структурой распределения нагрузки называется повторно - серийным.
Интервалы отдыха между подходами внутри серии невелики, поэтому второй и последующие подходы каждой серии выполняются на фоне прогрессирующего утомления.
Если серии разделены интервалами отдыха, достаточными для полного восстановления организма, то каждую серию можно рассматривать как своеобразную «тренировку в тренировке». При сокращении интервалов отдыха между сериями их оказывается недостаточно для полного устранения той же молочной кислоты, и каждая последующая серия будет выполняться на фоне неполного восстановления от предыдущей нагрузки.
Повторно-серийный метод по структуре близок к интервальной тренировке, для которой также характерно выполнение серии подходов тренировочных упражнений с определёнными интервалами отдыха внутри серии и более длительными - между сериями.
Отличием повторно-серийного метода от интервальной тренировки является обязательное условие целенаправленного изменения количества подходов в серии и длительности подхода (в нашем случае - количества подтягиваний) после достижения некоторой, заранее обозначенной цели.
Если подходить формально, то серия может состоять и из одного подхода. Но в рамках повторно-серийного метода серией будет считаться выполнение двух и более подходов с не более чем трёхминутным интервалом отдыха между подходами.
Определённым образом задавая такие параметры нагрузки, как количество подходов в серии, количество подтягиваний в подходе, интервалы отдыха между подходами и сериями, мы будем оказывать направленное воздействие на организм спортсмена.
Целенаправленный выбор основных параметров физической нагрузки запустит такие адаптационные изменения, которые изменят функциональные возможности организма спортсмена от исходного уровня до уровня, достаточного для достижения планируемого спортивного результата.
Мы рассмотрим две модификации повторно-серийного метода, первый из которых предназначен для начинающих, а второй - для квалифицированных спортсменов.
Начинающим спортсменам необходимо увеличивать как длительность надёжного хвата, так и динамические возможности мышц. Поэтому тренировка должна оказывать комплексное воздействие на статически и динамически работающие мышцы, повышая их как аэробные, так и анаэробные (силовые) возможности за счёт использования смешанного - аэробно-анаэробного - режима энергообеспечения. Но, учитывая «антигликолитическую» стратегию тренировок в подтягивании, ставка будет делаться всё-таки на преимущественное увеличение аэробного потенциала мышц.
Для квалифицированных спортсменов более важным является повышение окислительного потенциала рабочих мышц, поэтому нагрузка, выполняемая повторно-серийным методом, должна иметь преимущественно аэробную направленность даже в том случае, если подтягивание будет выполняться с дополнительным отягощением. Приём, позволяющий избежать чрезмерного закисления мышц даже при подтягивании с большими грузами, будет рассмотрен позже, сейчас же обсудим тренировку повторно-серийным методом для спортсменов-полиатлонистов, чей результат в подтягивании на перекладине не превышает 20 раз.
Мы сейчас не будем касаться идеологии целенаправленного изменения нагрузки, поскольку ранее - в параграфе 5.2 - этот вопрос уже обсуждался достаточно подробно, причём как раз на примере повторно-серийного метода тренировки. Рассмотрим другое, а именно: параметры нагрузки, принципы её построения, разновидности метода и некоторые тонкие моменты при его использовании в тренировке по подтягиванию.
Особенности построения тренировочной нагрузки
Разбивка целевой нагрузки на части. Для того чтобы набрать приемлемое количество очков и претендовать на высокое итоговое место, спортсмену требуется подтянуться на соревнованиях не менее 40 раз. Естественно, что для начинающего спортсмена такая задача невыполнима. Ну не может он подтянуться такое количество раз в одном подходе. Да никто и не ждёт от него таких результатов.
«Если не можешь сделать сразу, делай по частям» - вот главный принцип, которым нужно руководствоваться при использовании повторно-серийного метода тренировки.
В соответствии с этим принципом целевое количество подтягиваний разбивается на несколько частей - подходов, которые последовательно выполняются через небольшие интервалы времени в рамках тренировочной серии.
Целенаправленное изменение параметров нагрузки. Словесная формула изменения параметров нагрузки для повторно-серийного метода звучит так: от большого количества подходов с малым числом подтягиваний к малому числу подходов с большим числом подтягиваний через постепенное уменьшение количества подходов с соответствующим увеличением числа подтягиваний в подходе.
В соответствии с этой формулой спортсмен выполняет целевое количество подтягиваний в нескольких, объединённых в серию, подходах, увеличивая по мере развития тренированности число подтягиваний в подходе и сокращая количество подходов таким образом, чтобы общее количество подтягиваний в серии оставалось примерно одинаковым.
По мнению Селуянова В.Н. и Мякинченко Е.Б [32] условиями повышения окислительного потенциала как медленных так и быстрых мышечных волокон являются интенсивное функционирование митохондрий (т.е. активное состояние данного мышечного волокна) и относительно невысокая степень закисления цитозоля мышечных волокон, в которых митохондрии функционируют. Именно для создания таких условий целевая нагрузка разбивается на несколько частей так, чтобы выполнение каждой части, во-первых, не приводило к чрезмерному закислению мышц и, во-вторых, обеспечивало интенсивный аэробный ресинтез АТФ в паузах отдыха между подходами.
С ростом тренированности повышается окислительный потенциал мышц, что приводит к увеличению скорости утилизации лактата и, соответственно, к снижению его концентрации в мышцах и кровяном потоке. Это даёт возможность увеличивать длительность подхода путём повышения числа подтягиваний в подходе после достижения промежуточной цели, в качестве которой в данном случае выступает выполнение одинакового количества подтягиваний во всех подходах хотя бы одной тренировочной серии.
Непрерывный контроль за динамикой результатов. Для того чтобы выявить влияние какого либо параметра нагрузки на спортивный результат, тренировочный процесс нужно организовать так, чтобы изменениям был подвержен только этот параметр, а все остальные были бы неизменны на всём протяжении этапа наблюдений. В противном случае будет непонятно, отчего именно результат улучшился или ухудшился.
Для этого однажды выбранные параметры нагрузки, такие как количество повторений в первом подходе серии, интервалы отдыха между подходами и сериями, количество подходов в серии и серий в тренировке и т.д. оставляют без изменений в течение всего периода продвижения к очередной промежуточной цели, а прогресс результатов отслеживают, к примеру, по изменению суммарного количества подтягиваний в каждой серии.
При соблюдении этих условий каждая тренировочная нагрузка одновременно является тестирующей, что позволяет контролировать динамику силовых способностей спортсмена на каждой тренировке и оперативно вносить изменения в сам тренировочный процесс при появлении признаков застоя, переутомления или функционального спада, обусловленного циклическими изменениями работоспособности (биоритмами).
И если, допустим, в первой серии на последующей тренировке спортсмен не показывает ожидаемой прибавки, развивающая тренировка переносится на следующий день, поскольку своевременно отложенная тренировка даёт больший тренировочный эффект, чем несвоевременно проведённая.
Нужно отметить, что превращение обычной тренировки в контрольную не требует дополнительных усилий со стороны спортсмена, оно происходит путём простого упорядочения её структуры.
Параметры исходной нагрузки
Объём нагрузки в серии. Практически важно перед началом тренировочного процесса не ошибиться с выбором исходного уровня нагрузки для одной тренировочной серии. Если общее количество подтягиваний в серии выбирается примерно равным целевому, то по энергозатратам организм спортсмена в каждой серии с самого начала подвергался целевому воздействию. Достаточно длительный отдых между тренировочными сериями (не менее 10 минут) позволяет рассматривать каждую такую серию как отдельный «энергетический всплеск», к которому организм будет вынужден приспособиться.
Моделирование целевых энергетических параметров в тренировочном процессе позволит организму более конкретно концентрировать свои адаптации и достигать на этой основе большего приспособительного эффекта [42].
Количество подходов в серии. Чем из большего количества подходов будет состоять каждая тренировочная серия, тем более аэробный характер (при неизменном времени отдыха между подходами) будет иметь выполняемая нагрузка, но тем более длительным может оказаться путь к поставленной цели. Сокращение количества подходов в исходной серии позволяет увеличить количество подтягиваний в подходе, но при этом смещает направленность нагрузки в сторону анаэробного гликолиза.
Опытным путём установлено, что при интервалах отдыха между подходами в 2-3 минуты исходная тренировочная серия должна состоять из 4-6 подходов, причём для новичков подходов должно быть больше (5-6), чем для более квалифицированных спортсменов (4-5).
Не исключено, что кому-то захочется как можно быстрее добиться желаемого результата и он задастся вопросом: а зачем делать пять подходов, если можно сделать четыре, зачем делать четыре, если можно три? К сожаленью, если начинать сразу с трёх, то к концу серии может произойти чрезмерное закисление мышц, которое может навредить больше, чем помочь.
В то же время умеренное закисление активизирует работу ферментов дыхательного цикла в митохондриях и усиливает аэробное энергообразование. Для того чтобы сформировать механизмы, препятствующие избыточному закислению и делается сначала большое количество подходов с небольшим количеством подтягиваний. И только потом - по мере увеличения возможностей спортсмена - уменьшают количество подходов с соответствующим увеличением числа подтягиваний в подходе.
Интервал отдыха между подходами. При расслаблении мышц в паузе отдыха между подходами накопившаяся в них молочная кислота выводится в кровь, где частично нейтрализуется её буферными системами, что вызывает дополнительное выделение углекислого газа и, как следствие, дальнейшее усиление дыхания.
Пополнение внутримышечных запасов кислорода, связанного с миоглобином, также происходит во время отдыха между подходами.
Ликвидация алактатной части кислородного долга, образовавшегося во время выполнения подхода, протекает с помощью механизма аэробного окисления. В результате этого пополняются запасы креатинфосфата, потраченного при выполнении подхода.
Степень закисления мышц понижается, но полной ликвидации закисления за короткий промежуток отдыха между подходами не происходит, поскольку для этого требуется значительно более длительный период времени.
Время до завершения восстановления некоторых биохимических процессов (по Волкову Н.И [41]).
Процесс |
Время восстановления |
|
Восстановление запасов кислорода |
от10 до 15 сек |
|
Оплата алактатного кислородного долга |
от 2 до 5 минут |
|
Устранение молочной кислоты |
0,5 до 1,5 час |
|
Ресинтез внутримышечных запасов гликогена |
от 12 до 48 час |
В таблице приведены сроки восстановления различных биохимических процессов в период отдыха после напряжённой мышечной работы.
В то время как процесс устранения молочной кислоты может занимать до полутора часов, на восстановление запасов креатинфосфата уходит не более 5 минут. В связи с этим отдых между подходами обычно делают небольшим, порядка 2-3 минут, и последующие подходы выполняются на фоне постепенного увеличения степени закисления мышц.
Во время отдыха между подходами целесообразно делать лёгкий массаж предплечий, различные упражнения на растягивание мышц-сгибателей пальцев, что будет способствовать восстановлению нормального кровообращения, удалению молочной кислоты и более полному восстановлению рабочих мышц.
Количество подтягиваний в подходе. Если количество подтягиваний в подходе будет слишком большим, уже после первого подхода степень закисления мышц будет высокой, что приведёт к резкому снижению числа подтягиваний во втором и последующих подходах (по сравнению с первым), обуславливая гликолитическую направленность тренировочной серии. Опыт показывает, что если количество подтягиваний в серии не будет превышать 50% от спортивного результата спортсмена (который в нашем примере равен 20 подтягиваниям), первые два подхода серии спортсмен будет способен выполнить полностью, не достигая момента мышечного отказа. Отсутствие существенного закисления после первого подхода даст возможность механизму аэробного окисления активизироваться в паузе отдыха между подходами и выйти во втором подходе на максимальный уровень энергопродукции, что позволит уменьшить скорость снижения числа подтягиваний от подхода к подходу и придаст тренировочной серии более аэробную направленность.
Количество серий за тренировку и интервал отдыха между сериями. В идеале паузы отдыха между сериями нужно подбирать таким образом, чтобы восстановление энергетических систем произошло до уровня, когда можно говорить о том, что утомление в первой серии минимально влияет на результат во второй. В этом случае серии можно рассматривать как относительно независимые друг от друга, а организм будет воспринимать нагрузку в виде целевых «энергетических импульсов», к которым он будет обязан адаптироваться.
Но для того чтобы иметь возможность выполнить в каждой тренировочной серии примерно одинаковое количество подтягиваний, нужно чтобы время отдыха между сериями было достаточно для полного устранения молочной кислоты. А это в соответствии с таблицей 7.2 может занимать до полутора часов. Чтобы не приходилось «ночевать» в спортивном зале, отдых между сериями приходится сокращать до приемлемых величин (10 -15 минут), каждую последующую серию делать на фоне неполного восстановления от предшествующей нагрузки и смириться с тем, что общее количество повторений от серии к серии будет уменьшаться в связи с прогрессирующим утомлением.
На развивающей тренировке нужно выполнить не менее трёх серий, на поддерживающей - достаточно двух, а на восстанавливающей - можно ограничиться и одной серией нагрузки, состоящей их 4-6 подходов.
Если спортсмен приступает к тренировкам по подтягиванию впервые или после большого перерыва, не нужно сразу браться за выполнение развивающей нагрузки максимального объёма. Выходить на развивающую нагрузку из 3-4 серий по 4-6 подходов нужно постепенно, начиная с 1-2 серий, а затем, по мере повышения работоспособности, добавляя по 1-2 подхода к уже освоенному тренировочному объёму.
Интервал отдыха между тренировками и циклирование нагрузки.
Интервал отдыха между развивающими тренировками должен быть таким, чтобы к началу следующей тренировки организм спортсмена находился в фазе суперкомпенсации. Определить это несложно: если на последующей тренировке спортсмен при одинаковом напряжении волевых усилий превышает сопоставимые показатели предыдущей тренировки, значит, восстановление прошло успешно. Когда же на последующей тренировке количество подтягиваний в серии оказывается таким же или даже меньшим, чем предыдущей, спортсмену, скорее всего, не хватило времени на восстановление и ему не стоит проводить развивающую тренировку.
В тех редких случаях, когда спортсмен на развивающей может позволить себе делать отдых между сериями не менее часа, восстановление энергетических возможностей организма идёт более быстрыми темпами и возникает соблазн делать развивающие тренировки через день, например, в понедельник, среду и пятницу. Но в этом случае нужно помнить, что три развивающие тренировки подряд - это риск перетренироваться, четыре развивающие тренировки подряд - это большой риск перетренироваться, ну а пять развивающих тренировок подряд равноценны самоубийству.
При 10-15 минутных интервалах отдыха между сериями на восстановление после развивающей нагрузке организму может потребоваться несколько дней, поэтому если в тренировке по подтягиванию используется исключительно повторно-серийный метод тренировки, практикуется чередование развивающей, восстанавливающей и поддерживающей нагрузок, либо только развивающей и восстанавливающей (т.е. чередование тяжёлой и лёгкой нагрузки).
Если же проводится несколько развивающих тренировок подряд, то после этого обязательно должен быть предусмотрен период со сниженным объёмом нагрузки. Не нужно экономить на восстановлении организма. Интервал отдыха между тренировками - это один из параметров тренировочной нагрузки, причём не самый последний по важности, так как прирост функциональных возможностей спортсмена происходит именно в процессе восстановления в период отдыха между тренировками.
Об отказах при выполнении нагрузки
Количество выполненной до отказа работы будет зависеть от мотивации и связанной с ней степенью напряжения волевых усилий. Поэтому, говоря о выполнении тренировочной нагрузки до отказа, требуется дополнительно оговаривать и допустимый уровень эмоционально-волевых усилий. Для практических целей достаточно будет разделить весь диапазон проявления волевых усилий на 3 зоны.
Зона с низким уровнем проявления волевых усилий (зелёная зона) соответствует
эмоционально-волевому напряжению, наблюдаемому на тренировках. При этом нижняя граница зоны соответствует волевым усилиям, характерным для восстанавливающих тренировок, а верхняя - для развивающих.
Зона со средним уровнем проявления волевых усилий (жёлтая зона) соответствует эмоционально-волевому напряжению, наблюдаемому на контрольных тренировках и мелких соревнованиях.
Зона с высоким уровнем проявления волевых усилий (красная зона) соответствует эмоционально-волевому напряжению, наблюдаемому на ответственных соревнованиях.
При такой градации уровней проявления волевых усилий спортсмену для предотвращения перетренированности не следует выходить за пределы зелёной зоны (за исключением последнего подхода серии).
Более подробно вопрос, связанный с отказами в подтягивании, рассмотрен в параграфе 7.11.
Желательно, чтобы первоначальное количество подтягиваний в подходе было таким, чтобы, как минимум, первые два подхода серии можно было выполнить с этим, заранее запланированным количеством подтягиваний, без достижения момента отказа. В последующих подходах допускается «мягкий» отказ и только в последнем подходе, после которого будет большой интервал отдыха, можно позволить себе побороться за результат, выйдя за пределы «зелёной» зоны.
Сигналом к прерыванию подхода могут служить:
· «зависание» в фазе подъёма - динамический отказ вследствие снижения резерва силы до порогового уровня;
· слишком длинные паузы отдыха в висе (более трёх-четырёх циклов дыхания) - неспособность держать темп выше заданного и риск чрезмерного закисления динамически работающих мышц;
· слишком большое число перехватов (более 2-3 после каждого подтягивания) - проблемы с хватом и риск чрезмерного закисления статически работающих мышц.
Сигналом к прерыванию серии может служить выполнение в каком-либо подходе серии меньше половины подтягиваний первого подхода. Так, если спортсмен пытается сделать серию из 5 подходов по 10 подтягиваний в каждой (5х10), и в четвёртом подходе у него получается только 4 подтягивания, серию лучше прервать и попытаться понять, с чем связано такое снижение результата. Возможно, что на данном уровне работоспособности спортсмену будет лучше внести некоторые изменения в тренировку, например:
· уменьшить количество подтягиваний в подходе,
· увеличить интервалы отдыха между подходами,
· увеличить интервал отдыха между сериями,
· предоставить больше времени на восстановление между тренировками.
Подобные документы
Характеристика воспитания скоростно-силовых способностей и силовой выносливости с использованием непредельных отягощений. Изучение контрольных упражнений для определения уровня развития силовых возможностей спортсмена: прыжков, подтягиваний, отжиманий.
лекция [1,0 M], добавлен 10.06.2011Общая характеристика силовой подготовки в пауэрлифтинге. Методы развития силовых способностей. Методика планирования начинающих пауэрлифтеров. Анализ силовых способностей в пауэрлифтинге и факторы, определяющие высоки уровень подготовленности спортсменов.
контрольная работа [32,7 K], добавлен 28.05.2014Особенности развития силовых способностей у старшеклассников. Физиологические и психологические особенности, влияющие на развитие силовых способностей учащихся 10-11 классов. Сила как физическое качество человека. Методики развития силовых способностей.
курсовая работа [59,9 K], добавлен 14.02.2010Характеристика силовых способностей. Методика воспитания силовых способностей. Уровень развития силы основных мышечных групп и его динамика у юношей старших классов. Направления отбора средств для развития силы основных мышечных групп у юношей.
дипломная работа [267,3 K], добавлен 13.08.2011История развития бокса как вида спорта. Характеристика скоростно-силовых способностей, особенности их проявления и методика развития. Анализ эффективных подходов и упражнений, направленных на формирование у боксеров скоростно-силовых способностей.
дипломная работа [205,9 K], добавлен 07.10.2016Общая характеристика и технология регулирования тренировочного усилия при воспитании силовых способностей, возрастные особенности их развития. Характеристика основных средств и методов воспитания, методик воспитания силовых способностей у детей 14-16 лет.
курсовая работа [35,4 K], добавлен 22.10.2012Оценка уровня развития скоростно-силовых способностей и способы измерения силы движений. Анализ функционального состояния лыжниц-гонщиц. Спортивно-технические результаты и скоростно-силовые показатели. Приемы изменения режима дистанционной работы.
курсовая работа [32,8 K], добавлен 05.12.2014Сила как физическое качество человека. Понятие силовых способностей в пауэрлифтинге. Анатомо-физиологические особенности организма юных пауэрлифтеров в возрасте 13-14 лет. Система отбора в пауэрлифтинге. Средства и методы развития силовых способностей.
курсовая работа [40,4 K], добавлен 05.10.2012Общая характеристика силовых способностей, их динамометрические и целостные показатели. Упражнения, по ходу которых преодолевается тяжесть собственного тела. Строгое дозирование отягощения в силовых упражнениях. Методика скоростно-силовых способностей.
дипломная работа [1,7 M], добавлен 08.12.2016Физическая сила и её виды. Структура силовых способностей человека. Средства и методы развития силовых способностей. Методика развития силы детей старшего школьного возраста. Экспериментальное обоснование эффективности внедрения методики развития силы.
курсовая работа [555,0 K], добавлен 24.01.2012