Тюнинг автомобилей
Дизайн и требования к дооборудованию автомобилей и внедорожников. Тюнинг двигателя, подвески, тормозной и выхлопной систем. Внешний тюнинг и вес-тюнинг. Люк на крыше, настроенный выхлоп, увеличение мощности, шины и аэрография, колесные диски, маркировка.
Рубрика | Транспорт |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 23.07.2009 |
Размер файла | 5,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При установке предохранителя в начале силовой проводки (обычно не далее 30 см от аккумулятора) предохранитель выбирают исходя из максимального тока нагрузки. Например, если силовой провод идет к усилителям, установленным в багажнике, вы должны суммировать номиналы штатных предохранителей каждого усилителя и подобрать предохранитель с номиналом чуть больше полученного значения.
У компаний Vampire и Sound Quest есть предохранители номиналом 5, 10, 20, 30, 35, 50, 60 ампер типа АGU и номиналом 20,30,40...80 ампер типа Мaxi.
Держатели для предохранителей (Fuze Holders) должны, кроме этого, еще обеспечивать надежную защиту контактов от влаги, пыли и прочих внешних воздействий.
Одна из наиболее оригинальных конструкций держателей для АGU-предохранителей -- это РоwегFuze Тurbine фирмы Моnstег Саble. Диагональные прорези в конической части, которая фактически и удерживает головку предохранителя, обеспечивают неослабевающий контакт по всей поверхности соприкосновения. Корпус держателя выполнен из прозрачного полимера, который защищает предохранитель от влаги и пыли и позволяет увидеть сгоревший предохранитель. Такие держатели обычно “врезаются” в силовую проводку и никак не крепятся к кузову автомобиля. К ним относятся и более простые и дешевые держатели РоwerFuze, которые выпускаются фирмой Моnstег Саble в двух модификациях -- с номиналом предохранителя 30А и возможностью подключения проводов 8-го калибра и с номиналом 60 А для проводов 4-го калибра.
Кроме главного предохранителя, устанавливаемого в самом начале силовой проводки, рекомендуется устанавливать качественные предохранители для отдельных потребителей -- усилителей, процессоров, чейнджеров. Для этого существуют специальные блоки, в которых в защитном корпусе обычно из прозрачного, но тепло- и водостойкого полимера размещены несколько предохранителей типа АGU или Махi. Существующие предохранительные блоки разных производителей отличаются незначительно -- обычно числом входов/выходов, толщиной подсоединяемых проводов, номиналом и типом самих предохранителей.
Распределения питания между отдельными потребителями.
И здесь должны быть использованы дополнительные приспособления, которые позволили бы к одному проводу, проведенному из моторного отсека в багажник, подсоединить несколько проводов, как правило, более тонких, к усилителям и другим потребителям. 3десь опять же важны: защита от коррозии и надежный контакт, не пропадающий на каждой ямке.
На первый взгляд, распределительные блоки питания -- это просто позолоченные металлические бруски с торчащими проводами. Но способ соединения проводов и их фиксации может отличаться. Так, в блоках Power Split фирма Monster Саblе использует для крепления провода цанговый зажим, который обхватывает провод и сжимает его, при этом не происходит деформация жил, обеспечивается большая площадь контакта, лучшая проводимость.
После подвода силовых проводов останется только соединить все узлы аудиосистемы «музыкальными» проводами, настроить, включить и получать удовольствие от собственного труда. Тюнинг автомобиля. Руководство. Составители Брин Муссельвайт и Боб Джекс. Пер. с англ.: М., 2000. стр. 106 - 120.
1.2.8 Люк на крыше
Существует два типа люков, устанавливаемых не на конвейерах, а в сервис-центрах:
1. жесткие со стеклянной панелью
2. мягкие со сдвижным водонепроницаемым полотном.
И те и другие выпускаются с ручным или электромеханическим приводом. Кроме того, стеклянные люки (некоторые из которых могут комплектоваться дополнительными солнцезащитными шторками) делятся на сдвижные и подъемные. На выбор тех или иных люков, как и многих других автоаксессуаров, оказывает влияние своеобразная мода. Совсем недавно предметом острых желаний многих автолюбителей были подъемные люки с ручным приводом, простые и недорогие. Другое дело сейчас -- спрос пошел, в основном, на люки сдвижные, да еще и с электромеханическим приводом. Объясняется это, скорее всего, двумя причинами. Во-первых, что ни говорите, а материальные возможности людей растут. Во-вторых, меняются и сами автомобили, в том числе и российские. Согласитесь, что и новая «Волга», и «десятое» семейство заслуживают более солидного оформления. Им сдвижные люки подходят куда больше подъемных. И еще один довод в пользу сдвижных люков. Они не «вступают в противоречие» с багажниками, которыми пользуются многие автомобилисты.
А вот солидному универсалу или представительскому лимузину подошел бы Aero Top 2 длиной почти 1,2 м. На российском рынке представлены люки нескольких западных фирм. Это, в первую очередь, немецкие Webasto, получившие теперь новую торговую марку Webasto Holland, французские Mistral фирмы Automaxi, итальянские и венгерские. Наибольшим спросом, да и возможностями, отличаются именно немецкие и французские. Наиболее полная программа -- 12 моделей -- у фирмы Webasto Holland: 3 механических подъемных, 3 ручных сдвижных и 6 сдвижных с электроприводом (среди них Aero Top с мягким верхом). Большая часть (6 моделей) имеет унифицированную рамку размером примерно 390 мм (длина) х 760 мм (ширина). 5 моделей большего размера -- 480х825 мм соответственно. Размеры люка Aero Top -- 782х1080 мм. Мощный профиль окантовочной рамы обеспечивает достаточно высокую жесткость крыши, из которой вырезается приличный кусок.
Французская Automaxi предлагает две модели подъемных люков с ручным приводом и одну -- сдвижную, также с ручным приводом. Их основное преимущество -- невысокая стоимость и большая надежность. Mistral 2, например, одна из самых популярных моделей на российском рынке. Люки этой серии хорошо вписываются в конструкцию «восьмерок» и «девяток», имеющих прочную арку жесткости крыши. Одной из самых простых в установке и доступных по цене считается модель Junior Top фирмы Webasto Holland (размеры 390х760 мм, стоимость в рознице 130 у.е.). Близко к ней и по размерам, и по стоимости стоит уже упомянутая Mistral 2. Более сложными считаются немецкие люки серии Top Slider и французские Panoramic и Clairauto. Они и покрупнее, и подороже (до 450-470 у.е.) Решившись на установку люка, прежде всего постарайтесь поговорить с вашими соседями по гаражу или стоянке. Обычно у каждого из них имеется немалый опыт «общения» с прозрачной крышей. Учтите, что, установив люк, вам не останется ничего другого, кроме радости от содеянного. Вернуться к первозданному состоянию автомобиля уже не удастся.
Следующий шаг -- выбор модели. Естественно, что в «пятерку» или «шестерку» вряд ли кто-нибудь затеет ставить Aero Top 2 за 800 у.е. Проблема выбора в другом. Подъемные люки, например, «поднимают» воздушный поток над крышей, почти не меняя аэродинамических характеристик автомобиля. Более «крутые» сдвижные люки как бы помогают воздушному потоку «забраться» внутрь машины, где он создает завихрения. С другой стороны, подъемные люки не совместимы с багажниками на крыше, сдвижные же с ними спокойно уживаются.
Несколько пояснений. Кроме того, что рамка каждого люка имеет заданную кривизну, в момент установки она «подтягивает» крышу под свою форму, слегка ее меняя. Поэтому далеко не каждый люк подойдет к любому автомобилю. Например, есть проблемы с их установкой в тольяттинские 2104 и 2112. В первом случае мешают две продольные отштамповки на крыше, во втором -- большая кривизна крыши и проходящая под обивкой потолка разводка электрической сети. Тем не менее, и для этих машин можно подобрать свои модели. Выбирая люки, обратите внимание на стекла. Они могут отличаться плотностью тонировки, наличием зеркального покрытия. Стекла также могут быть гладкими или иметь рельефное растровое противосолнечное покрытие. Более плотные стекла защищают от солнечных лучей, но снижают эффект распахнутого окна. Зеркальное покрытие более прозрачное, но менее стойкое. Выгорая, оно будет терять привлекательный внешний вид. Растрированные стекла быстрее пачкаются и их труднее мыть, но они хорошо защищают от солнечных лучей. Гладкие не защищают от солнца вовсе, но дают много света. Выбор стекол -- дело вкуса. Так же, как и выбор шторки. Есть желание и деньги -- ставьте, нет -- люки и так хороши.
Обязательно поставьте автомобиль с обновкой под машинную мойку минут на 10-15. Этого вполне достаточно, чтобы убедиться в герметичности установки. Если что, вернитесь к установщику. В процессе эксплуатации люка старайтесь открывать его как можно чаще. Длительное поджатие стекла к уплотнительной резинке приведет в итоге к ее ужесточению и растрескиванию. Принимая готовую машину, обратите внимание на плотность подгонки обивки потолка к уплотняющей рамке. Она должна лежать ровно, не провисать и не иметь пузырей. Люки некоторых моделей, например, Mistral 2, имеют замки для снятия стекол.
1.2.9 Настроенный выхлоп
Мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), так, что мощность - зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности (кривая 2 на рис.). Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис.). Предмет нашего интереса - четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент снова падает (кривая 3 на рис. 1). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. 1). Важным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра. Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что в верхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0.8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1.2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис.). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый - сдемпфированное в той или иной степени истечение газов по трубам. Второй - гашение акустических волн с целью уменьшения шума. И третий - распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна оказывать существенного сопротивления потоку. Если по какой то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов, то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики можно сказать, что для двигателя объемом 1600 куб. см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм. Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель - полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом - это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля.
В большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя - всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.
Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить на четыре группы. Это ограничители, отражатели, резонаторы и поглотители.
Ограничитель
Принцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы, некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе - довольно распространенная конструкция.
Отражатель
В корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.
Резонатор
Глушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два не равных объема, разделенных глухой перегородкой. Каждое отверстие вместе с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказывают, т.к. сечение не уменьшают.
Поглотитель
Способ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотите ли позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов. Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться “благородного” звучания мотора. Если требования к выпускной системе не распространяются дальше изменения “голоса”, то за дача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.
Из всего выше указанного следует, что коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая - когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Фаза перекрытия характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт разрежения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет свое го максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем, если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС. Тюнинг автомобильных двигателей. Степанов В.Н.: СПб. 2001. стр. 49 - 65.
1.2.10 Увеличение мощности
Работа двигателя это всегда компромисс между многими величинами. Основополагающими для разработчиков сегодня является себестоимость, экономичность, ресурс двигателя и токсичность выхлопа. Не рассматривая экономические стороны, подробнее рассмотрим все за и против:
Ресурс двигателя с меньшей отдачей выше, чем аналогичный параметр у более форсированного мотора. Требования к качеству топлива в варианте с форсированым двигателем выше. Жёсткие нормы по уровню токсичности заставляют разработчиков переводить двигатели на работу с более обеднёнными смесями и устанавливать катализаторы.
Со стороны потребителя требования к мотору тоже взаимоисключающие. Хочется высокой мощности, крутящего момента, надёжности и огромного ресурса - при всём этом желательно заправлять автомобиль самым дешевым топливом и иметь маленький его расход. Однако чудес на свете не бывает - улучшение одних параметров всегда ухудшает другие. Поэтому для нас всегда есть выбор - довериться разработчикам и оставить всё как есть или пойти по пути экспериментов по доводке установленного на Вашем автомобиле двигателя. Сделать с мотором можно многое, однако стоимость многих радикальных переделок зачастую оказывается просто невыгодной. Намного проще вложить эти деньги в приобретение автомобиля с более мощным мотором. Получить более высокую отдачу от мотора можно лишь увеличив наполнение цилиндров и изменив состав смеси. Методов увеличения наполнения существует множество. Условно их можно разделить на несколько категорий:
1. Уменьшение сопротивления потоку воздуха - Замена воздушного фильтра, замена или переделка корпуса дроссельной заслонки, замена или расточка и шлифовка впускного коллектора, переделка головки блока (замена клапанов на клапана с большим диаметром и расточка воздушных каналов), установка или оптимизация работы наддува. Тем же целям служит и установка распредвала с другим профилем кулачков - для изменения величины и продолжительности открытия клапанов.
2. Оптимизация состава рабочей смеси - изменение количества топлива для разных режимов работы достигается несколькими способами: Увеличение магистрального давления топлива заменой или настройкой регулятора давления топлива и изменение программы работы ЭБУ (чип-тюнинг).
3. Механизм изменения фаз ГРМ - оптимизация фаз газораспределения для различной частоты вращения двигателя. Оптимизация выпуска - Улучшение продувки цилиндров снижением сопротивления выпускного коллектора и глушителя (в идеале следует поставить трубу большого диаметра и, причём без изгибов).
Мы не рассматриваю варианты требующие расточки блока, обрезки поршней или замены коленвала - у нас стоит задача получить максимальную мощность от того же мотора. Кроме того, многие из вышеперечисленных методов требуют вмешательства в механическую часть двигателя - что в случае нового автомобиля автоматически лишает Вас возможности гарантийного ремонта.
Что же такое ЧИП применительно к автомобильному двигателю? В любой блок управления заложена программа его работы. Набор поправочных коэффициентов для различных режимов работы двигателя заложен в ПЗУ блока. Блок управления получая сигналы от различных датчиков, управляет работой исполнительных устройств для обеспечения оптимальной (зачастую по мнению разработчиков) работы силового агрегата. Необходимые параметры для управления исполнительными устройствами вычисляются в соответствии с приходящими данными и набором коэффициентов коррекции, заложенных в ПЗУ. Таким образом, желая изменить работу двигателя, не изменяя механических его составляющих, мы имеем для этого два очевидных пути:
Первый - изменение входящих сигналов (для примера - изменение жёсткости возвратной пружины заслонки расходомера воздуха).
Второй - изменение коэффициентов коррекции в памяти ПЗУ (чип-тюнинг)
Изменяя данные ПЗУ мы можем влиять на работу практически любого исполнительного устройства, из тех, которыми управляет ЭБУ. Для получения других мощностных характеристик мы можем изменить установку угла опережения зажигания, величину времени впрыска, отключить или изменить режим работы систем, контролирующих токсичность выхлопных газов, для двигателей с компрессором можно изменить величину давления наддува. Кроме того, мы можем изменить обороты холостого хода, максимально разрешённые обороты двигателя и максимально допустимую скорость автомобиля (при её электронном ограничении). Велика ли роль данных изменений в получении от двигателя максимальной мощности? Нет - её прирост может составлять 5-10%, (исключение составляют надувные двигатели, где без особых затруднений можно получить прибавку в 20% и даже более). Каждый сам решает делать или нет, но тот, кто хоть раз проехал на чипованой машине, решает этот вопрос для себя однозначно - да! Дело в том, что мало кто ездит на режиме максимальной мощности - намного более важные параметры для повседневной езды это крутящий момент и эластичность двигателя. Равные величины момента достигаются на разных оборотах двигателя. Что это означает: При резком нажатии на педаль акселератора на чипованном автомобиле, подхват двигателя произойдёт на более низких оборотах. То есть зачастую Вам просто не нужно будет переключаться на пониженную передачу, а переключившись вниз вы получите ещё большую интенсивность разгона. См: Тюнинг автомобиля. Руководство. Составители Брин Муссельвайт и Боб Джекс. Пер. с англ.: М., 2000.
1.2.11 Шины
Бывают двух видов: камерные и бескамерные.
Главное достоинство бескамерной шины -- длительное сохранение давления при проколе, а следовательно, -- безопасность. Камерная шина при проколе теряет давление почти моментально, т. к. воздух быстро выходит через вентильное отверстие в ободе колеса. А из бескамерной шины воздух выходит только в месте прокола, и если дыра не слишком велика (от гвоздя, например), то давление теряется очень медленно.
Кроме того, бескамерная шина намного легче камерной, а значит, меньше нагружает подвеску и подшипники ступиц колес, а также меньше нагревается при длительной скоростной езде.
Бескамерная шина маркируется надписью на боковине Tubeless. Камерная -- Tube Type.
Ни в коем случае не пытайтесь ставить камеру в бескамерную шину, как это делают некоторые водители, рассчитывая, что «двойное дно» добавит шине надежности. В этом случае все преимущества бескамерной шины перед камерной исчезают. Кроме того, между покрышкой и камерой неизбежно образуется воздушный волдырь, который во время езды становится очагом резкого местного перегрева -- причины на первый взгляд непонятных разрушений каркаса шины. Уповая на «двойное дно» для бескамерной шины, рискуете получить совсем другой результат -- «ни дна, ни покрышки».
Классификация и выбор покрышек.
Классическое деление шин на сезонные классы: летние (их еще называют дорожными, или шоссейными), зимние и всесезонные. Принадлежность шины к тому или иному классу определяется массой различных критериев (состав резины, детали внутренней структуры и т. д.), главным из которых является рисунок протектора.
Летняя шина имеет относительно неглубокие протекторные канавки; выступы протектора, как правило, большой площади, и на них либо вообще нет, либо очень мало мелких прорезей (ламелей). Шина с таким рисунком производит очень мало шума, способствует экономии топлива за счет исключительно низкого сопротивления качению и служит долго; у нее максимальный ресурс по износу. Рассчитана в первую очередь на хорошие дороги и на сухую погоду.
Зимняя шина -- антипод летней. Протектор у нее мощный, с крупным рисунком, с глубокими и широкими канавками, с большим количеством мелких прорезей, обеспечивающих сцепление со скользкой дорогой. По вине такого рисунка зимняя шина довольно тяжело катится и сильно шумит, кроме того, быстро изнашивается, т. к. сделана из мягкой резины.
Зимние шины делятся на три основные группы: шипованные (продаются с шипами, установленными на заводе; эксплуатация их без шипов нежелательна), нешипованные и те, что можно использовать как в шипованном, так и в нешипованном варианте (выпускаются с гнездами под шипы; ошиповка на сервисной станции). Шипованные шины, безусловно, хороши на обледенелых дорогах и на снегу - вероятность заноса невелика и тормозной путь минимален. Но на чистом твердом покрытии шипы только мешают: автомобиль идет очень шумно и тяжело, с большим перерасходом топлива, кроме того, при торможении возникает опасность блокировки колес и заноса, т. к. стальные шипы неплохо скользят по асфальту (основная опасность состоит в том, что водители, как правило, слепо верят в шипы и на асфальте ожидают от шипованных шин такой же «мертвой хватки», как на льду). Запрет на использование шипов, введенный почти во всем мире (шипы интенсивно разрушают дорожное покрытие и поднимают канцерогенную асфальтовую пыль), заставил шинных производителей искать им альтернативу, и с этой задачей блестяще справились. Современные технологии позволяют создавать нешипованные зимние шины, способные «держать» на льду не хуже, чем шипованные. Как пример наиболее удачных зимних шин нового поколения можно назвать модели компании Goodyear -- Ultra Grip 5 и Eagle Ultra Grip.
Зимние шины имеют маркировку на боковине M+S, что означает Mud+Snow («Грязь+Снег«); некоторые производители пишут еще и Winter («Зима»).
Всесезонная шина -- компромисс между летней и зимней, результат многолетних попыток найти золотую середину, создать резину «на все случаи жизни». Однако при традиционных (теперь уже устаревших) технологиях стремление суммировать летние и зимние достоинства в одной шине не привело к особым успехам, поскольку суммировались и недостатки; за улучшение одних параметров приходилось расплачиваться ухудшением других. Поэтому всесезонная шина в классическом понимании -- нечто среднее, но, увы, далекое от золотой середины. Она может «всего понемногу»; при этом летом по многим параметрам уступает летней (шумнее, недолговечнее, тяжелее на ходу), а зимой -- зимней (хуже сцепление со скользкой дорогой).
Всесезонные шины маркируются на боковине либо All Seasons («Все сезоны»), либо Any Weather («Любая погода»). Некоторые производители обходятся сокращенными вариантами этих надписей: соответственно AS и AW.
Стремительное развитие шинной технологии (новейшие резиновые смеси с кремниевыми добавками, тонкие компьютерные расчеты, усовершенствование рисунка протектора и т. д.) позволяет ведущим производителям не придерживаться строго классической схемы деления шин на сезонные классы. Стало возможным «нагружать» шину дополнительными, нетипичными для ее класса функциями без ущерба функциям основным (не путать с традиционной всесезонностью). Например, компания Michelin в нынешнем году выпустила на рынок новое поколение семейства шин Energy с маркировкой R+W, что означает Road+Winter -- «Дорога (подразумевается «лето») +3има». Это прекрасные летние шины (сопротивление качению на 20% ниже, чем у классических летних моделей той же фирмы), способные, тем не менее надежно ходить по воде, грязи и тонкому слою снега.
Немалый вклад в благое дело приспособления шин к езде в сложных условиях внесла компания Goodyear. Именно ей принадлежит право называться зачинателем особого типа шин -- дождевых, -- первой представительницей которого была модель Aquatred. Основные элементы протектора дождевой шины -- глубокий водоэвакуационный канал, делящий шину на два «полушиния» (получается как бы две узкие шины в одной широкой), и косо нарезанные поперечные канавки, по которым вода выбрасывается из пятна контакта, что резко снижает вероятность аквапланирования, т. е. скольжения по водяной пленке на высокой скорости.
Дождевые элементы протектора используются в конструкциях современных шин всех сезонных классов: водоэвакуационные каналы неплохо справляются и с жидкой грязью, и с рыхлым снегом (пример очень удачной зимней снежно-грязевой шины -- Goodyear Eagle GW+). Поэтому дождевые шины официально не выделены в самостоятельный класс (хотя, говоря «дождевые», подразумевают в первую очередь летние) и не имеют строго оговоренной маркировки; некоторые производители, чтобы подчеркнуть особые «мокрые» качества шины, иногда вводят в название модели слово Aqua («Вода») или, реже, Rain («Дождь»), но это не является обязательным.
Внедорожные шины, как и легковые, тоже делятся на сезонные классы, хотя для них привязка к сезону не является определяющим критерием. Основное для внедорожных шин -- специализация по конкретным условиям бездорожья. Снежная целина, глубокий песок, болото, скалы и т. п. -- для каждой из этих «номинаций» выпускаются свои, узкоспециальные модели шин.
Однако поскольку большинство внедорожников эксплуатируется на хороших дорогах, основная масса внедорожных шин выпускается во всесезонном исполнении (AS), как правило, с легкими «уклонами» в «песок», «грязь», «щебень» и т. д. Эти шины довольно неплохо ходят по асфальту (у них весьма низкое сопротивление качению и высокий ресурс по износу) и при случае позволяют влезать в бездорожье средней тяжести. Если Ваши джиперские амбиции не простираются дальше вылазок на пикники, охоту или на дачу, ничего «внедорожнее» всесезонных шин Вам не нужно. Если же Вы желаете подышать пылью в Сахаре или Каракумах или покормить малярийных комаров в джунглях, имеет смысл сменить всесезонку на что-либо узкоспециальное, приличествующее случаю.
В маркировке внедорожных шин нет каких-либо жестких канонов; каждая фирма придерживается своих обозначений. Шины с наиболее широким диапазоном внедорожных возможностей большинство производителей обозначает индексом AT -- All Terrain («Вездеходная»).
Шины высших классов делают по особым, «гоночным» технологиям, предполагающим резкое ужесточение требований к шине по всем параметрам. Отличие таких шин от шин массовых классов можно выразить словом «сверх»: сверхпрочные, сверхстойкие к износу, сверхскоростные, сверхлегкие на ходу и т. д. И следовательно -- сверхдорогие.
Большинство производителей обозначает шины высших классов индексами HP (High Performance) и UHP (Ultra High Performance). Кроме того, многие используют в модельных индексах какое-либо ключевое слово, указывающее на принадлежность шины к элитному классу. Goodyear обычно вводит в название элитных моделей слово Eagle («Орел»); так, у фирмы есть, например, массовая дождевая шина Aquatred, рассчитанная на скорость до 190 км/ч, и модель высшего класса Eagle Aquatred, способная бегать со скоростью 210-240 км/ч. См.: Требования к колесам автомобилей. - СПб.: 1999.
Маркировка шин.
На боковину шины наносится масса различных обозначений, многие из которых являются служебными, т. е. нужными больше самим производителям, дилерам, торговым инспекциям и проч., чем покупателям. Рассмотрим лишь маркировки, интересные потребителю, исключив те, что не требуют пояснений (название фирмы-производителя и модели шины, страна изготовления) и те, о которых говорилось выше (Radial, Tubeless, M+S и т. п.).
Типоразмерная надпись
Например, 185/70R14 86Т.
На шинах, предназначенных для легковых автомобилей, многие фирмы, в основном, американские, ставят перед обозначением типоразмера шины букву Р, что означает Passenger (дословно -- «Пассажир»). В нашем случае могло бы быть написано P185/70R14 86Т.
185 -- ширина профиля шины, выраженная в миллиметрах. Это линейное расстояние между наружными сторонами боковин шины, измеренное при номинальном внутреннем давлении, без учета высоты рельефа маркировки.
70 -- серия шины. Это отношение высоты профиля (половины разности внешнего диаметра шины и монтажного диаметра обода) к ширине профиля, выраженное в процентах. Серия -- один из важнейших параметров, определяющих ходовые качества шины; чем она ниже, тем шина «гоночнее». Конструкция радиальных шин позволяет изготавливать их с самыми разными соотношениями высоты и ширины профиля; стандартный ряд серий: 82, 75, 70, 65, 60, 55, 50, 45, а на особо скоростных автомобилях могут использоваться сверхнизкопрофильные шины серии 35 и даже 30.
R--радиальная конструкция.
14 -- монтажный диаметр обода, выраженный в дюймах (подробнее см. «Колесные диски»).
86 -- индекс грузоподъемности шины, или, как его еще называют, коэффициент нагрузки (КН). Он обозначает предельную весовую нагрузку, на которую рассчитана шина. К сожалению, проставленное на шине число математически никак не привязано к конкретным килограммам; это просто условный индекс. Многие фирмы его расшифровывают, на шине мелким шрифтом может быть написано MAX LOAD («Максимальная нагрузка») 530 KG (1170 LBS) -- именно такой предельной нагрузке в килограммах и английских фунтах соответствует индекс грузоподъемности 86.
Шины не должны работать под предельной весовой нагрузкой. По индексу грузоподъемности их следует выбирать с запасом. Советуем от полной массы автомобиля отнять 20%, если у Вас легковая машина, или 30%, если внедорожник (это и будет запасом), и полученное число разделить на 4, т. е. на количество колес автомобиля -- именно такая нагрузка будет оптимальной для каждой шины. Кроме того, следует помнить, что проставленное на шине значение MAX LOAD -- это предельная нагрузка для шины «вообще», без привязки к особенностям развесовки конкретного автомобиля. Есть автомобили, требующие шин разной грузоподъемности на передней и задней осях -- подобные хитрости обязательно оговорены в сервисной книжке машины; ей и руководствуйтесь при покупке шин.
Т -- скоростная категория шины. Она обозначает максимальную скорость, на которую данная шина рассчитана (в нашем примере это 190 км/ч). Иногда скоростную категорию вводят в обозначение размера, и тогда надпись выглядит так 185/70TR14.
Условное обозначение скорости - Максимальная скорость (км/ч)
Р-150, Q-160, R-170, S-180, Т-190, H-210, V-240, W-270, Y-300
Маркировка категории скорости - Скоростные возможности шины (км/ч) ZR-свыше 240
Шины не должны работать на предельных скоростях. Здесь, как и в случае с предельной нагрузкой необходим запас. Ваш автомобиль должен бегать с максимальной скоростью на 10-15% меньшей, чем та, которую «разрешают» шины.
"Е" в кружочке или DOT?
Если на шине стоит клеймо в виде буквы Е, обведенной кружочком, значит, шина сертифицирована для европейского рынка; если клеймо DOT -- для американского (месте производства значения не имеет). Соответственно, оба клейма, проставленные на одной шине, означают, что шина сертифицирована для обоих рынков. Для эксплуатации в России советуем Вам покупать шины либо Е, либо двойной сертификации -- Е и DOT вместе: европейские требования по некоторым параметрам, в частности, по прочности, выше американских.
TWI -- Tread Wear Indicator («Индикатор износа протектора») -- это небольшой, высотой всего лишь 1,6 мм, выступ на дне канавки протектора шины, показывающий Вам (и, учтите, инспектору ГАИ тоже) предельно допустимую степень облысения шины. Как только протектор сотрется до этого выступа, шину нужно менять в обязательном порядке. Для облегчения поиска индикаторов износа на плечо протектора шины наносят метки, располагая их вблизи тех канавок, где находятся выступы. Метка может представлять собой либо аббревиатуру TWI, либо стрелку; только на шинах Michelin метку выполняют в виде эмблемы фирмы -- надувного человечка по имени Bibendum. Обычно таких меток по 6 с каждой стороны шины.
Дополнительные маркировки.
Многим современным шинам «не все равно», куда вращаться и какой стороной быть обращенными к автомобилю -- это модели с направленным и асимметричным рисунками протектора; ошибка при монтаже может стоить дорого, на высоких скоростях автомобиль, обутый неправильно, может запросто улететь с дороги. Поэтому на боковинах шин с установленным направлением вращения крупно рисуют указующие стрелки, сопровождаемые надписью ROTATION («Вращение»). А шины с асимметричным рисунком протектора снабжают надписями SIDE FACING INWARDS («Сторона, обращенная внутрь») и SIDE FACING OUTWARDS («Сторона, обращенная наружу»). См: Тюнинг автомобиля. Руководство. Составители Брин Муссельвайт и Боб Джекс. Пер. с англ.: М., 2000.
1.2.12 Аэрография
Генри Форд говорил: «Вы можете купить «Форд» любого цвета при условии, что он будет черным». Сейчас, спустя столетие, можно купить машину любого цвета без всяких условий. Более того -- если вы захотите, художники превратят ее в картину на колесах. Можете быть уверены -- второй такой не будет. Возможно, «живопись» по автомобильному кузову чересчур экстравагантна, а о ее художественных достоинствах можно спорить. Но одно бесспорно -- такая машина непривлекательна для угонщиков.
Художественная окраска -- работа штучная, на поток ее не поставишь, каждый рисунок -- вещь эксклюзивная. Кроме того, возможность создать неповторимый облик автомобиля не должна становиться общедоступной.
Обычно каждый клиент высказывает какие-то пожелания, но нередко они сводятся к фразе типа: «Хочется чего-то необычного». У нас есть банк эскизов. Мы сканируем снимки машины, затем с помощью компьютера накладываем на них три-четыре варианта изображения. Потом делаем распечатки и предлагаем владельцу выбрать наиболее интересный. Если человек ничего не может выбрать, беседуем с ним, стараясь понять, чего же он все-таки хочет. В конце концов приходим к решению, которое устраивает и меня как художника, и владельца автомобиля.
Однажды к нам обратился Сергей Воробьев, один из организаторов гонок на выживание, с просьбой раскрасить в духе автокорриды его багги. Машину, кстати, снимали в фильмах «Московские каникулы» и «На Дерибасовской хорошая погода...» Мы долго с помощью компьютера накладывали на автомобиль готовые изображения, наконец, Сергей разрешил нарисовать, что хотелось бы мне самому. Хотя форма у багги сложная и несколько вычурная, нам удалось поиграть с объемом его кузова не только линиями рисунка, но и цветом: чешуйки красного дракона переливаются на солнце, создавая иллюзию движения. Здесь мы использовали краски с добавлением перламутра.
Труднее работать, если сюжет предлагает сам владелец, ведь не у всех есть художественный вкус. Конечно, мы можем перенести на кузов портрет, фотографию, пейзаж, даже изображение любимой собаки, лишь бы это было красиво и оригинально, а главное, не противоречило характеру самого автомобиля, подчеркивало динамику движения.
Каждый готовый рисунок мы заносим в картотеку. Если в аварии он будет поврежден, его можно полностью восстановить.
Автомобиль готовим почти так же, как к обычным окрасочным работам. Говорю «почти» потому, что мы делаем это более тщательно, чтобы добиться максимально стойкого и долговечного лакокрасочного покрытия. Наша компания работает исключительно материалами фирмы «Сиккенс», а технология, которой мы пользуемся, позволяет окрасить иномарку с качеством, не уступающим заводскому. Плюс бережное и внимательное отношение ко многим мелочам. Плюс обязательный строжайший контроль качества.
Есть несколько способов нанесения рисунка на автомобиль. Первый, самый простой, -- через трафарет. Понятно, что у элементов такого рисунка четкие границы. Трафаретные рисунки широко применяют для нанесения на машины рекламных текстов и простых картинок, а декоративные сюжеты впервые появились на гоночных автомобилях. Правда, изображения чаще всего были одноцветными, реже -- двухцветными. Позднее начали применять известные всем детям переводные многоцветные картинки. Рисунок готовят на специальной пленке и переводят на кузов машины, а затем покрывают лаком. Но самое высокое качество и полет фантазии обеспечивает лишь аэрограф -- миниатюрный краскопульт, который позволяет рисовать очень тонкими линиями, определить границы которых невозможно -- они слегка размыты. Слои рисунка кладут один за другим, не давая им высыхать. Это позволяет надежно скрепить краски между собой. Если в рисунке есть мелкие элементы и выполнить их все сразу невозможно, то после нанесения каждого слоя кузов подвергают термической обработке до полного высыхания краски.
Аэрографом можно рисовать не только на металле. Например, часто нас просят нанести рисунок на пластиковые чехлы запасных колес внедорожников. Процесс подготовки изображения в этих случаях такой же, но в эмали и лаки добавляем компоненты, которые не позволяют рисунку растрескиваться на пластичном материале.
Конечно, рисунок -- не сигнализация, но все же его в некотором смысле можно считать противоугонной системой. Как я уже говорил, наши сюжеты нестандартны, и раскрашиваем мы большей частью дорогие машины, а порой совсем редкие модели. Теперь представьте себе, что такой уникум с крупными рисунками на кузове угнали. Чтобы его продать, мало перебить номера и изготовить поддельные документы, нужно еще целиком перекрасить автомобиль, а это дело дорогое и сложное. Пока, слава Богу, ни один из оформленных нами автомобилей не был угнан.
Не возникает ли у ваших клиентов проблем с сотрудниками ГИБДД?
Мы сделали запрос в ГУВД Москвы и получили четкий ответ, который я и процитирую: «в настоящее время отсутствуют какие-либо нормативно-правовые документы, устанавливающие требования к «художественной окраске» транспортных средств, не содержащей рекламной информации». Единственное ограничение -- рисунок и его цветовая гамма не должны быть похожи на схемы окраски спецтранспорта. Обычно раскрашенные нами автомобили сотрудники ГИБДД если и останавливают, то с интересом рассматривают, расспрашивают, как делают такие рисунки, сколько стоит работа, но никогда не предъявляют претензий. Впрочем, тем, кто все же хочет подстраховаться, мы рекомендуем сделать особую отметку в техпаспорте. См: Тюнинг. №5, 1998.
1.3 Структура содержания учебного пособия «Тюнинг и дооборудование легковых автомобилей»
Содержание учебного пособия:
Введение.
1. Краткая история тюнинга.
2. Виды тюнинга.
2.1. Тюнинг двигателя.
2.2. Тюнинг подвески.
2.3. Тюнинг тормозной системы.
2.4. Тюнинг выхлопной системы.
2.5. Внешний тюнинг.
3. Технические требования к дооборудованию легковых автомобилей.
Краткое содержание основных разделов учебного пособия:
Введение.
В этом разделе вкратце рассказывается об учебном пособии, формулируются цели, задачи и актуальность данного пособия.
1. Краткая история тюнинга.
Рассказывается о возникновении и развитии тюнинга, приводятся различные исторические моменты из истории автомобилестроения
2. Виды тюнинга.
Раскрывается понятие «тюнинг», его значение для автомобиля, также рассматриваются такие виды тюнинга как:
1. Тюнинг двигателя;
2. Тюнинг подвески;
3. Тюнинг тормозной системы;
4. Тюнинг выхлопной системы;
5. Внешний тюнинг.
Приводятся различные рекомендации и советы по установке тюнинга.
3. Технические требования к дооборудованию легковых автомобилей.
Этот раздел посвящен технологии тюнинга легкового автомобиля, приводятся технические требования к различным агрегатам автомобиля.
Учебное пособие комплектуется демонстрационными материалами - фото тюнинговых автомобилей (5 шт.)
Внешний тюнинг автомобилей
Аэрография на автомобилях
Глава 2. Тюнинг внедорожников
Тюнинг для внедорожников это почти все то, о чем мы говорили в первой главе данной работы, за исключением некоторых дополнений. Поэтому во второй главе мы не будем повторяться и рассмотрим лишь эти дополнения.
Подобные документы
Тюнинг и доработка транспортного средства - легкового автомобиля индивидуального пользования ВАЗ-21213. Теоретические основы и технические решения для достижения целей тюнинга. Увеличение мощности двигателя путем установки турбины и иных механизмов.
курсовая работа [925,3 K], добавлен 21.06.2015Понятие и содержание тюнинга автомобилей, его разновидности, стадии и особенности реализации, история возникновения и развития. Цели и особенности доводки легковых автомобилей. Разработка курса "современные направления в тюнинге легковых автомобилей".
дипломная работа [6,1 M], добавлен 17.04.2010Разработка маршрутной технологии на тюнинг транспортного средства или его агрегата (узла). Выбор и обоснование технологического оборудования и инструмента для обеспечения выполнения разрабатываемой услуги. Определение норм времени на ее выполнение.
курсовая работа [30,7 K], добавлен 03.11.2014Лифтинг кузова и подвески. Установка проставок между кузовом и подушками. Лебедки для автомобилей. Силовой задний бампер с лебедкой. Установка колёс большего диаметра в заводском исполнении на Toyota Land Cruiser 200. Расширение арок. Установка Шноркеля.
контрольная работа [1,1 M], добавлен 23.10.2013Основные характеристики бензоэлектроагрегата. Расчет мощности бензиновой электростанции, выбор моторного масла для генератора; профессиональные и бытовые агрегаты. Устройство современных двигателей для автомобилей: цилиндры, тюнинг; эволюция моторов.
реферат [492,5 K], добавлен 05.06.2011Анализ рынка автосервисных услуг г. Санкт-Петербурга. Разработка услуги по внешнему тюнингу (аэрографии). Выбор предоставляемой услуги и целевого сегмента на основе изучения рынка. Расчёт площади участка мойки. Изучение структуры парка автомобилей.
дипломная работа [2,2 M], добавлен 29.03.2014Изучение конструкции подвесок легковых автомобилей и их виды. двухрычажная, многорычажная, задняя зависимая и полунезависимая подвески, их достоинства и недостатки. Порядок установки и замены пневмоэлементов. Подвески грузовых автомобилей и внедорожников.
реферат [2,3 M], добавлен 24.01.2011Анализ оборудования для внешнего тюнинга и определение численности рабочих. Организация производственного процесса. Рынок автосервисов и автомобильного тюнинга. Организация работы с клиентами. Расчет искусственной вентиляции. Оценка основных рисков.
дипломная работа [3,5 M], добавлен 08.06.2015Анализ рынка автосервисных услуг. Расчет годового объема услуги по внутреннему тюнингу. Технологический процесс по шумоизоляции автомобиля. Определение потребности в оборудовании. Технико-экономические показатели работы реконструируемого участка.
дипломная работа [673,3 K], добавлен 12.12.2012Технические характеристики легковых автомобилей на примере Ford Mondeo 2.0. Обоснование выбора шины для автомобилей по типу нагрузки на колеса. Определение мощности двигателя, тягового и мощностного баланса автомобиля, передаточных чисел трансмиссии.
курсовая работа [784,4 K], добавлен 25.01.2012