Технология проведения диагностики автомобилей
Диагностика систем охлаждения и зажигания; аккумуляторной батареи; приборов питания бензиновых, дизельных и инжекторных двигателей, генераторной установки, стартера, ходовой части, рулевого управления, тормозных систем, сцепления и коробки передач.
Рубрика | Транспорт |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 15.04.2014 |
Размер файла | 4,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ НИЖЕГОРОДСКОЙ ОБЛАСТИ
Государственное бюджетное образовательное учреждение
среднего профессионального образования
«ПЕРЕВОЗСКИЙ СТРОИТЕЛЬНЫЙ КОЛЛЕДЖ»
Отчет
по учебной практике
в рамках ПМ.04 Диагностика автомобилей
Выполнил студент гр.3-111. Гаязетдинов Д.Н.
Перевоз
2013
Содержание
Введение
1. Технология проведения диагностики автомобилей
2. Диагностика КШМ
3. Диагностика ГРМ
4. Диагностика системы охлаждения
5. Диагностика системы смазки
6. Диагностика приборов системы питания бензиновых двигателей
7. Диагностика приборов системы питания дизельных двигателей
8. Диагностика системы питания инжекторных двигателей новых поколений
9. Диагностика аккумуляторной батареи
10. Диагностика генераторной установки
11. Диагностика системы зажигания
12.Диагностика стартера, приборов освещения и сигнализации. КИП
13. Диагностика сцепления, коробки передач, раздаточной коробки, карданных передач
14. Диагностика ходовой части
15. Диагностика рулевого управления
16. Диагностика тормозных систем
17. Диагностика дополнительного оборудования
Заключение
Литература и средства обучения
Введение
Главная задача при подготовке специалистов по техническому обслуживанию и ремонту автомобилей заключается в изучении закономерностей изменения технического состояния автомобилей в процессе их эксплуатации, методов и средств. Поддержания автотранспортных средств в исправном состоянии для обеспечения дорожной и экологической безопасности при экономном расходовании всех ресурсов.
Прошли времена, когда даже серьезный ремонт автомобиля мог осуществить сам хозяин при помощи чертежей, смекалки и простейшего инструмента. Современные автомобили имеют определенную специфику в обращении и уходе. Напичканный электроникой агрегат с массой прецизионных деталей, узлов и систем - в такой сложный «организм» любителю с отверткой наперевес лучше не лезть - такой подход вряд ли приведет к позитивным результатам. Дешевле будет обратиться в специализированные автосервисы, где техническое обслуживание автомобилей производится профессионалами и на профессиональном оборудовании. Современные машины слишком сложно устроены, поэтому для квалифицированного технического обслуживания автомобилей им необходимо качественное оборудование. Ремонт автомобиля в гаражных условиях тем опаснее, чем современнее машина. Конечно же, есть самородки, которые и без компьютеризированного диагностического сканера в состоянии устроить автосервис на дому и определить неисправность «на слух и нюх». И даже на коленке сделать ремонт АКПП. Впрочем, чуть позже выясняется, что почти все чудо-мастера давно занимаются любимым делом - ремонтом автомобилей - именно на профессиональной основе в автотехцентрах. А там - масса современного оборудования для успешного технического обслуживания автомобилей диагностики неисправностей и их устранения, огромная база справочной и технической документации по ремонту автомобилей, наработанные профессионалами и рекомендованные производителями схемы ремонта автомобиля практически любой модели. Самодеятельность при ремонте сложнейших в техническом смысле устройств и узлов категорически не приветствуется. Этим объясняется постоянная необходимость в квалифицированных кадрах в автосервисах и автомастерских.
аккумуляторный двигатель стартер тормозной
1. Технология проведения диагностики автомобилей
Задачами технической диагностики согласно ГОСТ Р 51709--2001 «Автотранспортные средства. Требование безопасности к техническому состоянию и методы проверки» являются:
проверка исправности и работоспособности машины в целом и (или) ее составных частей с установленной вероятностью правильности диагностики;
поиск дефектов, нарушивших исправность и (или) работоспособность машины;
сбор исходных данных для прогнозирования остаточного ресурса или вероятности безотказности работы машины в межконтрольный период.
Виды диагностики автомобилей, их периодичность и место диагностики в системе технического обслуживания и ремонта изложены в «Руководстве по диагностике технического состояния подвижного состава автомобильного транспорта».
Работы по диагностике являются составной частью процесса технического обслуживания и ремонта автомобиля.
В основе диагностики лежат измерения технических параметров машины.
Диагностику автомобиля не редко осуществляют по внешним признакам, отражающим изменение технического состояния транспортного средства. Это могут быть вибрация, шумы, нагрев.
Изменение некоторых технических параметров определяет техническое состояние машины. К ним относятся тормозной путь автомобиля, мощность двигателя, расход топлива или моторного масла, путь свободного выбега автомобиля и др. Они, как правило, измеряются при работе автомобиля на наиболее характерных эксплуатационным режимам работы.
При диагностике используют различные методы и средства, которые постоянно совершенствуются.
Чем выше технический уровень методов и средств диагностики, тем точнее будет определено техническое состояние автомобиля.
При проведении ТО и ТР диагностическим (контрольно-диагностическим) работам отводится значительная доля в общем объеме выполняемых работ.
Виды диагностики
Существуют два вида диагностики: Д-1 и Д-2.
При проведении Д-1 главным образом диагностируются механизмы, обеспечивающие безопасность движения автомобиля (тормозные механизмы, механизмы управления автомобилем, приборы освещения). Кроме того определяется уровень токсичности отработавших газов и топливная экономичность. Д-1 может либо ограничиваться определением годности объекта к дальнейшей эксплуатации (экспресс-диагностика), либо определять основные неисправности и включать в себя регулировочные работы с последующим контролем качества их выполнения.
Д-1 производится на контрольном пункте при возвращении автомобиля в парк, а Д-2 при ТО-1 или перед ним. Кроме того, для проведения ТО-1 используют информацию, полученную с помощью контрольно-диагностических средств, встроенных в автомобиль.
При проведении Д-2 диагностируются тягово-экономические показатели автомобиля и выявляются неисправности его основных агрегатов, систем и механизмов.
Д-2 выполняют перед ТО-2, чтобы подготовить производство к выполнению ремонтных работ и уменьшить простои. Одновременно с Д-2 выполняют некоторые регулировочные работы и контроль качества их проведения. Д-2 могут проводить также и перед ТР в случаях необходимости выявления неисправностей и определения объема ремонта.
Диагностику осуществляют с помощью диагностических установок, стендов и переносных приборов.
Различают три вида диагностики:
встроенная диагностика, которая осуществляется с помощью встроенных в автомобиль приборов, информация при этом выводится на приборную панель автомобиля, так, например, определяется предельный износ тормозных накладок;
экспресс-диагностика, когда определяется значение одного параметра или состояние (исправен -- неисправен) агрегата или элемента автомобиля нахождения причины неисправности, например контроль давления воздуха в шине;
поэлементная диагностика, когда снимаются показания со всех элементов, определяются все необходимые параметры.
На современных автомобилях для диагностики все чаще применяют электронные датчики, которые снимают необходимую информацию при работе автомобиля (на ходу).
Для определения значений параметров при диагностике технического состояния автомобиля применяют различные технические средства (табл. 1).
Таблица 1. Некоторые параметры, определяющие техническое состояние автомобиля, и технические средства, используемые для определения
Параметры |
Технические средства |
|
Температура охлаждающих жидкостей (масел), узлов сопряжения, агрегатов |
Термометры, термопары, терморезисторы |
|
Зазоры, ходы, установочные углы |
Щупы. Индикаторы, линейки, отвесы, оптические или жидкостные уровни |
|
Частота и амплитуда вибрации |
Стробоскопы, виброакустическая аппаратура, стетоскопы |
|
Давление Подача Состав масел |
Манометры, компрессометры, `акуумметры Расходометры Спектрографы, микрофотометры |
|
Состав отработавших газов |
Газоанализаторы |
|
Тормозной путь |
Деселерометры, специальные стенды |
2. Диагностика КШМ
Одним из менее трудоемких, но требующих определенных навыков методов диагностики двигателя, является прослушивание его работы с помощью различного типа виброакустических приборов -- от самых простых по конструкции стетоскопов со звукочувствительным стержнем (напоминающих медицинские фонендоскопы), до электронных стетоскопов типа «Экранас» и ультразвуковых стетоскопов с двумя наушниками модели УС-01.
Для усиления звукового эффекта от виброударных импульсов в характерных точках и зонах двигателя (рис. 1 стетоскоп «Экранас» (рис. 2, а) снабжен двухтранзисторным усилителем низкой частоты 4 с пьезокристаллическим датчиком и батарейным питанием (3 В). Пластмассовый корпус 3 имеет гнезда для установки стержня 5 и подключения телефона-наушника 6. У стетоскопа модели КИ-1154(рис. 2, б), на стержне 5 смонтирован усилитель 3 и слуховой наконечник 6 рупорного типа.
Рис. 1. Зоны прослушивания двигателя
Рис. 2. Стетоскопы: а -- электронный стетоскоп «Экранас»; б -- стетоскоп мод. КИ-1154; 1-провод; 2 -- элементы питания; 3- корпус-ручка; 4 -преобразователь виброударных импульсов; 5 - звукочувствительный стержень; 6- телефон-наушник
Ультразвуковой стетоскоп модели УС-01 (рис. 3) отличается наличием двух каналов (звукового и ультразвукового), специальных наушников, насадков на микрофон в виде гибких зондов, позволяющих прослушивать работу механизмов в труднодоступных местах при повышенной температуре деталей двигателя, а также электронного табло на корпусе, высвечивающего в цифрах силу стуков и шумов (в децибелах -- дБ) -- все это делает данную модель стетоскопа эффективным средством диагностики технического состояния КШМ и ГРМ двигателей. Источник питания прибора имеет напряжение 12 В.
Рис.3. Ультразвуковой стетоскоп УС-01
Перед диагностированием двигатель следует прогреть до температуры охлаждающей жидкости (90 ± 5) °С. Прослушивание производят, прикасаясь острием наконечника звукочувствительного стержня в зоне сопряжения проверяемого механизма.
Работу сопряжения поршень -- цилиндр прослушивают по всей высоте цилиндра по зонам 1 (рис. 3.8) при малой частоте вращения коленчатого вала (KB) с переходом на среднюю -- стуки сильного глухого тона, усиливающиеся с увеличением нагрузки, свидетельствуют о возможном увеличении зазора между поршнем и цилиндром, об изгибе шатуна, поршневого пальца и т.д.
Сопряжение поршневое кольцо--канавка проверяют на уровне НМТ хода поршня (зона 8) на средней частоте вращения KB -- слабый стук высокого тона свидетельствует об увеличенном зазоре между кольцами и канавками поршней, либо о чрезмерном износе или поломке колец.
Сопряжение поршневой палец-втулка верхней головки шатуна проверяют на уровне ВМТ (зона 3) при малой частоте вращения KB с резким переходом на среднюю. Сильный стук высокого тона, похожий на частые удары молотком по наковальне, говорит о повышенном износе деталей сопряжения.
Работу сопряжения коленчатый вал-шатунный подшипник прослушивают в зонах 7 на малой и средней частотах вращения КВ. Глухой звук среднего тона сопровождает износ шатунных вкладышей. Стук коренных подшипников KB прослушивают в этих же зонах (чуть ниже) при резком изменении частоты вращения KB (максимальным открытием или прикрытием дроссельной заслонки) -- сильный глухой стук низкого тона свидетельствует об износе коренных подшипников. Стук в клапанных механизмах прослушивают в зонах 2, наличие износа шеек распредвала -- в зонах 5, а износа распределительных шестерен -- в зоне 6.
Широко используемым методом диагностирования технического состояния КШМ и ГРМ двигателей является замер компрессии в цилиндрах двигателей в конце тактов сжатия с помощью различного типа компрессометров и компрессо-графов с самописцами.
Рис 4. Компрессометры:
a -- для карбюраторных двигателей; б -- для дизелей; 1 -- корпус; 2 -- манометр; 3 -- штуцер; 5 -- контргайки; 6 -- трубка; 7 -- резиновый наконечник; 8 -- золотник; 10 -- выпускной клапан; 11 -- шланг; 12 -- переходник; 13 -- зажимная гайка; 14 -- клапан; 15 -- пружина клапана; 16 -- седло; 17 -- наконечник
На рис.4, а изображен компрессометр мод. 179 с рукояткой пистолетного типа, манометром, наконечником для установки в свечное отверстие, кнопкой клапана сброса давления (от предыдущего показания) и т.д.
Несколько отличается по конструкции компрессометр для дизелей (рис. 4, б). В нижней части он снабжен жестким металлическим корпусом с зажимной гайкой и наконечником, которые вместе с корпусом устанавливаются на место форсунок в головке блока с последующим креплением болтом и скобой форсунки.
Перед началом проверки компрессии следует прогреть двигатель, вывернуть все свечи и полностью открыть воздушную и дроссельную заслонки. Затем наконечник прибора вставляется в отверстие для свечи первого цилиндра и плотно прижимается к гнезду. Коленчатый вал проворачивается при проверке стартером (частота вращения должна быть не менее 200--250 мин-1) не менее 10--12 оборотов. После этого следует проверить по манометру (или по отрывной карточке) показания прибора и сравнить его с нормативным. Аналогично проверяют компрессию в других цилиндрах двигателя. Отклонение показаний от нормативных для данной модели двигателя более чем на 25% свидетельствует о серьезной неисправности двигателя и необходимости прекращения его эксплуатации.
Проверка компрессии производится при полностью закрытых клапанах проверяемого цилиндра.
При значительном снижении компрессии следует попытаться определить место негерметичности. В этих целях в свечное отверстие заливают иногда до 20 см3 моторного масла для временного уплотнения колец. Если после этого показания прибора не увеличатся, то это свидетельствует о негерметичности клапанов. Компрессия для карбюраторных двигателей с пониженной степенью сжатия составляет обычно 0,7--0,8 МПа, для двигателей с повышенной степенью сжатия -- 0,9--1,5 МПа, для дизелей различных моделей 3,5--5 МПа. Причем даже при допустимом снижении компрессии разница в показаниях для отдельных цилиндров карбюраторных двигателей не должна превышать 0,1 МПа, а для дизелей -- 0,2 МПа.
Одним из методов поэлементной диагностики является измерение зазоров в кривошипно-шатунном механизме с помощью прибора мод. КИ-11140-ГОСНИТИ (рис.5,а). Он состоит из корпуса 2 с закрепленным на нем индикатором 1 часового типа (с ценой деления 1 мк), пневматического приемника 3, фланца 4 для крепления устройства в головке цилиндров вместо форсунки или свечи зажигания, уплотнителя 5, направляющей 6 и штока 7, жестко соединенного с ножкой индикатора. На рис.5, б показана
б
Рис.5. Устройство КИ-11140-ГОСНИТИ для измерения зазоров в кривошипно-шатунном механизме:
А - общий вид прибора; б - установка прибора на двигатель
установка прибора на двигателе с подсоединенным шлангом от компрессорно-вакуумной установки мод. КИ-13907.
Суммарную величину зазоров в верхней головке шатуна и шатунном подшипнике определяют при неработающем двигателе, предварительно сняв с него свечу зажигания или форсунку (если диагностируется дизель), и на их место устанавливают уплотнитель 5 с прибором. К боковой трубке с помощью быстросъемной муфты 9 подсоединяют шланг компрессорно-вакуумной установки. Затем устанавливают поршень на 0,5-1,0 мм ниже ВМТ на такте сжатия, стопорят коленчатый вал двигателя от проворачивания и попеременно создают в цилиндре через трубку 6 давление в 200 кПа и разрежение в 60 кПа, отчего поршень поднимается или опускается, устраняя зазоры в вышеперечисленных сопряжениях. Суммарный зазор при этом фиксируется индикатором. Например, суммарный зазор для двигателя ЗИЛ-130 не должен превышать 0,25--0,3 мм. Этот метод используется в основном в лабораториях (в учебном процессе) при испытаниях двигателей на долговечность.
Диагностирование технического состояния КШМ и ГРМ можно производить не только с помощью компрессометров: в последнее время стали использовать для этой цели вакуум-анализатор мод. КИ-5315ТОСНИТИ (рис.6). Наконечник 1 прибора вставляется на место свечи. При опускании поршня в цилиндре создается разрежение, фиксируемое вакуумметром 9. После чего показания сравнивают с нормативными.
Рис.6. Вакуум-анализатор КИ-5315-ГОСНИТИ:
1 -- наконечник; 2,5 -- клапаны; 3,4 -- пружины клапанов; 6 -- регулировочный винт; 7 -- корпус; 8 -- вентиль;9 -- вакуумметр
3. Диагностика ГРМ
В ходе работ по ТО двигателей (например, при ТО-2) проводят поэлементную диагностику отдельных узлов и деталей ГРМ. Так динамометрическая рукоятка мод. 131М (рис.7,а) используется, в частности, для проверки затяжки резьбовых соединений крепления головки блока. Она состоит из пружинящего стержня с рукояткой и шкалой и неподвижной стрелки, закрепленной в головке с квадратом для сменных торцовых головок, цена деления -- 10 Н.м. В ходе проверочных или крепежных работ стержень изгибается вместе со шкалой, и стрелка показывает значение отклонения, по которой судят о значении момента затяжки.
На (рис.7,б) дана схема затяжки болтов головки блока ЗИЛ-4331, на примере которой можно сформулировать единое правило для всех моделей двигателей: вначале следует затягивать центральные болты (или гайки шпилек), а затем остальные -- равномерно, по обе стороны, крест-накрест, постепенно двигаясь к периферийной части торцов головки, как бы «разглаживая» ее. Отклонение затяжки от схем, рекомендуемых ТУ заводов-изготовителей может привести к короблению головок со всеми вытекающими негативными последствиями. Моменты затяжки составляют в среднем для легковых автомобилей - 65-80 Н.м, для грузовых среднего литража - 70-90 Н.м, для двигателей для двигателей ЗИЛ-4331 и КамАЗ-740 -- 190--210 Н-м, для ЯМЗ-236 -- 235--255 Нм. Подтягивание болтов (гаек шпилек) на чугунных головках следует производить на прогретом двигателе, на алюминиевых головках -- на холодном.
Рис.7. Динамометрическая рукоятка мод.131.М:
а - общий вид рукоятки; б - порядок затяжки болтов крепления головки блока цилиндров.
Большое значение для нормальной работы ГРМ имеет упругость пружин клапанов. Для ее контроля используют прибор (рис.8, а), состоящий из корпуса 2, нажимной рукоятки 1 с пятой 3, пояском-указателем 4, эталонной пружины 5 и установочных штырей 6. На рис.6, б показана проверка упругости пружин модернизированным прототипом вышеописанного прибора -- штыри устанавливают на тарелку пружины клапана и нажимают на рукоятку прибора (мод. КИ-723) до начала открытия клапана и по шкале, нанесенной на корпусе, определяют снижение упругости пружины. Если упругость снизилась более чем на 25% относительно номинала, ее выбраковывают.
Рис.8. Проверка упругости пружин клапанов газораспределения:
а - прибор для проверки упругости; б - установка прибора на двигателе; 1-рукоятка; 2-корпус; 3-нажимной штифт; 4-поясок-указатель; 5-эталонная пружина; 6-установка стойки
Своевременная проверка и регулировка зазоров в клапанном механизме позволяет восстанавливать фазы газораспределения, предотвращает снижение компрессии в цилиндрах. Замер зазоров между носками коромысел 3 (рис. 9) и торцами стержней клапанов 2 производится с помощью щупа 1 соответствующей толщины при полностью закрытых клапанах как на прогретом, так и на холодном двигателе (в этом случае берут большое значение нормативного зазора, указанное в ТУ для данной модели двигателя). Регулируют зазор отверткой 6 вращением регулировочного винта 5, при ослабленной контргайке 4. В конце регулировки щуп должен перемещаться в установленном зазоре с небольшим усилием. Последовательность регулировки зависит от выбранного метода. Либо устанавливают поршень первого цилиндра в конце такта сжатия (используя пыж или свисток) и регулируют оба клапана первого цилиндра, а затем поворачивают KB на соответствующий угол и регулируют оба клапана следующего цилиндра по порядку их работы на двигателе, либо по специальной схеме регулируют сразу все закрытые впускные клапана, поворачивают КБ на соответствующий угол и регулируют следующую группу клапанов. Зазор для различных моделей составляет от 0,1 до 0,45 мм.
Рис.9. Методы контроля и регулировки зазоров в клапанных механизмах ГРМ
Специфика конструкции привода клапанных механизмов в новых моделях легковых автомобилей (рис. 10) требует использования для контроля зазоров специальных широких щупов повышенной жесткости.
Рис.10. Схема проверки щупом тепловых зазоров в клапанных механизмах легковых автомобилей: а - между регулировочным виатом и колпачком клапана; между вставкой толкателя и кулачком
У автомобилей мод. ВАЗ-2108 (рис.10,б) отсутствуют винтовые регулировочные устройства, вместо которых используют регулировочные шайбы 6 соответствующей толщины, которые устанавливают в углубления торцов толкателей 7.
Для ускорения процесса контроля тепловых зазоров с одновременным повышением точности в дизелях используют прибор КИ-9918-ГОСНИТИ (рис.11).
Рис.11. Приспособление КИ-9918-ГОСНИТИ для контроля тепловых зазоров в клапанных механизмах
Корпус прибора устанавливают нижними лапками на тарелку пружины клапана, а подпружиненную верхнюю лапку 6 заводят под коромысло. Затем следует перевести рычаг 7 отжимного кулачка 8 в одно из крайних положений, чтобы стрелка индикатора отклонилась на 5--10 делений, после чего рычаг следует перевести в другое крайнее положение и установить шкалу индикатора в нулевое положение. После этого остается нажать 2--3 раза на носок свободно качающегося коромысла (клапан при проверке полностью закрыт) до упора в штангу толкателя и зафиксировать зазор между бойком коромысла и стержнем клапана по показаниям индикатора.
Приспособление мод. ПИМ-4816-ГОСНИТИ (рис.12) служит для одновременной проверки и регулировки зазоров.
Рис.12. Приспособление для контроля и регулировки зазоров в ГРМ мод. ПИМ-4816-ГОСНИТИ: 1-головка; 2-диск; 3-лимб; 4-маховик; 5-рукоятка
Вначале устанавливают жало отвертки, жестко соединенной с маховиком 4, в прорезь регулировочного винта, затем устанавливают головку 1 с рукояткой 5 на контргайку и, отвернув ее, вращают маховик, воздействующий на регулировочный винт, до полной выборки зазора (такое положение называют -- «клапан затянут»). После чего вращают маховик в обратном направлении, следя за показаниями по отметке на поворотном диске 2 и градуированном лимбе 3 (градуировка выполнена с учетом шага резьбы регулировочного винта). Установив нормативный зазор, с помощью головки и рукоятки затягивают контргайку.
Суммарную величину зазоров в верхней головке шатуна и шатунном подшипнике определяют при неработающем двигателе, предварительно сняв с него свечу зажигания или форсунку (если диагностируется дизель), и на их место устанавливают уплотнитель 5 с прибором. К боковой трубке с помощью быстросъемной муфты 9 подсоединяют шланг компрессорно-вакуумной установки.
4. Диагностика системы охлаждения
В ходе ТО проверяют натяжение приводных ремней, при этом используют приспособление КИ-8920 (рис.13) или К-403. Обычно измеряют прогиб верхних ветвей приводных ремней. Для каждой модели, каждой ветви установлена определенная норма прогиба (рис.14), в среднем прогиб колеблется от 10 до 20 мм.
Рис.13. Приспособление КИ-8920 для проверки натяжения ремней: а -- проверка натяжения, б -- прибор для проверки натяжения
Рис.14. Схема проверки натяжения приводных ремней двигателя ЗИЛ-130: 1 -- шкив коленчатого вала; 2 -- шкив генератора; 3 -- шкив компрессора; 4 -- шкив водяного насоса; 5 -- шкив насоса гидроусилителя рулевого привода
При проверке натяжения ремня приспособление устанавливают на ремень левой 14 (рис.13) и правой 11 лапками, составляющими единое целое с соответствующими шкалами (секторами) прибора так, чтобы фиксаторы 12 были прижаты к боковине ремня. Приспособление следует устанавливать в центральной части ветви ремня между смежными шкивами. После этого нажимают на корпус рукоятки 8 с необходимым (нормативным) усилием, за которым следят по шкале 7 динамометра, состоящего из корпуса 1, пружины 3 и регулировочного винта 5. Усилие нажатия для различных ветвей приводных ремней колеблется от 30 до 50 Н, а для автомобилей ВАЗ-100 Н. Остается проверить по шкале значение прогиба ветви ремня и при необходимости произвести натяжение. Следует помнить, что ослабление ремней вызывает их пробуксовку и быстрый износ, кроме того, не полностью передается крутящий момент. Перенатяг ремней также приводит к быстрому износу, одновременно увеличивается износ подшипников генератора, водяного насоса и т.д.
На рис.15 дана схема прибора для контроля открытия клапанов термостата при определенной температуре. Перед проверкой с клапанов термостата следует удалить накипь, окислы и т.д. Проверяемый термостат 4 закрепляют на кронштейне 1, подводят стержень индикатора 3 к тарелке клапана и включают электронагреватель воды 6, за температурой следят по термометру 2. Начало открытия клапана должно соответствовать температуре (70 ± 2)°С, а полное открытие -- температуре (85 ± 2)°С, при неудовлетворении этим требованиям термостат выбраковывают.
Рис. 15. Схема прибора для проверки термостата: 1 -- кронштейн для крепления термостата; 2 -- термометр, 3 -- индикатор, 4 -- термостат, 5 -- ванна с водой, 6 --электронагреватель
На рис.16 изображен прибор для опрессовки системы охлаждения через отверстие пробки радиатора в целях проверки герметичности системы. Давление подаваемого сжатого воздуха должно быть равным 0,15 МПа и в течение 10 с не должно упасть более чем на 0,01 МПа.
Рис16. Прибор для опрессовки системы охлаждения: 1 -- манометр; 2 -- золотник; 3 -- геометрическая крышка
На рис.17 приводится схема прибора мод. К-437 для проверки герметичности системы путем опрессовки (0,06--0,07 МПа) при работающем двигателе. На малых частотах стрелка манометра при проверке не должна колебаться. Прибор позволяет проверять паровой и воздушный клапаны пробки радиатора
Рис17. Схема прибора для проверки герметичности системы охлаждения: 1 -- редуктор; 2 -- ресивер; 3 -- кран; 4 -- манометр; 5 -- стакан; 6 -- рамка; 7 -- зажим; 8 и 13 -- двухходовой кран; 9 -- регулировочный винт; 10 -- индикатор; 11 -- паровой клапан пробки радиатора; 12 -- воздушный клапан пробки радиатора; 14 -- края
5. Диагностика системы смазки
До выезда на линию перед пуском двигателя необходимо проверить уровень масла в поддоне картера (автомобиль должен быть установлен на горизонтальной площадке). В этих целях вынимают и протирают ветошью измерительный щуп, вставляют его на место до упора, затем вновь вынимают и по специальным меткам «полно» -- «долей», «max» -- «min», «П» -- «О» или «В» (в дизелях КамАЗ) определяют, сколько следует залить масла. Нежелательна эксплуатация автомобилей при пониженном уровне масла (малый объем приводит к перегреву и чрезмерному разжижению масла), но не допускается и перелив масла выше указанных меток (превышение допустимого уровня масла приводит к «забрасыванию» вращающимися деталями, например щеками коленвала, большого количества масла на зеркало цилиндров -- масло-съемные кольца не успевают его снимать, и оно проникает в камеру сгорания, что приводит к повышенному дымлению двигателя, к замасливанию электродов свечей и выходу их из строя). Следует проверить герметичность системы смазки по возможным подтекам масла. В дороге следует следить за показаниями манометра (указателя давления масла) на различных режимах работы двигателя.
ТО-1 -- провести КО, обращая особое внимание на герметичность системы: возможны подтеки масла через поврежденные или плохо затянутые прокладки (клапанных крышек, поддона картера, крышки распределительных шестерен), в местах соединения шлангов, трубопроводов, через повреждения в элементах масляного радиатора, через поврежденные или плохо затянутые элементы масляных фильтров, центрифуг; часто наблюдается течь масла через передний и особенно через задний коренные подшипники коленчатого вала при повышенных износах или повреждении их сальников и т.д. Поэтому при каждом ТО-1 следует проводить крепежные работы в местах возможной течи масла и самих элементов системы смазки, расположенных снаружи двигателя. Проверить давление масла в системе на прогретом двигателе на различных режимах работы. Указатель давления на щитке приборов должен показывать на скоростном режиме работы двигателя для легковых и грузовых автомобилей семейств ГАЗ, ЗИЛ и МАЗ (с двигателями ЯМЗ-236) 0,2--0,4 МПа; для ЗИЛ-4331 и КамАЗ-740 -- 0,4--0,55 МПа. На холостом ходу (при минимальной частоте вращения коленвала) давление должно быть в пределах 0,05--0,08 МПа, а для автомобилей с дизелями -- не ниже 0,1 МПа. Не допускается работа двигателей при загорании сигнализатора (обычно красного цвета) аварийного давления масла.
Масло подлежит замене, если оно уже настолько темного цвета, что не просматриваются риски на щупе или при проведении экспресс-анализа цвет центрального ядра масляного пятна от нанесенной на фильтровальную бумагу или чистое стекло капли масла имеет слишком черный оттенок, и тем более, если в нем присутствует несколько твердых частиц (продуктов износа и т.д.)- Кроме того, если внешняя часть более светлого пояска вокруг ядра имеет темно-коричневый оттенок, это свидетельствует о чрезмерном окислении («старении») масла, что так же недопустимо. Следует также помнить, что масла с присадками изначально имеют темный оттенок. Масло следует сливать только в горячем виде. Слив производят на осмотровых канавах или на подъемниках через специальные воронки в емкости для отработанных масел для последующей регенерации (восстановления) или использования для других нужд. В целях обеспечения возможности замены масла на посту любого типа зарубежные фирмы выпускают установки для удаления старого масла методом откачивания с использованием зонда, вставляемого в отверстие для измерительного щупа (рис.18).
Рис.18.Устройства слива масла методом откачивания
После слива масла в каналах системы смазки остается большое количество продуктов износа в виде мелких абразивных частиц и сгустков окислов масла, которые будут выполнять роль «закваски» при заливке свежего масла. Поэтому для увеличения срока службы масла и самого двигателя современная технология предусматривает обязательную промывку системы перед заливкой свежего масла. В этих целях используют обычное веретенное масло, для дизелей -- смесь дизельного топлива (2 ч.) и дизельного моторного масла (1 ч.), для двигателей легковых автомобилей новых моделей -- специальные масла для промывки маслосистем. Для механизации процесса промывки и отечественная промышленность, и зарубежные фирмы выпускают различного типа установки для хранения промывочного масла, насосы шестеренного типа с приводом от электродвигателя и шланги с наконечниками для подачи промывочного масла (обычно через резьбовое отверстие пробки для слива масла в нижней части поддона картера двигателя). Вначале вводят в поддон промывочное масло, закрывают кран и выключают установку. Затем пускают двигатель и дают ему поработать на малых частотах 2--4 мин. После этого открывают кран на наконечнике шланга и включают установку на откачивание промывочного масла. Далее заменяют фильтрующие элементы или целиком масляные фильтры, а в некоторых моделях просто промывают в ванне фильтрующие элементы из мелкоячеистой металлической сетки. Одновременно меняют воздушные фильтры, а в некоторых моделях промывают сетчатый фильтрующий элемент (в фильтрах инерционного типа) и заменяют моторное масло, заливаемое в ванну фильтра.
При очистке внутренней полости корпуса и центрифуги от шлама используют специальные металлические щетки или скребки. Сборку центрифуги следует производить в соответствии с технологическими требованиями. Центрифуга считается исправной, если после резкого сброса максимальных частот и выключения двигателя характерный звук высокого тона от вращающейся центрифуги прослушивается в течение 2--3 мин (эту операцию водители должны проводить ежедневно).
Для контроля степени загрязненности центрифуги (проводится при ТО-1) применяется приспособление КИ-9912 (рис.19).
Рис.19. Приспособление КИ-9912 для проверки степени загрязнения центрифуги:
1 - корпус; 2 - упругая пластина весового механизма; 5 - гайка ротора центрифуги; 6,7 - гайки; 8 - захват; 9 - опора; 10 - индикатор
Отворачивается на несколько оборотов гайка 5 ротора центрифуги и, в зависимости от массы грязевых отложений в корпусе центрифуги, упругая пластина 2 весового механизма прогибается на соответствующее значение, фиксируемое индикатором. Если это значение превышает норму, центрифугу следует разобрать и промыть. После заливки свежего масла следует дать поработать двигателю 1--2 мин на малых частотах, пока масло не заполнит все фильтры и давление в системе не придет в норму.
ТО-2 -- дополнительно к объему работ по ТО-1 при ТО-2 в порядке проведения сопутствующего ремонта можно заменять отдельные неисправные легкодоступные элементы системы смазки, вплоть до масляного радиатора, центрифуги и т.д.
6. Диагностика приборов системы питания бензиновых двигателей
Учитывая особую важность нормального функционирования элементов топливной системы, при ТО-1 проводят диагностические операции, в первую очередь определяя содержание СО (СН) в отработанных газах. Одним из первых отечественных газоанализаторов был прибор И-СО. Принцип его работы был основан на измерении прироста температуры предварительно нагретой платиновой нити при дожигании в специальной камере прибора окиси углерода (СО), которая с порцией отработанных газов подавалась шприцем в специальное отверстие измерительной камеры. Недостаток прибора состоял в том, что порционный забор газов с помощью шприца из глушителя не позволял осуществлять непрерывный замер содержания СО, что крайне необходимо при регулировке карбюратора.
Затем была создана мод. К-456, основанная на том же принципе измерения, но более совершенная -- с непрерывным измерением содержания СО за счет использования для забора газа из глушителя специального наконечника (длиной 300 мм) со шлангом.
Постепенно промышленность перешла на выпуск принципиально новых газоанализаторов ГАИ-1 (рис.20) и ГАИ-2 (который дополнительно может измерять содержание в отработанных газах СО2 в диапазоне 0-10%)
Рис.20. Оптический абсорбционный газоанализатор ГАИ-1: 1 -- газоотборник; 2 -- фильтр; 3 -- корпус; 4 -- указатель концентрации
На рис.21 приведена схема газоанализатора ГАИ-1, принцип действия которого основан на оптико-абсорбционном методе, т.е. на измерении поглощения инфракрасной энергии излучателя 6 окисью углерода СО, в результате чего она нагревается до температуры, зависящей от концентрации СО в отработанных газах, преобразуемой в электронном блоке 9 с оптико-абсорбционным датчиком в электрические сигналы определенного напряжения (пропорциональные концентрации СО), которое передается на измерительный прибор (индикатор) 10.
Рис.21. Схема устройства ГАИ-1:
1 -- приемник излучения; 2 -- устройство для балансировки оптического потока; 3 -- сравнительная камера; 4 -- фильтровая камера; 5 -- измеритель температуры излучателя; 6 -- излучатель; 7 -- рабочая камера; 8 -- реперное устройство; 9 -- электронный блок; 10 -- индикатор
То есть если в газоанализаторах И-СО и К-456 измерительный прибор представлял из себя электронный термометр, то в газоанализаторах типа ГАИ это вольтметр со шкалой, оттарированной на объемное содержание СО (и в ГАИ-2 дополнительно на содержание СО2). Для получения разницы потенциалов на приемнике излучения 1, в приборе напротив рабочей камеры 7 имеется сравнительная камера 3, заполненная специальным эталонным газом. Газоанализаторы типа «Infralit», выпускаемые зарубежными фирмами, отличаются расширенными функциональными возможностями за счет измерения параметров СО и СО2.
На рис.22 дана схема газоанализатора «Infralit-2T». Иссле дуемый газ из глушителя, пройдя через фильтры 2, 3,4 и насос 5, поступает в две измерительные кюветы 6 и 18 и затем уходит в атмосферу. Сравнительные кюветы 10 а 14 наполнены азотом и герметично закрыты. В каждой схеме измерения (и для СО, и для СО2) излучения от двух накаленных спиралей инфракрасного излучения 7 фокусируются параболическими зеркалами и через вращающийся от электродвигателя 8 обтюратор 9 направляются через рабочую и сравнительную камеры. В сравнительных кю ветах поглощения инфракрасного излучения не происходит, а в рабочих кюветах элементы отработанного газа поглощают из общего спектра лучи определенной длины волны и в инфракрас ный лучеприемникиг{детекторы) 11 и 15 поступают два потока лучей различной интенсивности. В результате в усилителях 13 и 16 появляется электрический сигнал, фиксируемый на инди каторе 17(СО2) и 19 (СО).
Рис.22. Схема газоанализатора «Inf ralit-2T», для замера содержания в отработанных газах СО и СО2
Примечание. Перед проведением анализа отработавших газов проверяют и приводят в порядок систему зажигания, уровень топлива в поплавковой камере. Затем производят проверку на прогретом двигателе в двух режимах -- при минимальных частотах холостого хода, а затем увеличив их на 50--60%. Повышение содержания СО в первом случае свидетельствует о неправильной регулировке холостого хода, а при повышенных частотах -- о неисправности главной дозирующей системы.
Если после проверки содержания СО (СО2, СН) в отработанных газах с помощью вышеописанных газоанализаторов обнаружено, что они превышают допустимый норматив, необходимо произвести регулировку карбюратора на холостом ходу. Но прежде, также с помощью переносных диагностических приборов, следует проверить общее состояние системы зажигания и уровень топлива в поплавковой камере (проверка производится на ровной горизонтальной площадке). Для быстрого контроля уровня топлива в поплавковой камере на большинстве моделей карбюраторов отечественного производства имеется либо смотровое окно с метками (рис.23, б), либо контрольное отверстие, завернутое специальной пробкой (при отворачивании пробки контроля уровня топливо должно «стоять» в резьбе нижнего края отверстия или слегка сочиться через него -- рис.23, а).
Рис.23. Методы контроля ровня топлива в поплавковых камерах: a -- по контрольному отверстию в корпусе; б -- через смотровое окно; в -- при помощи приспособления; 1 -- штуцер; 2 -- стеклянная трубка
Для некоторых моделей, в основном устаревших, используют приспособления, состоящие из штуцера, резиновой и стеклянной контрольных трубок. Принцип замера основан на одинаковом положении уровня жидкости в сообщающихся сосудах. Для этого только нужно знать нормативный размер Н, от края стыковой поверхности корпуса карбюратора до уровня топлива в поплавковой камере (обычно от 18 до 22 мм -- рис.23, в). Если вышеуказанные проверки дали положительный результат, то можно приступить к регулировке минимальной частоты вращения коленчатого вала двигателя (холостой ход), предварительно прогрев двигатель до температуры (90 ± 5)°С охлаждающей жидкости.
При регулировке карбюратора помимо газоанализатора желательно использовать прибор для контроля частоты вращения коленчатого вала (в крайнем случае, можно пользоваться показаниями тахометра на щитке прибора автомобиля). Смысл регулировки состоит в получении оптимального состава рабочей смеси, а соответственно и устойчивой работы двигателя на минимальных частотах (на холостом ходу), рекомендуемых заводскими ТУ. Минимальное содержание вышеуказанных токсичных веществ в отработанных газах способствует уменьшению расхода топлива.
Для одних моделей карбюраторов можно сразу же приступить к регулировке, для других, в соответствии с требованиями заводских ТУ, сначала следует определить «исходное положение». Для этого используемые при регулировке винты качества (игольчатые наконечники, которые расположены в каналах холостого хода) и винты количества (воздействующие на степень открытия дроссельных заслонок карбюраторов) заворачивают до упора и затем отворачивают на рекомендуемое ТУ число оборотов, после чего пускают двигатель и приступают к окончательной регулировке.
При регулировке обычных однокамерных карбюраторов (рис.24, а) отворачивают винт количества 2 (дроссельная заслонка при этом прикрывается) до минимальных неустойчивых частот KB (при этом возможно легкое поддергивание двигателя), затем заворачивают винт качества 1 (при этом уменьшается обогащение смеси) до повышения частоты вращения и сравнительно устойчивой работы двигателя. Далее регулировку повторяют, воздействуя на регулировочные винты в той же последовательности, при этом следует постоянно следить за показаниями приборов. Надежность регулировки можно проверить также резким сбросом частоты вращения KB с максимальных до минимальных -- двигатель не должен останавливаться.
Рис. 24. Положения отверток при регулировке карбюратора в режиме холостого хода:
а -- однокамерного; б -- двухкамерного; 1 -- винт регулировки состава смеси; 2 -- винт регулировки количества смеси
Отличие регулировки двухкамерных карбюраторов (рис.24, б) состоит в том, что после уменьшения частоты отвертыванием винта количества 2 сначала заворачивают винт качества 1 одной из камер, добиваясь повышения частоты вращения, а затем на столько же заворачивают винт качества второй камеры (перед регулировкой оба винта качества отворачивают на три оборота). При регулировке холостого хода у автомобилей ВАЗ с карбюратором типа «Озон» (рис.25и 26) сначала удаляют втулки-пломбы 3, после чего следует завернуть до отказа винт качества 1 и вывернуть обратно на 3--5 оборотов. Пускают двигатель и винтом количества 2 устанавливают частоту вращения KB -- 850--900 мин""1. Если СО находится в пределах 1,0--1,5% , то винт качества не трогают.
Рис25. Регулировочные винты в карбюраторе типа «Озон»:
1 -- винт качества; 2 -- винт количества; 3 -- ограничительная втулка
Рис26. Схема системы холостого хода карбюратора «Озон»:
1 -- жиклер холостого хода; 2 -- воздушный жиклер; 4 -- винт качества; 5 -- винт количества
ТО-2 -- дополнительно к объему работ, проводимых при ТО-1. При этом проверяют действие привода дроссельной и воздушной заслонок карбюратора, полноту их открывания и закрывания и при необходимости приводы регулируют. Если при ТО-1 следует только сливать отстой из корпусов фильтров очистки топлива, то при ТО-2 их необходимо разбирать и тщательно промывать все детали, и в первую очередь фильтрующие элементы, в ваннах с моющим раствором (допускается мойка Чистой водой, нагретой до 80°С) с последующей обдувкой деталей и корпусов сжатым воздухом. При ТО-2 в порядке сопутствующего ремонта можно заменять явно неисправные узлы и детали.
12
В процессе ТО-2 проводится более углубленная диагностика технического состояния как топливной системы в целом, так и отдельных ее элементов. Один из важнейших показателей работы топливной системы -- расход топлива на различных режимах работы двигателя. Для его определения используют переносной расходомер мод. К-427 (рис.27), состоящий из датчика и регулирующего прибора. Датчик расходомера подключают между топливным насосом и карбюратором. В корпусе 7 датчика имеется сквозной канал, в котором установлена ось ротора 8 с двумя крыльчатками 9 и флажком 10, а напротив с одной стороны смонтирован патрон 11с лампой, с другой -- фоторезистор 5. Для прохождения светового луча в корпусе имеются два сквозных отверстия, закрытые стеклянными пробками 13.
Рис. 27. Расходомер К-427:
-15 14
а -- датчик расхода; б -- регистрирующий прибор; 1 -- контргайка; 2 -- регулирующая опора; 3 -- кожух; 4,12 -- зажимы; 5 -- фоторезистор; 6 -- колодка; 7 -- корпус; 8 -- ось ротора; 9 -- крыльчатка; 10 -- флажок; 11 -- патрон; 13 -- стеклянные пробки; 14 -- переключатели; 15 -- кнопка сброса; 16 -- индикаторы; 17 -- разъем; 18 -- предохранитель; 19 -- сигнальная лампа; 20 -- импульсный счетчик; 21 -- ручка сброса
Частота вращения ротора с крыльчатками, а следовательно и количество импульсов при перекрытии луча флажком пропорциональны расходу топлива. Результаты измерений выдаются на цифровом (световом) индикаторе регулирующего прибора, после чего следует сравнить полученные показатели с нормативными. В более сложном по конструкции тахомет-рическом расходомере КИ-13967 для любого типа двигателей с электронным блоком (частотомером) и аналого-цифровым преобразователем вторичной обработки сигналов используется турбинно-тахометрический датчик. При вращении крыльчатки под действием потока топлива периодически изменяется зазор между магнитопроводом (передающим магнитный поток от магнита) и лопастями магнитопроводящей крыльчатки, в результате происходит пульсация магнитного поля, наводящая ЭДС в катушке. Выходные сигналы, пропорциональные расходу топлива, идут на обработку в вышеуказанные электронные блоки и на цифровой индикатор. Для проверки топливных насосов непосредственно на работающем двигателе используют переносной прибор мод. НИИАТ-527Б(рис.28), который подключают между БН и карбюратором с помощью тройника со штуцерами, -- при минимально устойчивой частоте вращения KB по манометру 1 измеряют давление, развиваемое БН. Затем закрывают кран 7 прибора, останавливают двигатель и через 30 с снова снимают показания и сравнивают с нормативными.
Рис.28. Прибор НИИАТ-527Б для проверки бензонасосов на работающем двигателе
Если результаты измерений (в первом случае характеризующие давление, развиваемое БН, а во втором -- герметичность его клапанов) ниже нормативных, то насос подлежит ремонту.
Таким образом, если в ходе проверки карбюратора или БН вышеуказанными диагностическими приборами получены неудовлетворительные результаты и их не удалось привести в соответствие с требованиями ТУ на месте (путем регулировки и т.д.), карбюратор и БН необходимо снять с двигателя и передать в карбюраторный цех для комплексной проверки и регулировки.
7. Диагностика приборов системы питания дизельных двигателей
ТО-1 -- провести контрольный осмотр; проверить состояние и действие приводов останова двигателя и привода ручного управления подачей топлива, при необходимости отрегулировать их, произвести смазку соответствующих точек в узлах трения приводов; провести крепежные работы по всем элементам топливной системы, включая штуцерные соединения, различные крышки и т.д.; в обязательном порядке слить отстой из топливного бака; после слива отстоя снять, разобрать и промыть корпуса ФГО и ФТО топлива, фильтрующие элементы промыть в чистом дизельном топливе кистями и продуть сжатым воздухом (загрязненный фильтр ФГО и размягченный фильтрующий элемент ФТО следует заменить).
Воздушные фильтры обслуживаются при ТО-1 или в случае сигнализации красным флажком индикатора засоренности, установленного на впускном коллекторе (рис.29).
Рис. 29. Стенд для контроля дымности отработанных газов дизелей мод. К-408
Корпус фильтров промывают в чистом бензине или дизельном топливе и продувают сжатым воздухом; фильтрующие элементы продувают сжатым воздухом для удаления пыли, а в случае загрязнения сажей фильтрующего элемента из картона (маслом и т.п.) его промывают в теплом водном растворе синтетических моющих веществ (ОП-7, ОП-10, «Новость» и т. д.). Такая операция допускается не более трех раз, затем фильтрующий элемент заменяют. В корпуса фильтров масляно-инерционно-го типа заливают свежее моторное масло. Помимо вышеуказанных операций при ТО-1 проводят диагностику как отдельных элементов, так и топливной системы в целом. Негерметичностъ топливопроводов со штуцерными соединениями
Заполненный на 4/5 объема бачок 1, с дизельным топливом подсоединяют с помощью резинового шланга с запорным краном 5 и сменного штуцера с подводящим, топливопроводом от топливного бака, создают воздушным насосом 4 вышеуказанное давление и открывают кран -- при поступлении топлива в магистраль негерметичные места обнаруживают по появлению течи топлива или пены с пузырьками воздуха.
Рис.30. Бачок для проверки герметичности топливной системы дизеля на участке низкого давления:1 -- бачок; 2 -- кран для выпуска воздуха; 4 -- воздушный насос; 5 --запорный кран; 6 -- клапан; 7 -- топливная трубка фильтров, находящихся на участке низкого давления (от бака до ТНВД) можно обнаружить при неработающем двигателе, создав избыточное давление в 0,3 МПа с помощью прибора мод. 383 (рис.30).
Негерметичность (места подсоса) во впускном и выпускном трактах осуществляют на максимальных частотах прибором модели К14-4870 (рис.31) -- прикладывают наконечник 8 к местам возможной негерметичности и наблюдают через глазок 3 за уровнем жидкости (перед этим необходимо вывернуть пробку 4). Если уровень понижается, значит в этом месте происходит подсос воздуха и имеет место негерметичность соединения.
Рис.31. Контроль прибором мод. КИ-4870 негерметичности впускного и выпускного трактов двигателя: а -- общий вид прибора; б -- схема контроля прибором КИ-4870
Дымность отработавших газов у двигателей автомобилей МАЗ, КамАЗ, ЗИЛ-4331 не должна превышать 40% в режиме свободного ускорения и 15% при максимальной частоте вращения. Превышение указанных нормативов свидетельствует о неисправной работе топливной системы и требует принятия соответствующих мер путем проведения регулировочных работ или текущего ремонта, т.к. подобная неисправность может снизить мощность двигателя, привести к перерасходу топлива, а высокое содержание аэрозолей, определяющих процент дымности и состоящих из частиц сажи, золы, несгоревшего топлива, масла и т.д., оказывает вредное воздействие на экологию и здоровье человека. Дымность отработанных газов оценивается на вышеуказанных стендах через их оптическую плотность, регистрируемую при просвечивании фотоэлементом, передающим сигнал на микроамперметр, отградуированный в процентах дымности.
Одним из важнейших параметров, влияющих на нормальную работу топливной системы дизеля, является момент начала подачи топлива секциями ТНВД, который в свою очередь зависит от правильности установки муфты опережения впрыска (MOB) относительно привода, т.е. совпадения контрольных меток с соответствующими делениями на шкалах, градуированных в градусах по углу поворота коленчатого вала (см. рис.32 и рис.33). В двигателях автомобилей КамАЗ имеется дополнительное устройство в виде фиксатора маховика для установки KB двигателя (а следовательно, и привода MOB) в положение, соответствующее началу подачи топлива первой секцией ТНВД в первый цилиндр двигателя.
Рис.32. Расположение установочных меток двигателей ЯМЗ-236, 238: а -- вид на муфту опережения впрыска и полумуфту привода ТНВД; б -- вид на шкив KB и крышку распределительных шестерен; в -- вид на маховик и указатель на картере маховика; 1 -- муфта опережения впрыска; 2 -- болты крепления ведущей полумуфты; 3 -- метка на муфте; 6 -- метка на фланце полумуфты; 7 -- метка на шкиве KB; 9 -- указатель; 10 -- маховик
Рис.33. Расположение установочных меток на ТНВД двигателей КамАЗ
Подобные документы
Общие сведения об автомобиле ГАЗ-3110. Технические характеристики двигателя, трансмиссии, ходовой части. Устройство четырехступенчатой коробки передач, ее разборка и сборка, неисправности. Конструкция диафрагменного сцепления, его снятие и установка.
контрольная работа [6,2 M], добавлен 10.02.2013Устройство ходовой части автомобиля. Конструкция передней и задней подвески. Основные данные для контроля, регулировки и обслуживания колес. Общие технические характеристики рулевого управления. Назначение рабочей и стояночной тормозных систем машины.
контрольная работа [1,1 M], добавлен 03.12.2013Назначение, устройство и работа аккумуляторной батареи. Причины и признаки неисправности аккумуляторной батареи. Технологический процесс диагностики аккумуляторной батареи и ремонта карбюратора. Влияние неисправных аккумуляторных батарей на экологию.
реферат [606,9 K], добавлен 16.01.2012Общая характеристика автомобиля ВАЗ-2170 Lada Priora, его отличия от ВАЗ-2110. Особенности конструкции двигателя, тормозной и топливной систем. Расположение элементов сцепления и рулевого управления. Устройство системы охлаждения и коробки передач.
курсовая работа [4,2 M], добавлен 13.02.2013Устройство автомобильной аккумуляторной батареи. Характеристика ее неисправностей и их проявлений. Определение повреждений и их диагностика. Техническое обслуживание и текущий ремонт аккумуляторной батареи. Расчет графика прохождения ТО автомобилей.
курсовая работа [842,7 K], добавлен 16.03.2014Предназначение, конструктивные особенности и диагностика сцепления, коробки передач, раздаточной коробки, карданной и главной передач, дифференциала, полуосей. Виды и порядок проведения технического обслуживания трансмиссии, устранение ее неисправностей.
курсовая работа [2,2 M], добавлен 28.04.2012Технические характеристики автомобилей семейства ваз 2108, устройство сцепления и коробки передач. Дифференциалы трансмиссии автомобиля, ее силовые приводы, валы и полуоси. Устройство ходовой части шасси, подвески, колеса и шины, тормозная система.
курсовая работа [6,2 M], добавлен 15.01.2011Технология ремонта автомобилей. Выбор способа и маршрутная технология восстановления деталей. Восстановление основных деталей, применяемое оборудование. Ремонт приборов систем охлаждения, смазки, питания, электрооборудования, рам, кузовов, кабин и шин.
книга [8,6 M], добавлен 06.03.2010Особенности конструкции автомобилей ВАЗ-2112 - машины с улучшенными ходовыми качествами и уровнем комплектации. Устройство двигателя, сцепления, коробки передач, приводов передних колес, передней и задней подвесок, рулевого управления и тормозной системы.
курсовая работа [3,4 M], добавлен 25.01.2014Развитие автотранспорта в нашей стране. Назначение, устройство и работа аккумуляторной батареи. Техническое обслуживание аккумуляторной батареи. Неисправности аккумуляторной батареи. Ремонт аккумуляторной батареи. Трудовые поощрения и взыскание.
дипломная работа [32,0 K], добавлен 28.09.2008