Основы радиохимии и радиоэкологии

История, предмет и задачи радиохимии. Протонно-нейтронный состав ядер. Законы радиоактивного распада. Взаимодействие ядерного излучения с веществом. Основные виды радиационно-химических превращений. Механизм ядерных реакций и получение радионуклидов.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 06.06.2010
Размер файла 6,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

227Ac223Fr( Т1/2=21 мин.)

Из продуктов распада актиния, франций был выделен путем соосаждения с перхлоратом цезия.

В природе франций в ничтожных количествах содержится во всех урановых рудах( 1 атом Fr на 7,71014 атомов 235U или 31018 атомов природного урана).

В настоящее время известны изтопы франция с массовыми числами от 203 до 229, из них два изотопа с массовыми числами 223 и 224 встречаются в природе, являясь членами радиоактивных семейств 235U и 232Th.

Получают 223Fr также путем облучения 226Ra нейтронами по схеме:

226Ra(n,) 227Ra(n,) 227Ac (-распад) 223Fr

Это один из самых долгоживущих изотопов франция.

Франций не может быть получен в весомых количествах, поэтому все физические характеристики его найдены рассчетным путем.

Химические свойства франция изучены только с ультрамикроконцентрациями элемента радиохимическими методами с использованием цезия в качестве носителя.

В соответствии с положением в периодической системе, франций должен иметь более отрицательный стандартный потенциал , чем цезий. Поэтому он может быть выделен только на ртутном катоде. Франций самый активный щелочной металл. Единственной степенью окисления франция является +1. Применяют франций в медицине и биологии при изучении распределения щелочных металлов в организме. Фиксируется он в основном в злокачественных опухолях, что делает его перспективным в ранней диагностике рака.

12.7 Радий (88Ra)

Радий был открыт М. и П.Кюри в 1898 г вслед за полонием. М. Кюри обнаружила, что интенсивность излучения смоляной руды в несколько раз сильнее, чем U3O8, полученный из металлического урана. Кюри было предположено, что руда содержит неизвестное вещество с более интенсивным излучением, чем уран. В двухлетних поисках этого вещества супруги Кюри провели химическое разложение большого количества урановой руды, химико-аналитическое разделение компонентов полученного раствора на фракции, содержащие известные химические элементы, и обнаружили, Было обнаружено, что фракции содержащии сульфид висмута и сульфат бария, обладают радиоактивностью. В дальнейшей работе с помощью дробной кристаллизации хлористого бария, полученного из сульфата бария, был выделен новый химический элемент с порядковым номером 88, названный Кюри радием (radius-луч). В настоящее время известно 13 изотопов радия, из них три являются членами естественных радиоактивных семейств. Наиболее долгоживущим из природных изотопов радия является изотоп 226Ra с периодом полураспада 1622 года. 226Ra является -- излучателем и содержится во всех рудах урана. В 1 т урановой смоляной руды содержится около 400 мг 226Ra. В верхнем слое Земной коры толщиной 1,6 км содержится 1,8107т 226Ra.

Радий представитель щелочно-земельных металлов и является самым тяжелым металлом главной подгруппы 11группы периодической системы. Единственной степенью окисления радия является+2. Радий, белый блестящий металл с Ткип.=1140 и Тпл.=960.

По своим химическим свойствам радий похож на барий, но более химически активен. Радий энергично разлагает воду, давая гидроокись Ra(OH)2, более растворимую, чем Ва(ОН)2. Все свежеприготовленные соли радия имеют белый цвет с характерным голубым свечением в темноте.

Радий обладает большой склонностью к сорбции из растворов на поверхности стеклянной посуды, фильтровальной бумаги, что затрудняет определение его физико-химических констант (например, растворимость солей радия). Радий склонен к комплексообразованию, так, например, он образует комплексы с лимонной ,молочной и винной кислотами.

Основная проблема при выделении радия из урановых руд состоит в отделении его от больших количеств урана и продуктов распада радия. Кроме методов сокристаллизации с изоморфными солями бария и свинца, для выделения радия используется хроматографические и экстракционные методы. Перспективным для выделения радия является использование неорганических неспецифических сорбентов, таких как Al2O3.

Радий сыграл большую роль в становлении радиохимии и ядерной физики как один из первых открытых радиоактивных элементов.

Основные области применения обусловлены его -излучением в методах неразрушающего контроля для определения дефектов литья, в тощиномерах, при разведке месторождений урана. Альфа излучение радия позволяет использовать его для производства светящихся красок и для снятия статических зарядов.В смеси с бериллием радий используют для изготовления нейтронных источников. В медицине радий используют как источник радона. Радий обладает большой подвижностью в природе и довольно сильно может выщелачиваться из горных пород. Поэтому большинство урановых минералов теряет значительную часть радия (иногда эти потери составляют до 85%), который легко попадает в природные воды.

12.8 Актиний ( 89Ас) и актиноиды

12.8.1 ОБЩИЕ СВОЙСТВА АКТИНОИДОВ

В 1898 году сотрудник Кюри Дебьерн в отходах от переработки урановых руд обнаружил новое радиоактивное вещество. При химико-аналитическом разделении это радиоактивное вещество осаждалось аммиаком вместе с редкоземельными элементами и торием. Радиоактивность была приписана радиоактивному элементу, который был назван актинием. Актиний- элемент главной подгруппы третьей группы периодической системы Д. И. Менделеева. Его ближайшим химическим аналогом является лантан. В то же время он имеет более основные свойства, чем лантан. Вопрос о положении в периодической системе элементов, расположенных за актинием, до сих пор остается дискуссионным. Наиболее широко распространенной является актиноидная гипотеза Г. Сиборга, предложенная в 1944 г.

Радиоактивные свойства некоторых изотопов актиния

Изотоп актиния

Реакция получения

Тип распада

Период полураспада

221Ac

232Th(d,9n)225Pa(б)>221Ac

б

<1 сек.

222Ac

232Th(d,8n)226Pa(б)>222Ac

б

4,2 сек.

223Ac

232Th(d,7n)227Pa(б)>223Ac

б

2,2 мин.

224Ac

232Th(d,6n)228Pa(б)>224Ac

б

2,9 час.

225Ac

232Th(n,г)233Th(в-)>233Pa(в-)>233U(б)>229Th(б)>225Ra(в-)225Ac

б

10 сут.

226Ac

226Ra(d,2n)226Ac

б или в- или электронный захват

29 час.

227Ac

235U(б)>231Th(в-)>231Pa(б)>227Ac

б или в-

21,7 лет

228Ac

232Th(б)>228Ra(в-)>228Ac

в-

6,13 час.

229Ac

228Ra(n,г)229Ra(в-)>229Ac

в-

66 мин.

230Ac

232Th(d,б)230Ac

в-

80 сек.

231Ac

232Th(г,p)231Ac

в-

7,5 мин.

232Ac

232Th(n,p)232Ac

в-

35 сек.

СИБОРГ Глен

В соответствии с этой гипотезой элементы с порядковыми номерами 90-103 образуют 5f-cемейство и по аналогии с лантаноидами размещаются в периодической системе в виде отдельной группы. Однако такое размещение трансактиноидной группы небезупречно. Актиноиды по своему химическому поведению занимают промежуточное положение между элементами f- и d- серий.

Актиний подобно лантану химически активный элемент, быстро окисляющийся на воздухе. В кислых растворах актиний присутствует в виде ионов. При рН>3 образуются коллоидные растворы. В микроконцентрациях актиний соосаждается гидроокисями иттрия, алюминия, железа. В урановых рудах актиний содежится в микроконцентрациях. Содержание актиниия в урановой руде составляет приблизительно 1/300 содержания радия.

Актиний может быть получен из урановых или ториевых руд отделением с лантаноидами, а также облучением радия нейтронами.

Ra( n,) Ra Ac .

Актиний также подвергается бетта-превращению.

От ланатана актиний может быть отделен хроматографически на катионите в аммонийной форме. Хорошо актиний отделяется от лантана методом электрофореза. Из урановых руд актиний выделяется путем осуществления кислотного разложения руды и последующего разделения и выделения продуктов распада урана и отделения от примесей.

Вопрос о положении в периодической системе элементов, расположенных за актинием, до сих пор считается дискуссионным. К актиноидам относятся элементы с порядковыми номерами от 90 до 103, которые образуют 5f семейство и по аналогии с лантаноидами размещаются в периодической системе в виде отдельной группы. По своему химическому поведению актиноиды занимают промежуточное положение между элементами f - и d- серий. Сюда входят- торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, энштейний, фермий, менделеевий, нобелий, лоуренсий. Теория подсказывает, что всего в слое 5 f может находиться 14 электронов. Следовательно,103-й элемент должен быть последним актиноидом, так как у него будут полностью застроены уровни 5f, 6s и 6p. С другой стороны, следует ожидать, что 104-й элемент будет находиться в состоянии 6d2 7s2,т.е. относится к четвертой группе системы Менделеева, следовательно, по свойствам он должен быть похож на торий.

Таблица. Наиболее важные изотопы актиноидов

Изотоп

Период полураспада

Изотоп

Период полураспада

227Ac

22 года

242Cm

162,5 суток

232Th

1,391010 лет

244Cm

19 лет

231 Pa

34300 лет

247Cm

4107 лет

238U

4,5109 лет

248Cm

4,7105 лет

237Np

2,2106 лет

250Cm

2104 лет

239Pu

24360 лет

247Bk

1300 лет

242Pu

3,79105 лет

248Bk

314 суток

244Pu

7,6107 лет

249Cf

360 лет

241Am

458 лет

251Cf

660 лет

243Am

7600 лет

254Es

280 суток

Торий (90Th)

Элемент № 90 был открыт обычным химическим методом в 1828 году Яном Берцелиусом и назван торием в честь древнескандинавского божества Тора. В 1898 году М. Кюри обнаружила, что торий обладает радиоактивностью. Именно радиоактивность- основная причина нынешнего интереса к элементу с порядковым номером 90.

Радиоактивность тория была обнаружена М. Кюри и одновременно с ней независимо немецким ученым Г. Шмидтом в 1898 году. Именно радиоактивность - основная причина нынешнего интереса к элементу № 90. Природный элемент практически представляет собой изотоп 232Th. Торий-232 является родоначальником довольно большого семейства. Период полураспада тория-232 равен 1,39·1010лет.

В периодической системе 232Th расположен в четвертой группе. Торий - металл серебристого цвета, легко подвергается механической обработке. Он очень легко окисляется, поэтому его хранят под слоем керосина. Торий способен проявлять степени окисления +4, +3, +2, наиболее устойчивой является +4. Только одно соединение тория - его двуокись ThО2 имеет самостоятельное применение, остальные же важны лишь для науки и… для производства тория.

Основными источниками тория являются торийсодержащие минералы (монацит, ортит). Методы выделения тория предусматривают отделение его от сопутствующих редкоземельных элементов. В технологии для этой цели используется, в основном, экстракция тория ТБФ( трибутилфосфатом) после его отделения от основной массы редкоземельных элементов дробным осаждением менее растворимого сульфата тория.

Торий - металл серебристого цвета, легко подвергается механической обработке. Он очень легко окисляется, поэтому его хранят под слоем керосина. Торий способен проявлять степени окисления +4, +3, +2, наиболее устойчивой является +4.

Основными источниками тория являются торийсодержащие минералы (монацит, ортит). Методы выделения тория предусматривают отделение его от сопутствующих редкоземельных элементов. В технологии для этой цели используется, в основном, экстракция тория ТБФ после его отделения от основной массы редкоземельных элементов дробным осаждением менее растворимого сульфата тория. Методы соосаждения со специфическим (La, Ce) и неспецифическим Te(OH)3, BiPO4 носителями используются для получения препаратов , применяемых в качестве радиоактивных индикаторов.

Применение тория. Элементом особой важности, стратегическим металлом торий стал лишь после второй мировой войны.

Как и всякий четно-четный изотоп (четное число протонов и нейтронов), торий-232 не способен делиться тепловыми нейтронами. Но под действием тех же нейтронов с торием происходит вот что:

Th232 + n -> Th233 -> Pa233 -> U233

А U233 - отличное ядерное горючее, поддерживающее цепное деление и имеющее некоторое преимущество: при делении его ядер выделяется больше нейтронов. Каждый нейтрон, поглощенный ядром плутония-239 или урана-235, дает 2.03-2.08 новых нейтронов, а уран-233 - намного больше - 2.37.

Применение тория в качестве ядерного горючего затруднено прежде всего тем, что в побочных реакциях образуются изотопы с высокой активностью. Главный из таких загрязнителей - уран-232 - альфа- и гамма-излучатель с периодом полураспада 73.6 года. Его использованию препятствует и то обстоятельство, что торий дороже урана. Уран легче выделить. Некоторые урановые минералы (уранит, урановая смолка) - это простые окислы урана. У тория таких. простых минералов (имеющих промышленное значение) нет. А попутное выделение из редкоземельных минералов осложнено сходством тория с элементами семейства лантана.

Главная проблема получения делящегося материала из тория состоит в том, что он изначально не присутствует в реальном реакторном топливе, в отличие от U-238. Для использования ториевого воспроизводства высокообогащенный делящийся материал (U-235, U-233, Pu-239) должен использоваться в качестве топлива реактора с включениями тория по большей части только для возможности воспроизводства (т.е. не происходит или происходит незначительное выделение энергии, хотя сгорание U-233, полученного на месте, может внести вклад в выделение энергии). С другой стороны, тепловые бридерные реакторы (на медленных нейтронов) способны использовать U-233/торий цикл воспроизводства, особенно если в качестве замедлителя использовать тяжелую воду.

Торий является перспективным материалом для ядерной энергетики. Делящимся элементом при этом служит , образующийся по схеме:

.

Достоинство тория как топливного материала определяется высокой температурой его плавления, отсутствием фазовых переходов, высокой механической прочностью и радиационной устойчивостью металлического тория и ряда его соединений. Использование тория в ядерной энергетике способно решить проблему истощения природных запасов урана. Из других областей применения тория представляет интерес использование его как катализатора, а также в качестве легирующих присадок к многокомпонентным сплавам, используемым в авиационной и ракетной технике.

Протактиний 91Pa

Протактиний по своим свойствам сходен с Nb, Ta, Zr, Hf, Ti. Это блестящий металл светло-серого цвета, покрытый на воздухе тонкой пленкой оксида. По твердости протактиний близок к урану. Интересным свойством протактиния является его сверхпроводимость при 2? К.

Металлический протактиний может быть получен термическим разложением его галогенидов на вольфрамовой нити при высокой температуре и давлении 10-3 - 10-4 Па. Протактиний легко реагирует с водородом. Степени окисления протактиния +5, +4,+3,+2, из которых наиболее устойчивой является +5.

Изучение химии протактиния осуществлялось методами классической химии с использованием долгоживущего изотопа .

Основными методами выделения протактиния являются соосаждение, экстракция и хроматография. Наилучшими носителями являются фосфат циркония и гидроксид марганца (1У).

Применение протактиния. применяется как источник получения по ядерной реакции:

.

- используется как изотопный источник тока, используется в качестве ядерного топлива .

Уран и трансурановые элементы.

Уран 92U

Уран- 92 -ой элемент Периодической системы Менделеева, последний и самый тяжелый из существующих в природе элементов. Этот элемент занимает в современной жизни особое место.

Главный элемент ядерной энергетики и сырье для получения другого главного энергетического элемента- плутония, он причастен ко многим открытиям ХХ века . Уран помог раскрыть тайны атома, стал источником невиданной мощи. Он основа современной « алхимии», превращения элементов и получения новых.

Рис. Тепловыделяющие элементы (ТВЭЛы)

Открыл уран немецкий химик Клапрот в 1789 г., выделив из саксонской смоляной руды черное металлоподобное веществ, и назвал его ураном Более пятидесяти лет это вещество считалось металлом и только в 1841 году францезский химик Пелиго доказал, что это окисел урана UO2. Прошло еще 55 лет и в 1896 году Беккерель обнаружил, благодаря урану, явление радиоактивности. В 1903 году Д. И. Менделеев

Уран довольно широко распространен в природе( содержание урана в земной коре 10-3 % по массе). Основным источником получения урана является урановая смоляная руда и карнотит (K2(UO4)(VO4)2nH2O, а в последнее время и более бедные урановые руды. Химические свойства урана изучены методами классической химии

Выделение урана из природных объектов производится путем кислотного или карбонатного выщелачивания его после предварительного обогащения руды. Окончательное извлечение урана осуществляется методами осаждения, экстракции, сорбции и т.д.

Степени окисления урана +3, +4, +5, +7.

Для урана в металлическом состоянии характерно взаимодействие с водородом, азотом и другими элементами.

Соединения урана обладают большой склонностью к комплексообразованию, гидролизу.

Трансурановые элементы (93Np, 94Pu, 95Am)

Основным методом получения Np, Pu, Am является облучение урана, нептуния, плутония медленными нейтронами:

В свободном состоянии нептуний, плутоний, америций - серебристые металлы большой плотности, в порошкообразном состоянии они пирофорны. Все эти металлы сплавляются друг с другом в широком интервале концентраций и проявляют способность образовывать интерметаллические соединения. Для этих элементов в металлическом состоянии характерно взаимодействие с водородом, азотом и другими элементами.

Наиболее сложной проблемой является их отделение от облучаемого элемента и друг от друга. Наиболее распространенными методами получения этих элементов в металлическом состоянии является восстановление их фторидов щелочами или щелочноземельными металлами или электролиз расплавов их солей Решение этой задачи основано на том, что для каждого элемента рассматриваемой группы характерна своя устойчивая степень окисления: для урана +6, для нептуния +5, для плутония +4, для америция +3. Наиболее эффективными являются ионообменные и экстракционные методы. Меньшее значение для целей разделения и выделения этих элементов имеют осадительные методы.

Химия водных растворов этих элементов исследована с использованием микрохимии из-за их высокой массовой активности

Практическое использование элементов рассматриваемой группы определяется их ядерно-физическими характеристиками, а не химическими свойствами. Многие изотопы рассматриваемых элементов способны к делению под действием нейтронов и используются в качестве ядерного топлива. К наиболее важным из них относятся , делящиеся под действием медленных нейтронов. имеет очень большое сечение деления и следовательно, малую критическую массу, что позволяет использовать его в качестве ядерного топлива в небольших реакторах, пригодных для космических исследований. служит источником получения ядерного топлива - .

Кроме того важной областью применения рассматриваемых элементов является изготовление на основе изотопных источников. Эти источники могут быть использованы для получения электрической энергии, теплоты и механической энергии. Изотопные источники на основе использовались в космических летательных аппаратах для термостатирования замкнутых объектов с электронной аппаратурой, для жизнеобеспечения космических орбитальных станций и снабжения их электроэнергией.

используется для создания стимуляторов сердечной деятельности.

Изотоп , испускающий г - кванты с энергией 59,6 кэВ используют в качестве источника возбуждения в рентгенофлюоресцентном анализе.

Наиболее распространенными методами получения этих элементов в металлическом состоянии является восстановление их фторидов щелочами или щелочноземельными металлами или электролиз расплавов их солей.

Степени окисления этих элементов +3, +4, +5, +7.

Для всех четырех элементов в металлическом состоянии характерно взаимодействие с водородом, азотом и другими элементами.

Химия водных растворов этих элементов исследована с использованием микрохимии из-за их высокой массовой активности.

Все эти элементы обладают большой склонностью к комплексообразованию, гидролизу.

Основным источником получения урана является урановая смоляная руда и карнотит (K2(UO4)(VO4)2nH2O, а в последнее время и более бедные урановые руды.

Выделение урана из природных объектов производится путем кислотного или карбонатного выщелачивания его после предварительного обогащения руды. Окончательное извлечение урана осуществляется методами осаждения, экстракции, сорбции и т.д..

Наиболее сложной проблемой является их отделение от облучаемого элемента и друг от друга. Решение этой задачи основано на том, что для каждого элемента рассматриваемой группы характерна своя устойчивая

энергии, теплоты и механической энергии. Изотопные источники на основе использовались в космических летательных аппаратах для термостатирования замкнутых объектов с электронной аппаратурой, для жизнеобеспечения космических орбитальных станций и снабжения их электроэнергией.

используется для создания стимуляторов сердечной деятельности.

Изотоп , испускающий г - кванты с энергией 59,6 кэВ используют в качестве источника возбуждения в рентгенофлюоресцентном анализе.

Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md)

Особенностью изучения химии этих элементов является необходимость использования методов радиохимии. Это обусловлено невозможностью получения большинства указанных элементов в весомых количествах, а также их чрезвычайно высокой массовой активностью.

Все элементы от кюрия до фермия получены в виде металлов.

Для всех рассматриваемых элементов, за исключением 102, основной степенью окисления является +3. Известны также для этих элементов степени окисления +4 и +2. У этих элементов высокая склонность к комплексообразованию. Эти элементы способны образовывать металлоорганические соединения Ме (С5Н5)3.

Получают их бомбардировкой актиноидов тяжелыми ионами.

Для отделения актиноидов друг от друга и от лантаноидов используются процессы экстракции и ионного обмена. Кроме экстракции для целей выделения и разделения рассматриваемых элементов применимы почти все известные варианты хроматографических методов.

Практическое применение тяжелых актинидов так же как и легких, обусловлено их физико-химическими свойствами.

Так изотопы кюрия используются для приготовления изотопных источников тепла. - являются удобным материалом для изготовления источников нейтронов с большой интенсивностью потока.

Изотопы - находят применение для изготовления б - источников.

могут найти применение в качестве ядерного топлива.

Трансактиноидные элементы

Трансактиноидные элементы характеризуются заполнением электронами 6d и 7s - уровней атома. К ним относятся элементы, начиная со 104 и заканчивая 118-м элементом. В соответствии с актиноидной гипотезой последним из 5 f элементов должен быть элемент №103 лоуренсий (5f14 6d1 7s2). Принципиально важным, с этой точки зрения, должно было оказаться открытие элемента №104 и изучение его свойств. Это позволило бы подтвердить или опровергнуть актиноидную гипотезу. Работы по синтезу этих элементов проводятся в основном в Объединенном институте ядерных исследований (г. Дубна, Россия) и в радиационной лаборатории Лоуренса (г. Беркли, США). Основным методом получения изотопов 104-106-го элементов является облучение актиноидов (Pu, Am, Br, Cm, Cf) ускоренными тяжелыми ионами углерода, кислорода и неона. Элемент № 104 был синтезирован в 1964 году в Дубне группой Г. Н. Флерова, облучением 242Pu ядрами 22Ne

Pu+ Ne Rf+ 4 10n

Первоначально элемент был назван курчатовием, а в последствие резерфордием. В настоящее время получены изотопы резерфордия с массовыми числами 257-261. Их периоды полураспада от 11 мин у резерфордия 258 до 70 с у резерфордия 261. Элемент был идентифицирован чешским ученым Зварой с помощью специальных экспрессных методов анализа. Было показано, что резерфордий резко отличается по своим свойствам от предыдущих элементов. Как было обнаружено в химическом отношении резерфордий ведет себя подобно гафнию и элементам 1У В группы; его электронная конфигурация 5f14 6d2 7s2 . С открытием резерфордия стало ясно, что он, не являясь актиноидом, ведет себя подобно лантаноидам.

Резерфордий и более тяжелые элементы можно назвать трансактиноидами.

Чуть позже были синтезированы элементы с атомными номерами 105-107.

Br(О, 5n) DbПериод полураспада 40 с.

Сечения активации этих реакций очень малы и резко уменьшаются с возрастанием атомного номера образующегося составного ядра. Более благоприятным с этой точки зрения является использование в качестве материала мишени ядер свинца и висмута, а качестве бомбардирующих частиц- ионов хрома и более тяжелых элементов. Использование такой комбинации позволило получить элементы с порядковыми номерами 106 и 107:

, Период полураспада 7.10-3 с.

Успехи в синтезе трансурановых элементов и синтез трансактиноидов поставили вопрос впрямую о верхней границе периодической системы.

Синтез нептуния и плутония позволил выделить в проблеме конца системы два аспекта: о естественной границе и о возможном пределе синтеза искусственных элементов. Можно предполагать, что на Земле последним природным элементом является плутоний.

Если рассматривать периодический закон в космическом масштабе то проблема конца системы становится неоднозначной и непосредственно смыкается со вторым аспектом- пределом устойчивости атомных ядер.

Достижения современной ядерной физики и химии позволяют более определенно судить и о возможности синтеза новых искусственных сверхтяжелых элементов. Эта проблема также неоднозначна.

Глава 13. Некоторые вопросы прикладной радиохимии

14.1 ПОЛУЧЕНИЕ ЯДЕРНОЙ ЭНЕРГИИ

Ядерная энергия может быть получена несколькими путями:

а) при радиоактивном распаде

Ra Rn + ? E;

б) при синтезе тяжелых ядер из легких, например

D+T 4He + n +? E

в) при делении тяжелых ядер

235U + n2 осколка + (2 -3) нейтрона + ? E

При радиоактивном распаде выделяется сравнительно небольшое количество энергии (менее 100 кэВ/ а.е.м.).

Реакции синтеза и деления имеют цепной характер и могут быть как управляемыми (термоядерные и ядерные реакторы), так и неуправляемыми (термоядерный и ядерный взрыв). Ядерные и термоядерные реакции сопровождаются выделением огромного количества энергии, измеряемого в МэВ.

ПРИЛОЖЕНИЕ

Радиоактивные семейства

Таблица 1. Семейство тория

Нуклид

Излучение

Период полураспада

Энергия излучения, МэВ

( А = 4n)

Th

Ra

Ac

Th

Ra

Rn

Po

[At(в)0,01%;Pb(б)

99,99%]

Bi

[Po(в)66,3%;Tl (б)

33,7%]

Pb

б

в

в

б

б

б

в, б

б

в

б, в

б

в

-

1.41М1010 лет

6.7 лет

6.13 ч

1.91 лет

3.64 дня

51.5 c

0.15 c

3М10-4c

10.64 ч

60.6

3.7М10-7c

3.1 мин

?

4.01

0.05

2.11

5.43

5.68

6.29

6.78

7.8

0.58

6.09

8.78

1.80

-

Семейство урано- радиевое

Нуклид

Излучение

Период полураспада

Энергия излучения, МэВ

( А = 4n+ 2)

U

Th

Pa

U

Th

Ra

Rn

Po

[At(в)0,03%;Pb(б)99,97%]

Bi

[Po(в)99,96%;Tl (б)0,04%]

Pb

Bi

Po

Pb

б

в

в

б

б

б

б

в, б

б

в

б

в

б

в

в

в

б

-

4.5М109 лет

24.1 дня

1.17 мин

2.47 М105 лет

8.0 М105 лет

1.602 М103 лет

3.82 дня

3.05 мин

2 c

26.8 мин

19.7 мин

1,64М10-4c

1,3 мин

21 лет

5.0 дня

138.4 дня

?

4.2

0.19

2.29

4.77

4.68

4.78

5.49

6.0

6.7

1.03

5.51

3.26

7.69

2.3

3.06

1.16

5.31

-

Семейство актино- ториевое

Нуклид

Излучение

Период полураспада

Энергия излучения, МэВ

( А = 4n+ 3)

U

Th

Pa

U

Th

Ra

Rn

Po

[At(в)0,03%;Pb(б)99,97%]

Bi

[Po(в)99,96%;Tl (б)0,04%]

Pb

Bi

Po

Pb

б

в

в

б

б

б

б

в, б

б

в

б

в

б

в

в

в

б

-

4.5М109 лет

24.1 дня

1.17 мин

2.47 М105 лет

8.0 М105 лет

1.602 М103 лет

3.82 дня

3.05 мин

2 c

26.8 мин

19.7 мин

1,64М10-4c

1,3 мин

21 лет

5.0 дня

138.4 дня

?

4.2

0.19

2.29

4.77

4.68

4.78

5.49

6.0

6.7

1.03

5.51

3.26

7.69

2.3

3.06

1.16

5.31

-

Семейство нептуния

Нуклид

( А = 4n+ 1)

Np

Pa

U

Th

Ra

Ас

Fr

At

Bi

[Po(в)98 %;Tl (б)2%]

Pb

Bi

Излучение

б

в

б

б

в

б

б

б

б ,в

в

б

в

-

Период полураспада

2.2М106лет

27.4 дня

1.6 М105 лет

7.3М103 лет

15 дней

10 дней

4.8 мин

1.8 М10-2 с

47 мин

2.2 мин

4.2 М10-6 с

3.22 час

?

Энергия излучения, МэВ

4.87

0.53

4.82

5.02

0.2

5.80

5.49

7.02

5.9; 1.2

1.8

8.34

0.7

-


Подобные документы

  • Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Методики анализа, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Активационный анализ. Радиометрическое титрование.

    реферат [18,4 K], добавлен 01.06.2008

  • Радиоактивный анализ. Типы радиоактивного распада и радиоактивного излучения. Методики анализа, основанные на измерении радиоактивного излучения. Активационный анализ. Метод изотропного разбавления. Радиометрическое титрование.

    реферат [24,7 K], добавлен 05.06.2008

  • История открытия нобелия. Методы получения нового элемента. Химические свойства актиноидов. Помехи и трудности, неизбежные при определении дочерних продуктов альфа-распада ядер 102-го элемента. Закономерности ядерных реакций с участием тяжелых ионов.

    реферат [29,2 K], добавлен 18.01.2010

  • История развития микроволновой химии. Разработка специализированных микроволновых печей, предназначенных для осуществления химических реакций. Взаимодействие микроволнового излучения с веществами, его использование для проведения химических анализов.

    курсовая работа [410,0 K], добавлен 13.11.2011

  • Понятие и основные разновидности излучений, их признаки и свойства. Взаимодействие бета-излучения с веществом: ионизационные, радиационные, поляризационные потери, упругое рассеяние. Отличительные особенности и отличительные свойства бета-детектирования.

    курсовая работа [318,5 K], добавлен 28.02.2015

  • Исследование динамики полимерных цепей в растворе, которая является чувствительным тестом внутримакромолекулярного структурообразования и химических превращений с участием макромолекул, а также фактором, влияющим на протекание реакций в цепях полимера.

    статья [259,7 K], добавлен 18.03.2010

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Естественные и искусственные радиоактивные ряды. Виды радиоактивного распада. Основные радиоактивные ряды, наблюдающиеся в природе. Характеристика рядов тория, нептуния, радия, актиния. Радиоактивные превращения ядер. Последовательные цепочки нуклидов.

    презентация [938,7 K], добавлен 30.05.2015

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Особенности полимераналогичных превращений, их реакционные способности. Специфика полимераналогичных реакций. Эффекты, обусловленные структурой макромолекул. Бутадиен-стирольные каучуки, рассмотрение их химических свойств и полимераналогичных превращений.

    курсовая работа [1,6 M], добавлен 17.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.