Основы радиохимии и радиоэкологии

История, предмет и задачи радиохимии. Протонно-нейтронный состав ядер. Законы радиоактивного распада. Взаимодействие ядерного излучения с веществом. Основные виды радиационно-химических превращений. Механизм ядерных реакций и получение радионуклидов.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 06.06.2010
Размер файла 6,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

10.9 ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ ( 93Np, 94Pu, 95Am)

10.9.1 ОБЩИЕ СВОЙСТВА ТРАНСУРАНОВЫХ ЭЛЕМЕНТОВ

Трансурановые элементы, химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером Z ? 93. Из-за относительно высокой скорости радиоактивного распада трансурановых элементов в заметных количествах не сохранились в земной коре. Возраст Земли около 5?109 лет, а период полураспада T1/2 наиболее долгоживущих изотопов трансурановых элементов меньше 107 лет. За время существования Земли трансурановых элементов, возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244Pu -- наиболее долгоживущего из трансурановых элементов (T1/2 ~ 8?106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237Np (T1/2 ~ 2,14?106 лет) и 239Pu (T1/2 ~ 2,4?104 лет), которые образуются в результате ядерных реакций с участием ядер U.

Основным методом получения нептуния, плутония и америция является облучение урана, нептуния, плутония медленными нейтронами:

В свободном состоянии нептуний, плутоний, америций - серебристые металлы большой плотности, в порошкообразном состоянии они пирофорны.

Химия водных растворов этих элементов исследована с использованием микрохимии из-за их высокой массовой активности Все рассматриваемые элементы в степени окисления +3 и +4 находятся в водных растворах ( в отсутствие гидролиза и комплексообразования) в виде гидратированных ионов состава [ Me(H2O)x]n+.

Склонность к комплексообразованию актиноидов в степени окисления +3 изменяется в ряду:

Pu ? Am >Np>U

Все эти металлы сплавляются друг с другом в широком интервале концентраций и проявляют способность образовывать интерметаллические соединения.

Наиболее сложной проблемой является отделение трансурановых элементов от облучаемого элемента и друг от друга.

Решение этой задачи основано на том, что для каждого элемента рассматриваемой группы характерна своя устойчивая степень окисления: для урана +6, для нептуния +5, для плутония +4, для америция +3. Наиболее эффективными являются ионообменные и экстракционные методы. Меньшее значение для целей разделения и выделения этих элементов имеют осадительные методы.

Практическое использование элементов рассматриваемой группы определяется их ядерно-физическими характеристиками, а не химическими свойствами. Многие изотопы рассматриваемых элементов способны к делению под действием нейтронов и используются в качестве ядерного топлива.

Остановимся подробнее на рассмотрении отдельных элементов этой группы.

10.9.2 НЕПТУНИЙ 93Np

93

Np

237

Нептуний

[Rn]

7s2

5f4

6d1

Первый трансурановый элемент нептуний 93Np открыт в 1940 г. Э. Мак - Миланом и П. Эйблсоном в лаборатории Г. Сиборга в Беркли (США) при облучении урана медленными нейтронами.

В настоящее время получено 11 изотопов нептуния с массовыми числами 231-241. Один из изотопов нептуния, , является родоначальником радиоактивного семейства 4n+1, обнаружен в природных минералах урана. Отношение /в урановой смоляной руде из Конго составляет около 1.8•10-12.

Основным источником получения нептуния в настоящее время служат ядерные реакции с участием изотопов урана, протекающие под действием нейтронов, дейтонов и б-частиц. Наиболее важны в этом отношении реакции, происходящие в ядерных реакторах, предназначенных для производства и энергетических реакторах на уране, обогащенном :

,

,

Скорость накопления нептуния в таких установках весьма высока и может составлять в реакторах для производства 0,1 % скорости образования плутония. Так как плутоний производится в очень больших количествах то, очевидно, что при этом образуются значительные количества .

Другие изотопы нептуния получают с помощью ускорителей частиц:

,

Нептуний - пятый член ряда актиноидов. Строение электронной оболочки атома нептуния отвечает схеме 5s2 5p65d10 5f4 6s26p6 6d17s2. При образовании химических соединений в реакциях принимают участие электроны 7s-, 6d- и 5f- уровней. Нептуний химически активен и сходен с ураном со степенями окисления от +3 до +7 (III-VII).

Нептуний серебристо-белый металл, ковкий, температура плавления 640 0С, легко растворяется в соляной кислоте. Чистый метал получают восстановлением NpF3 парами бария или лития при температуре около 1200 °C.

По своим химическим свойствам нептуний относится, как и уран к шестой группе. В своих соединениях нептуний проявляет степени окисления +3, + 4, +5, + 6, +7. В водных растворах нептуний может иметь такие же степени окисления.

Химия водных растворов нептуния исследована в основном с использованием миллиграммовых количеств из-за высокой массовой активности.

Разные ионы нептуния по-разному окрашивают растворы: Np3+ - в голубой или пурпурный цвет, Np4+ - в желто-зеленый, NpO2+- в голубовато-зеленый, NpO2+2 - в розовый или красный.

При отделении нептуния от продуктов деления из топливной смеси используется многообразие степеней окисления, проявляемых ураном, плутонием и нептунием. В зависимости от валентного состояния эти элементы ведут себя по- разному при соосаждении, комплексообразовании, экстракции растворителями и катионном и анионном обмене. Следовательно, при выделении любого из этих элементов возможно широкое применение разнообразных химических способов.

- прекрасный стартовый материал для пролучения - ценного топлива ядерных космических батарей и других деликатных устройств вроде стимулятора сердечной деятельности или искусственного сердца. Нептуний-237 материал способный к цепному ядерному делению. По опубликованным оценкам критическая масса Np237 - 90 кг (диапазон оценок 75-105 кг). Высокое значение критической массы (почти удвоенное по отношению к обогащенному урану-235) и высокая стоимость производства делают его непривлекательным для оружейного использования. Он обладает очень низким уровнем спонтанного деления, менее 0.05 делений/с-кг. Высокое значение критической массы (почти удвоенное по отношению к обогащенному урану-235) и высокая стоимость производства делают его непривлекательным для оружейного использования. Определенное количество Np-237 обычно образуется из захвата нейтронов U-235. Типичный энергетический реактор способен дать около 0.4 кг Np-237 на тонну горючего. Ядерные реакторы на быстрых нейтронах могут произвести значительно большее количество.

10.9.3 ПЛУТОНИЙ (94PU)

Плутоний был впервые химически выделен в 1940 г. в лаборатории Г. Сиборга как продукт, образовавшийся в результате облучения урана дейтронами:

Примечательно, что только после искусственного получения плутоний был обнаружен в природе: в ничтожно малых количествах 239Pu обычно содержится в урановых рудах как продукт радиоактивного превращения урана.

Это первый элемент, созданный в значительных количествах синтетическим путем, т. е. в результате ядерных превращений других элементов.

В настоящее время известно 16 изотопов плутония с массовыми числами 232-246. Все они получены искусственным путем. Изотопы с массовыми числами менее 239 образуются при облучении урана на циклотроне или при распаде ядер более тяжелых элементов.

(.....

Строение электронной оболочки атома плутония отвечает схеме 5f6 6s26p6 7s2.

По внешнему виду металлический плутоний сходен с ураном, и так же как уран обладает полиморфизмом. Температура плавления плутония 6390 С, температура кипения равна 3780 С.

Плутоний, также как уран и нептуний, активный металл, при нагревании на воздухе окисляется легче, чем уран, а мелкоизмельченный пирофорен, при 3000С самовозгорается. По своим химическим свойствам плутоний относится, как и уран к шестой группе.

В своих соединениях он проявляет степени окисления +3, + 4, +5, + 6, +7.

В водных растворах плутоний может иметь такие же степени окисления. Химия водных растворов плутония исследована в основном с использованием миллиграммовых масс из-за высокой массовой активности. Четырехвалентный плутоний очень склонен к образованию комплексных соединений с различными кислотами. Например, соляная и хлорная кислоты дают комплексные ионы PuCl и PuCl

Практическое использование плутония определяется его ядерно-физическими характеристиками. Изотопы плутония способны к делению под действием нейтронов медленных нейтронов и используются в качестве ядерного топлива. служит источником получения ядерного топлива - . Изотопные источники на основе использовались в космических летательных аппаратах для термостатирования замкнутых объектов с электронной аппаратурой, для жизнеобеспечения космических орбитальных станций и снабжения их электроэнергией.

Изотопы , испускающие г - кванты с малой энергией используют в качестве источников возбуждения в рентгенофлюоресцентном анализе.

используется для создания стимуляторов сердечной деятельности.

Работа с плутонием существенно затруднена его необычайной токсичностью, делающей плутоний одним из наиболее опасных ядов. ПДК для 239Pu в открытых водоемах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3·10?5 Бк/л.

Большинство изотопов плутония обладают высокой величиной плотности ионизации и малой длиной пробега частиц, поэтому его токсичность обусловлена не столько его химическими свойствами (вероятно, в этом отношении плутоний токсичен не более, чем другие тяжелые металлы), сколько ионизирующим действием на окружающие ткани организма. Плутоний относится к группе элементов с особо высокой радиотоксичностью. В организме плутоний производит большие необратимые изменения в скелете, печени, селезенке, почках, вызывает рак легких. Максимально допустимое содержание плутония в организме не должно превышать десятых долей микрограмма.

10.9.4 АМЕРИЦИЙ (95AM )

95

Am

243

Америций

[Rn]

7s2

5f7

Америций впервые синтезирован и идентифицирован в 1944 г. Г. Сиборгом с сотрудниками при облучении медленными нейтронами в результате реакции последовательного захвата двух нейтронов ядрами плутония:

Возможны и другие методы получения америция. Америций - металл серебристо-белого цвета, тягучий и ковкий. Больше всего он похож на металлы редкоземельного семейства. Америций медленно тускнеет в сухом воздухе при комнатной температуре. Имеет две аллотропные формы. Температура плавления - 1175 °С.

В своих соединениях америций проявляет степени окисления +2,+3, +4, +5, +6.

Трехвалентный америций наиболее распространен в водных растворах и его состояние очень сходно с остальными актиноидными и лантаноидными элементами.

Четырехвалентный америций известен только в твердом состоянии. Америций реагирует с кислородом образуя диоксид AmO2 и с водородом образуя гидрид AmH4.

У пятивалентного америция обнаружено одно очень интересное химическое свойство - способность к диспропорционированию. Это значит, что для химического взаимодействия в кислых растворах ему не нужны партнеры-реагенты. Окислительно-восстановительная реакция идет между ионами пятивалентного америция: один из них присоединяет два электрона, облагая данью двух соседей. В системе появляется ион америция (III) и два иона америция (VI). Причиной этого необычного явления считают аномальную разницу окислительно-восстановительных потенциалов пар Am (III) - Am (VI) и Am (III) - Am (V).

Наиболее распространенными методами получения америция в металлическом состоянии является восстановление фторида щелочью или щелочноземельными металлами или электролизом расплавов его солей.

Самый долгоживущий изотоп америция - 243Am, он живет 8 000 лет и используется пока для радиохимических исследований и накопления более отдаленных трансуранов, вплоть до фермия. Значительно многообразие применение самого первого изотопа америция - 241Am. период полураспада которого 433 года.

Этот изотоп, распадаясь, испускает альфа-частицы и мягкие (60 кэВ) гамма-лучи (энергия жестких гамма-квантов, испускаемых кобальтом-60 - несколько МэВ). В промышленности используются различные контрольно-измерительные и исследовательские приборы с америцием-241. В частности, такими приборами пользуются для непрерывного измерения толщины стальной (от 0.5 до 3 мм) и алюминиевой (до 50 мм) ленты, а также листового стекла. Аппаратуру с америцием-241 используют и для снятия электростатических зарядов в промышленности с пластмасс, синтетических пленок и бумаги. Он находится и внутри некоторых детекторов дыма (~0.26 микрограмма на детектор). Сейчас Am-241 получают в промышленном количестве при распаде Pu-241:

Так как обычно присутствует в только что выработанном оружейном плутонии, 241Am постепенно накапливается в веществе. В связи с этим, он играет важную роль в старении оружия. Свежеизготовленный оружейный плутоний содержит 0.5-1.0% Pu-241, реакторный плутоний имеет от 5-15% до 25% Pu-241. Через несколько десятилетий почти весь Pu-241 распадется в Am-241.

Энергетика альфа-распада 241Am и относительно короткое время жизни создают высокую удельную радиоактивность и тепловой выход. Большая часть альфа- и гамма-активности старого оружейного плутония обусловливается 241Am. Кроме того важной областью применения рассматриваемых элементов является изготовление на основе изотопных источников. Эти источники могут быть использованы для получения электрической энергии, теплоты и механической энергии. Изотопы , испускающие г - кванты с малой энергией используют в качестве источников возбуждения в рентгенофлюоресцентном анализе. имеет очень большое сечение деления и следовательно, малую критическую массу, что позволяет использовать его в качестве ядерного топлива в небольших реакторах, пригодных для космических исследований.

10.10 ТРАНСАМЕРИЦИЕВЫЕ АКТИНОИДЫ (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)

10.10.1 ОБЩИЕ СВОЙСТВА ТРАНСАМЕРИЦИЕВЫЕХ АКТИНОИДОВ

Трансамерициевые элементы 96Cm, 97Bк, 98Cf, 101Md, были синтезированы в лабораториях в Беркли ( США) в период с 1940 по 1950 г.г.

, где х= 1-5

()

99Es, 100Fm открыты в 1952 г. в результате анализа продуктов термоядерного взрыва. Элементы 102No, 103Lr открыты в результате осуществления ядерных реакций с использованием в качестве бомбардирующих частиц тяжелых ионов (бора, углерода, кислорода), ускоренных до больших энергий.

(Сиборг, Беркли,1958,);

( Флеров, Дубна , СССР);

( Гиорсо, Беркли,1961)

Особенностью изучения химии этих элементов является необходимость использования методов радиохимии. Это обусловлено невозможностью получения большинства указанных элементов в весомых количествах, а также их чрезвычайно высокой массовой активностью.

Все элементы от кюрия до фермия получены в виде металлов.

Для всех рассматриваемых элементов, за исключением 102, основной степенью окисления является +3. Известны также для этих элементов степени окисления +4 и +2. У этих элементов высокая склонность к комплексообразованию. Эти элементы способны образовывать металлоорганические соединения Ме (С5Н5)3.

Для отделения актиноидов друг от друга и от лантаноидов используются процессы экстракции и ионного обмена. Кроме экстракции для целей выделения и разделения рассматриваемых элементов применимы почти все известные варианты хроматографических методов.

Практическое применение тяжелых актиноидов так же как и легких, обусловлено их физико-химическими свойствами.

Так изотопы кюрия используются для приготовления изотопных источников тока. - являются удобным материалом для изготовления источников нейтронов с большой интенсивностью потока.

Изотопы - находят применение для изготовления б - источников.

могут найти применение в качестве ядерного топлива.

10.10.1 КЮРИЙ(96Cm)

96

Cm

247

Кюрий

Curium

[Rn]

7s2

5f7

6d

После завершения работ, связанных с плутонием, внимание исследователей лаборатории Г. Сиборга было обращено на синтез и идентификацию новых трансурановых элементов № 95 и № 96. В 1944 г., когда было установлено, что эти элементы являются аналогами лантаноидов и входят в особую группу называемую актиноидами, открытие состоялось. Первым, в 1944 г., был открыт кюрий в Беркли в 1944 г. американским учёными Г. Сиборгом, Р. Джеймсом и А. Гиорсо и Л. О. Морганом по ядерной реакции:

Pu(, n)Cm

Новый элемент был назван в честь П. Кюри и М. Склодовской-Кюри - основателей науки о радиоактивности. Разделение америция и кюрия было сопряжено с большими трудностями, так как химически они очень схожи. Трудность разделения отображена в первоначальных названиях элементов «пандемониум» и «делириум», что в переводе с латыни означает «ад» и «бред». Они были разделены методом ионного обмена с использованием ионообменной смолы дауэкс-50 и б-оксиизобутирата аммония в качестве элюента. Кюрий был выделен Л. В. Вернером и И. Перлманом в 1947 г. в виде гидроксида, полученного исходя из гидроксида америция, который подвергли облучению нейтронами.

В настоящее врем определенные изотопы кюрия производят в атомных реакторах. накопление атомов кюрия происходит путем длительного облучения нейтронами элементов-мишени плутония или урана. Когда кюрий накопится в достаточных количествах, его выделяют методами химической переработки, концентрируют и вырабатывают в основном оксид кюрия.

Известны изотопы кюрия с массовыми числами 238 - 250, из которых самый долгоживущий 247Cm (период полураспада T1/2=1,64·107 лет).

Кюрий имеет следующую электронную структуру атома

Кюрий - блестящий серебристый металл, tпл 1340 °C, рассчитанное значение плотности около 13 г/см3. Металлический кюрий обладает большей реакционной способностью, чем плутоний и америций и быстро корродирует в сухом воздухе. Его большая реакционная способность связана, веротно, с самрразогреваеием металла в результате радиоактивного распада. Наиболее типичная степень окисления кюрия, как и других тяжёлых актиноидов, +3; в частности, синтезированы Cm2O3, CmCl3 и др. Однако известны и устойчивые соединения К. со степенью окисления +4 (CmO2, CmF4). От других актиноидов кюрий можно отделить ионообменными методами.

Сильное выделение тепла в препаратах кюрия, обусловленное его радиоактивным распадом, даёт возможность использовать изотопы 242Cm, 244Cm и др. для создания малогабаритных источников электрического тока. 242Cm в виде окиси (плотность около 11,75 и период полураспада 162 дня) применяется для производства компактных и чрезвычайно мощных радиоизотопных источников энергии (энерговыделение около 1169 Вт/см?), а 1 грамм металлического кюрия выделяет около 120 Вт. Особенностью и удобством, а также причиной безопасности источников тепла на основе кюрия является тот факт, что кюрий -- практически чистый альфа-излучатель. Интегрированная энергия альфа - распада одного грамма кюрия за год составляет приблизительно 480 кВт·ч.

Важной областью применения кюрия является производство нейтронных источников высокой мощности для «поджигания» (запуска) специальных атомных реакторов.

В последние годы очень важное место занимает другой, более тяжелый изотоп кюрия -- кюрий-244 (период полураспада 18,1 года) и он также чистый альфа-излучатель (энерговыделение около 2,83 Вт/грамм). Кюрий-245 (период полураспада 3320 лет) очень перспективен для создания компактных атомных реакторов с сверхвысоким энерговыделением.

Кюрий металл крайне дорогой и пока что используется в самых важных областях ядерных технологий, тем не менее в США и России существуют так называемые кюриевые программы, основной задачей которых являются:

Максимальное увеличение количества кюрия в облученном топливе.

Максимальное сокращение сроков наработки кюрия.

Разработка рациональных технологий облучения топлива и разработка топливных композиций.

Снижение цен на кюрий.

Получение достаточных количеств кюрия способно решить проблему производства компактных космических реакторов, самолетов с ядерными двигателями.

10.10.2 БЕРКЛИЙ ( 97Bk)

97

Bk

247

Берклий

Berkelium

[Rn]

7s2

5f9

Получен в 1949 г. учеными Калифорнийского университета в г. Беркли (США) в радиационной лаборатории С. Томпсоном, Г. Сиборгом, А. Гиорсо при бомбардировке мишени из америция-241 ускоренными на 60-дюймовом циклотроне б-частицами:

Для химической идентификации нового элемента использовали хорошо отработанный к тому времени метод ионообменной хроматографии.

Берклий является аналогом тербия (65Tb), получившего название от небольшого селения Иттербю в Швеции. Поэтому он также был назван по имени городка Беркли, в котором были синтезированы многие актиноиды.

Известно всего 9 изотопов берклия, с массами от 243 до 251. Среди них есть и сравнительно долгоживущие, например 247Bk и 249Bk; прочие же « живут» лишь часы. Все они образуются в ядерных реакциях в совершенно ничтожных количествах. Лишь 249Bk (в-излучатель с периодом полураспада 314 дней) удается получить в заметных, количествах при облучении в реакторах урана, плутония, америция, а еще лучше кюрия. Способность его ядер к делению на тепловых нейтронах в несколько раз выше, чем у ядер 235U и 239Pu, обычно используемых в качестве делящихся материалов. Средняя энергия б-излучения 245Вк, 247Вк, 249Вк равна соответственно 7,45х10-3; 5,70; 7,94х10-5 МэВ/(Бк-с). Изотопы берклия с массовыми числами до 248 получают из соответствующих изотопов америция или кюрия по реакции (б, n) или (б, p, n). 249Вк образуется в ядерном реакторе при облучении нейтронами 238U или 239Pu. 250Вк получают облучением 249Вк по реакции (г, n).

Берклий -- серебристо-белый металл. Радиоактивен, наиболее устойчивый изотоп 247Bk (Т=1380 лет).

Установлено, что берклий очень реакционно-способен. В своих многочисленных соединениях он имеет степени окисления + 3 (преимущественно) и + 4. Существование четырехвалентного берклия позволяет отделять этот элемент от других актиноидов и лантаноидов (продуктов деления), которые либо не имеют такой валентной формы, либо труднее в нее переводятся. Взаимодействует с кислородом ( оксид и диоксид), галогенами и серой. Известны двойные соли и металлоорганические соединения берклия. Образует комплексные соединения с минеральными и органическими кислотами. Наиболее устойчивы соединения берклия в растворе при степени окисления +3. При рН, близких к щелочной среде, Bk3+ образует нерастворимый основной гидроксид. Оксиды, фториды, фосфаты и карбонаты берклия нерастворимы в воде. В четырехвалентном состоянии берклий является сильным окислителем. Берклий образует прочные комплексные соединения с поликарбоновыми кислотами, ЭДТА, и др.

В настоящее время область применения изотопов берклия ограничена использованием 249Вк для последующего получения изотопов калифорния.

При введении крысам нитрата 249Вк радионуклид распределяется между скелетом (40%) и печенью (18 %). Небольшие количества 249Вк определяются в мышцах (9 %), надпочечниках (7,3 %), коже (4,5 %), селезенке (1,3 %) и почках (1,1 %). Тб из костной ткани составляет 500--600 сут. Выведение из организма крыс происходит в основном с мочой 18,2 % и калом 10 %. Максимальные дозы в костной ткани, не влияющие на сокращение продолжительности жизни крыс, составляют 6,3 Гр ( в- излучение) при введении 37-108 кБк/кр массы тела крыс. В отдаленные сроки у крыс развиваются остеосаркомы.

10.10.3 КАЛИФОРНИЙ (98Cf)

98

Cf

251

Калифорний

Californium

[Rn]

7s2

5f10

Получен искусственно в 1950 группой Сиборга в Калифорнийском университете в Беркли.

Первые твёрдые соединения калифорния -- 249Cf2O3 и 249CfOCl получены в 1958 г. писали авторы, этим названием они хотели указать, что открыть новый элемент им было так же трудно, как век назад пионерам Америки достичь Калифорнии.

Калифорний получают восстановлением фторида калифорния CfF3 литием:

CfF3 + 3Li = Cf + 3LiF,

или оксида калифорния Cf2O3 кальцием:

Cf2O3 + 3Са = 2Cf + 3СаО.

От других актиноидов калифорний отделяют экстракционными и хроматографическими методами.

Калифорний чрезвычайно летучий металл. Существует в двух полиморфных модификациях. Ниже 600°C устойчива a-модификация с гексагональной решёткой (параметры а = 0,339 нм, с = 1,101 нм), выше 600°C -- b-модификация с кубической гранецентрированной решёткой. Температура плавления металла 900°C, температура кипения 1227°C.

По химическим свойствам калифорний подобен лантаноидам. Синтезированы галогениды калифорния -- CfHal3, оксигалогениды -- CfOHal. Для получения диоксида калифорния CfO2 оксид Cf2O3 окисляют при нагревании кислородом под давлением 10МПа. В растворах Cf4+ получают, действуя на соединения Cf3+ сильными окислителями. Синтезирован твёрдый дииодид калифорния CfI2. Из водных растворов Cf3+ восстанавливается до Cf2+ электрохимически.

Как мощный источник нейтронов в нейтронно-активационном анализе, лучевой терапии опухолей, производстве ядерного оружия (ядерные и термоядерные заряды малой мощности). 252Cf используется в экспериментах по изучению спонтанного деления ядер.

Радионуклид 252Cf высоко токсичен. ПДК в воде открытых водоемов 1,33·10-4 Бк/л

10.10.4 ЭЙНШТЕЙНИЙ (99Es)

99

Es

254

Ейнштейний

[Rn]

7s2

5f11

Эйнштейний -- трансурановый химический элемент с атомным номером 99, радиоактивный, серебристый металл.

Открыт в декабре 1952 года. Элемент назван в честь А. Эйнштейна.

Всего известно 19 изотопов и 3 изомера. Самый стабильный из изотопов 252Es имеет полураспад = 471,7 день

Кроме как промежуточное звено для синтеза более тяжелых элементов на данный момент он нигде не применяется.

В связи с полным отсутствием элемента в природе, а так же его малым периодом полураспада биологической роли он не несет никакой.

Es - радиоактивен, может вызвать лучевую болезнь.

10.10. 5 ФЕмРМИЙ (100Fm)

100

Fm

257

Фермий

Fermium

[Rn]

7s2

Фемрмий-- радиоактивный трансурановый химический элемент с порядковым номером 100, относящийся к группе актиноидов. Впервые фермий получен в конце 1952 года американцем А. Гиорсо и другими учеными Лос-Аламосской лаборатории в виде изотопа 255Fm с периодом полураспада Т1/2 = 20,1 ч, который содержался в пыли после первого термоядерного взрыва, произведенного США на атолле Эниветок 1 ноября 1952 года. Обнаруженный изотоп -- продукт последовательного захвата 17 нейтронов ядрами 238U и семи в?-распадов. Назван по имени Энрико Ферми

Рис. Энрико Ферми

В свободном виде должен проявлять свойства металла, похожего на уран и другие актиноиды.

Основные исследования свойств фермия выполнены с использованием 257Fm (T1/2 = 100,5 дня) и менее устойчивого радионуклида 255Fm (T1/2 = 20,07 часа). Наиболее устойчив Fm+3 (валентность III), но под действием сильных восстановителей в водных растворах получают Fm+2. Стандартный потенциал пары Fm+3/Fm+2 ?1,55 В, пары Fm+3/Fm0 ?1,98 В и пары Fm+2/Fm0 ?2,37 В.

Мишени из атомов Fm используются в ядерной физике для получения ядер более тяжелых элементов.

В связи с малым периодом полураспада всех известных изотопов фермий отсутствует в природе и не имеет никакой биологической роли. Радиотоксичен

10.10.6 МЕНДЕЛЕВИЙ 101Md

101

Md

258

Менделеевий

[Rn]

7s2

5f13

Менделевий -- химический элемент с атомным номером 101 в периодической системе, обозначается символом Md.

Первые данные о существовании нуклида менделеевия 256Md с периодом полураспада Т1/2 = 1,5 ч были получены в 1958 г. группой американских ученых Альфреда Гиорсо, Беруэлла Харви, Грегори Чоппина и Стенли Томпсона.

В настоящее время известно 14 изотопов с массовыми числами 247--252, 254--260, среди которых наиболее долгоживущие: 256Md (электронный захват и б-распад, Т1/2 = 75 мин), 257Md (электронный захват и б-распад, Т1/2 = 5 ч), 258Md (б-излучатель, Т1/2 = 56 суток), 260Md (Т1/2 = 32 суток). Радиус иона Md+ = 0,117 нм, Md3+ = 0,0934 нм.

Назван в честь Дмитрия Ивановича Менделеева, создателя периодической системы элементов. Применение пока не найдено.

В связи с малым периодом полураспада вещество нестабильно и его биологическая роль не определена.

102

No

255

Нобелий

[Rn]

7s2

5f

103

Lr

256

Лоуренсий

[Rn]

7s2

5f14

6d1

10.11 ТРАНСАКТИНОИДНЫЕ ЭЛЕМЕНТЫ (104Rf, 105Db, 106Sb, 107Bh, 108Hs, 109Mt, 110Ds, 111Rg, 112-118)

10.11.1 ОБЩИЕ СВОЙСТВА ТРАНСАКТИНОИДНЫХ ЭЛЕМЕНТОВ

Трансактиноидные элементы характеризуются заполнением 6d и 7s - уровней атома. К ним относятся элементы, начиная со 104 и заканчивая 118. В соответствии с актиноидной гипотезой последним из 5 f элементов должен быть элемент №103 лоуренсий (5f14 6d1 7s2 ).

Основным методом получения важнейших изотопов 104-106-го элементов является облучение актиноидов Pu, Am 96Cm, 97Bк, 98Cf ускоренными тяжелыми ионами углерода, кислорода и неона. Принципиально важным, с этой точки зрения, должно было оказаться открытие элемента №104 и изучение его свойств. Это позволило бы подтвердить или опровергнуть актиноидную гипотезу.

Основным методом получения важнейших изотопов 104-106-го элементов является облучение актиноидов Pu, Am 96Cm, 97Bк, 98Cf ускоренными тяжелыми ионами углерода, кислорода и неона. Принципиально важным, с этой точки зрения, должно было оказаться открытие элемента №104 и изучение его свойств. Это позволило бы подтвердить или опровергнуть актиноидную гипотезу. Элемент № 104 был синтезирован в 1964 году в Дубне группой Г. Н. Флерова, облучением 242Pu ядрами 22Ne

10.11.2 РЕЗЕРФОРДИЙ (104Rf до 1974 г. КУРЧАТОВИЙ)

104

Rf

257

Резерфордий

Rutherfordium

[Rn]

7s2

5f14

6d2

Элемент с порядковым Резерфордий . 104-й элемент был впервые синтезирован в Дубне в 1964 г. Его получила группа ученых Лаборатории ядерных реакций во главе с Г.Н. Флеровым.

Для синтеза элемента №104 в циклотроне Объединенного института ядерных исследований была выбрана реакция:

24294Pu + 2210Ne > 260104 + 410n.

Математически все очень просто, но полное слияние ядер плутония и неона с последующим распадом ядра 264104 на изотоп 260104 и четыре нейтрона происходит только в одном из нескольких миллиардов случаев. В ходе многочисленных экспериментов была определена оптимальная энергия бомбардирующих частиц - та, при которой возможно образование наибольшего числа атомов 104-элемента. Оказалось, что наиболее эффективен обстрел плутониевых мишеней ионами неона-22 с энергией около 115 МэВ. Но и в этих условиях за 6 часов облучения регистрировался всего один акт спонтанного деления. В заключительном эксперименте, проведенном летом 1964 г., было зарегистрировано около 150 ядер нового элемента. Эксперимент длился больше 1000 часов.

В настоящее время получены изотопы дубния с массовыми числами 257-261. Их периоды полураспада от 11 мин у Rf до 70 с у Rf.

Элемент №104 и идентифицирован чешским ученым Иво Зварой с помощью специальных экспрессных методов анализа.

В основу метода легли различия в летучести газообразных галогенидов элементов 111 и 1У групп периодической системы, разделяемых в потоке газа. Если элемент аналог гафния, то его хлорид будет более летучим, чем хлориды редкоземельных и актиноидных элементов. Таким образом, было показано, что резерфордий резко отличается по своим свойствам от предыдущих элементов.

После открытия дубния стало ясно, что он, не являясь актиноидом, ведет себя подобно лантаноидам. Эти элементы являются аналогами дубний-тантала, сиборгий- вольфрама и борий -рения.

Рис. Схема установки для экспрессного разделения короткоживущих изотопов 1 - мишень; 2 - пучок ускоренных ионов; 3 - газовый тракт; 4 - ловушка для твердых частиц; 5 детекторы

Все исследования свойств Rf и его соединений выполнены с использованием ультрамалых количеств его атомов. Установлено, что в степени окисления +4 он образует летучие при температурах 250--300 °C галогениды RfCl4 и RfBr4. При экстракционных процессах с участием сложных комплексных ионов поведение Rf значительно отличается от поведения ионов трехвалентных актиноидов и свидетельствует о существовании в этих системах иона Rf4+. Резерфордий -- первый трансактиноидный элемент, его предсказанные химические свойства близки к гафнию. Как было обнаружено в химическом отношении резерфордий ведет себя подобно гафнию и элементам 1У В группы; его электронная конфигурация 5f14 6d2 7s2 . Первоначально элемент был назван курчатовием, а в последствие резерфордием. В настоящее известно 16 изотопов резерфордия (а также 5 изомеров) с массовыми числами от 253 до 268 и периодом полураспада от долей микросекунд до 13 часов (265Rf). Их периоды полураспада от 11 мин у Rf до 70 с у Rf Как было обнаружено в химическом отношении резерфордий ведет себя подобно гафнию и элементам 1У В группы; его электронная конфигурация 5f14 6d2 7s2 . С открытием резерфордия стало ясно, что он, не являясь актиноидом, ведет себя подобно лантаноидам. Эти элементы являются аналогами дубний-тантала, сиборгий- вольфрама и борий -рения.

10.11.3 ДУБНИЙ (НИЛЬСБОРИЙ, ГАНИЙ)

105

Db

260

Дубний

Dubnium

[Rn]

7s2

5f14

6d3

Открытию элемента с атомным номером 105 параллельно шли два больших научных коллектива: Лаборатория ядерных реакций Объединенного института ядерных исследований в Дубне и Радиационная лаборатория имени Эрнста Лоуренса в Беркли, США. В Дубне элемент сумели получить раньше и назвали нильсборием в честь Нильса Бора. Американские физики, получившие элемент №105 двумя месяцами позже, предложили для него свое название - ганий, в честь Отто Гана. Под этим названием он и фигурирует в американской литературе

Br( О, 5n) Db .

Чуть позже были синтезированы элементы с атомными номерами 106-107.

106

Sg

263

Сиборгий

Seaborgium

[Rn]

7s2

5f14

6

Сечения активации этих реакций очень малы и резко уменьшаются с возрастанием атомного номера образующегося составного ядра. Более благоприятным с этой точки зрения является использование в качестве материала мишени ядер свинца и висмута, а качестве бомбардирующих частиц- ионов хрома и более тяжелых элементов. Использование такой комбинации позволило получить элементы с порядковыми номерами 106 и 107:

Период полураспада 7.10-3 с.

107

Bh

262

Борий

Bohrium

[Rn]

7s2

5f14

6d5

108

Hs

265

Нассий

Hassium

[Rn]

7s2

5f14

6d6

Element 108, Hassium Hassium (symbol Hs) was discovered almost simultaneously in 1984 at the Joint Institute for Nuclear Research at Dubna and Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung) in Darmstadt, Germany. The temporary name for this element offered by IUPAC was Unniloctium (symbol Uno). The name Hahnium (symbol Ha), after Otto Hahn proposed in August 1994. However, finally the final name Hassium was ratified by the IUPAC Council meeting in Geneva in August 1997 and internationally accepted in the honor of the state Hessen (capital Wiesbaden) - German state where Institute for Heavy Ion Research is located.

109

Mt

266

Мейтнерий

Meitnerium

[Rn]

7s2

5f14

6d7

The element 109, Meitnerium (symbol Mt) was synthesized in 1982 by Gottfried Munzenberg, Peter Armbruster with coworkers at the Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung) in Darmstadt, Germany and named after Lise Meitner, the Austrian physicist. at the beginning, the name Unnilennium (symbol Une) was recommended, but in 1997, however, the name Meitnerium was accepted.

110

Ds

271

Дармштадтий

Darmstadtium

[Rn]

7s1

5f14

6d9

The date and time of element 110, Darmstadtium (symbol Dm) discovery is November 9, 1994 in 16:39 at the Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung, GSI) in Darmstadt, Germany. The only one atom was produced at the beginning.

The discovered isotope mass number was 269 (269 times heavier than hydrogen atom). It was produced by fusion of nickel and lead atoms accelerated in UNILAC accelerator of GSI. Only one atom of Darmstadtium was prepared during very long time after fusion of billions of nickel and lead atoms. IUPAC confirmed the discovery in 2001. The trivial name proposed by IUPAC was Uununnilium (symbol Uun). Nonofficial names for this element are eka-platinum, because of the belonging to the platinum group and policium, because of the Germany police number 110.

111

Rg

284

Ретгений

Roentgenium

[Rn]

7s1

5f14

6d10

The element 111 Roentgenium (symbol Rg) had been discovered 8th December 1994. The original name was Unununium (symbol Uuu). In accordance with the procedures established by IUPAC for the naming of elements, the name Roentgenium and the symbol Rg has been proposed for this noble metal analogous to copper, silver and gold in honour of famous scientists, Wilhelm Conrad Rontgen, the X-rays discoverer. The priority of the first preparing was granted by IUPAC to Sigurd Hofmann, et al at Gesellschaft fur Schwerionenforschung, Darmstadt, Germany.

112

Uub

288

Унунбиум

Ununbium

[Rn]

7s2

5f14

6d10

The element 112, Ununbium (symbol Uub), also known as eka-mercury was synthesized on 9th February 1996 at 22:37 at SHIP, Gesellschaft fur Schwerionenforschung in Darmstadt, Germany. The name Ununbium is a systematic IUPAC name for this element, which should be changed sooner or latter. In the first experiment only two nuclei of Ununbium-277 were synthesized by bombarding of the lead target by accelerated in a heavy ion accelerator zinc ions.

Subsequntly, Ununbium was synthesized in Joint Institute for Nuclear Research, Dubna, Russia. In 2006, in Dubna, another isotope Ununbium-282 was synthesized via series of б-decays.

113

Uut

193

Унунтриум

Ununtrium

[Rn]

7s2

5f14

6d10

7p1

The synthesis of chemical elements 113, Ununtrium and element 115, Ununpentium were reported on February 2004 by scientist from Flerov Laboratory of Joint Institute for Nuclear Research (Dubna) and Lawrence Livermote National Laboratory (Livermore, California). Japanese scientist from RIKEN (Japan) carried out another pathway for Ununtrium synthesis.

The name Ununtrium (symbol Uut)is a temporary IUPAC systematic chemical element name. This name will be changes in future. Because Japanese scientists were carried out some research of this element, they proposed names Japonium (symbol Jp) and Rikenium (symbol Rk).

114

Uuq

298

Унунквадиум

Ununquadium

[Rn]

7s2

5f14

6d10

7p2

The element 114, Ununquadium, Uuq, was discovered and reported December 1998 - January 1999 by scientists from the Joint Institute for Nuclear Research, Dubna, Russia with materials from scientists at the Lawrence Livermore National Laboratory, USA. In 2004 Ununquadium was synthesized by another pathway the Joint Institute for Nuclear Research, Dubna, Russia. The name Ununquadium (symbol Uuq) is a temporary IUPAC systematic chemical element name for element 114. This name will be changes in future. Another temporary name for this element is eka-lead, due to predicted similarities between Ununquadium and Lead.

Отправным моментом при получении еще более тяжелых элементов является гипотеза о существовании островов стабильности, предложенная еще в 1925 году немецким ученым Р. Свинне. Сущность этой гипотезы заключается в том, что элементы, ядра которых содержат магическое число нейтронов и протонов, соответствующее заполненным нейтронным или протонным оболочкам, должны обладать повышенной устойчивостью к альфа - распаду и спонтанному делению. Эта гипотеза инициировала многочисленные теоретические и экспериментальные исследования.

Cогласно расчетам теоретиков остров стабильности ожидается, в районе 114 элемента (магические числа Z=114 и N=184).

Все эти работы в широких масштабах проводились и проводятся в России (Дубна) и США (Беркли). Синтез дальнейших элементов осуществлялся путем бомбардировки урана 238, кюрия-248, эйнштейния-254 ядрами кальция-48. Синтез 114-го элемента был осуществлен в 1999 году в Дубне путем слияния ядер кальция-48 и плутония-244.

244Pu + 48Ca 288114 + 4 n

Новое, сверхтяжелое ядро охлаждается, испуская 3-4 нейтрона, а затем распадается путем испускания альфа-частиц до 110 элемента.

115

Uup

299

Ununpentium

Унунпентиум

[Rn]

7s2

5f14

6d10

7p3

Экависмут

The element 115, Ununpentium, Uup was synthesized in summer 2003 at the U400 cyclotron with the Dubna gas-filled recoil separator, at the Flerov Laboratory of Joint Institute for Nuclear Research, Dubna, Russia (Yu. Ts. Oganessian et al.) with subsequent publishing only in February 2004.

The name Ununpentium (symbol Uup) is a temporary IUPAC systematic chemical element name for element 115. This name will be changes in future. Another temporary name for this element is eka-bismuth.

116

Uuh

302

Унунгексий

Ununhexium

[Rn]

7s2

5f14

6d10

7p4

The element 116, Ununhexium, Uuh was synthesized in 2000, at the Flerov Laboratory of Joint Institute for Nuclear Research, Dubna, Russia (Yu. Ts. Oganessian et al.) with subsequent publishing only in February 2004.

The name Ununhexium (symbol Uuh) is a temporary IUPAC systematic chemical element name for element 116. This name will be changes in future. Another name used for the element 116 is eka-polonium. Для синтеза 116 элемента была проведена реакция слияния Cm-248 с Ca-48. В 2000 году три раза было зарегистрировано образование и распад 116-го элемента. Затем примерно через 0,05 с ядро элемента 116 распадается до 114 элемента и дальше следует цепочка из альфа-распадов до 110 элемента, который спонтанно распадается.

117

Uus

310

Унунсептий

Ununseptium

[Rn]

7s2

5f14

6d10

7p5

The element 117, Ununseptium, Uus has not been discovered yet. Currently this scheme of synthesis of the element 117 is under development at the Joint Institute for Nuclear Research,

The name Ununseptium (symbol Uus) is a temporary IUPAC systematic chemical element name for element 117. Another name used for the element 117 is eka-astatine.

Ununseptium Neighbours

118

Uuo

314

Ununoctium

[Rn]

7s2

5f14

6d10

7p6

First synthesis of the element 118, Ununoctium, Uuo, was published in 1999 by Lawrence Berkeley National Laboratory in Calif, but further analysis of this results reveals some fraud in their studies. The first proven synthesis of Ununoctium was carried out at the Flerov Laboratory at the Joint Institute for Nuclear Research in Russia and the Lawrence Livermore National Laboratory in the USA. Only one atom in 2002 and two atoms of Ununoctium-294 in 2005 were synthesized, but results were published only on October 2006 (Yu. Ts. Oganessian, "Synthesis and decay properties of superheavy elements", Pure Appl. Chem., 2006, 78, 889-904), (Yu. Ts. Oganessian et al., "Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions", Phys. Rev. C, 2006, 74, 044602). The synthesis of Ununoctinum was verified by the analysis of independently created element 116, Ununhexium, which displays the same decay pattern as a decay products of Ununoctinum.

The name Ununoctium (symbol Uuo) is a temporary IUPAC systematic chemical element name for element 118. Another name used for the element 118 is eka-radon

Периоды полураспада синтезируемых спонтанно распадающихся новых элементов составляли несколько микросекунд. В основе методов химической идентификации при синтезе и поиске в природе сверхтяжелых элементов должно лежать прогнозирование химических свойств на основании ожидаемого их положения в периодической системе Менделеева. Например, предполагается, что элементы с порядковыми номерами 112-118 должны быть относительно более летучими, чем элементы с порядковыми номерами 80-86 от ртути до радона. Поэтому для отделения элементов 112-118 от актиноидов и поиска их среди продуктов ядерных реакций целесообразно использовать метод возгонки.


Подобные документы

  • Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Методики анализа, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Активационный анализ. Радиометрическое титрование.

    реферат [18,4 K], добавлен 01.06.2008

  • Радиоактивный анализ. Типы радиоактивного распада и радиоактивного излучения. Методики анализа, основанные на измерении радиоактивного излучения. Активационный анализ. Метод изотропного разбавления. Радиометрическое титрование.

    реферат [24,7 K], добавлен 05.06.2008

  • История открытия нобелия. Методы получения нового элемента. Химические свойства актиноидов. Помехи и трудности, неизбежные при определении дочерних продуктов альфа-распада ядер 102-го элемента. Закономерности ядерных реакций с участием тяжелых ионов.

    реферат [29,2 K], добавлен 18.01.2010

  • История развития микроволновой химии. Разработка специализированных микроволновых печей, предназначенных для осуществления химических реакций. Взаимодействие микроволнового излучения с веществами, его использование для проведения химических анализов.

    курсовая работа [410,0 K], добавлен 13.11.2011

  • Понятие и основные разновидности излучений, их признаки и свойства. Взаимодействие бета-излучения с веществом: ионизационные, радиационные, поляризационные потери, упругое рассеяние. Отличительные особенности и отличительные свойства бета-детектирования.

    курсовая работа [318,5 K], добавлен 28.02.2015

  • Исследование динамики полимерных цепей в растворе, которая является чувствительным тестом внутримакромолекулярного структурообразования и химических превращений с участием макромолекул, а также фактором, влияющим на протекание реакций в цепях полимера.

    статья [259,7 K], добавлен 18.03.2010

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Естественные и искусственные радиоактивные ряды. Виды радиоактивного распада. Основные радиоактивные ряды, наблюдающиеся в природе. Характеристика рядов тория, нептуния, радия, актиния. Радиоактивные превращения ядер. Последовательные цепочки нуклидов.

    презентация [938,7 K], добавлен 30.05.2015

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Особенности полимераналогичных превращений, их реакционные способности. Специфика полимераналогичных реакций. Эффекты, обусловленные структурой макромолекул. Бутадиен-стирольные каучуки, рассмотрение их химических свойств и полимераналогичных превращений.

    курсовая работа [1,6 M], добавлен 17.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.