Теория управления. Принципы системного анализа

Основные положения теории управления. Структура моделирования происшествий в техносфере. Модели основных функций организационно-технического управления. Понятие и основные принципы системного анализа. Программно-целевой подход к решению системных задач.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид анализ книги
Язык русский
Дата добавления 18.01.2011
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Достоинством метода Делфи является использование обратной связи в ходе опроса, что значительно повышает объективность экспертных оценок. Однако данный метод требует значительного времени на реализацию всей многоэтапной процедуры

Метод Делфи показал на практике высокую эффективность.

В 60-е годы область практического применения метода Дельфи значительно расширилась, однако присущие ему ограничения привели к возникновению других методов, использующих экспертные оценки. Среди этих методов особого внимания заслуживают методы QUEST, SEER, PATTERN.

Метод QUEST(Qualitative Utility Estimates for Science and Technology,что означает «количественные оценки полезности науки и техники») был разработан для целей повышения эффективности решений по распределению ресурсов, выделяемых на исследования и разработки. В основу метода положена идея распределения ресурсов на основе учета возможного вклада (определяемого методом экспертной оценки) различных отраслей и научных направлений в решение определенного круга задач. Особенностями применения метода QUEST являются: привлечение широкого круга высококвалифицированных специалистов в различных областях науки и техники, а также представление экспертам разнообразной достоверной и релевантной информации.

Метод SEER (System for Event Evaluation and Review) - система оценок и обзора событий. В этом методе предусмотрено всего два тура оценки. В каждом туре привлекается различный состав экспертов. Эксперты первого тура - наиболее квалифицированные специалисты из органов, принимающих решения, и специалисты в области естественных и технических наук. Эксперт каждого тура не возвращается к рассмотрению своих ответов, за исключением тех случаев, когда его ответ выпадает из некоторого интервала, в котором находится большинство оценок (например, интервала, в котором находится 90% всех оценок).

6.6 Методы типа дерева целей

Идея метода дерева целей впервые была предложена Черчменом в связи с проблемами принятия решений в промышленности. Термин «дерево цепей» подразумевает использование иерархической структуры, полученной путем разделения общей цели на подцели, а их, в свою очередь, на более детальные составляющие - новые подцели, функции и т. д. Как правило, этот термин используется для структур, имеющих отношение строгого древесного порядка, но метод дерева целей используется иногда и применительно к «слабым» иерархиям, в которых одна и та же вершина нижележащего уровня может быть одновременно подчинена двум или нескольким вершинам вышележащего уровня.

Древовидные иерархические структуры используются и при исследовании и совершенствовании организационных структур. Не всегда разрабатываемое даже для анализа целей дерево может быть представлено в терминах целей. Иногда, например, при анализе целей научных исследований удобнее говорить о дереве направлений прогнозирования. В. М. Глушковым, например, был предложен и в настоящее время широко используется термин «прогнозный граф». При использовании этого понятия появляется возможность более точно определить понятие дерева как связного ориентированного графа, не содержащего петель, каждая пара вершин которого соединяется единственной цепью.

Разновидностью методов дерева целей и Дельфи является метод PATTERN (Planni Assistance Through Technical Evaluation of Relevance Numbers, что означает «помощь планированию посредством относительных показателей технической оценки»). Метод РАТГЕRN был разработан для повышения эффективности процессов принятия решений в области долгосрочной научно-технической ориентации крупной промышленной фирмы.

Сущность метода РАТТЕRN заключается в следующем. Исходя из сформулированных (на основе всестороннего анализа перспектив социально-экономического и научно-технического развития) целей потребителей продукции фирмы на прогнозируемый период осуществляется развертывание дерева целей. Для каждого уровня дерева целей вводится ряд критериев. С помощью экспертной оценки определяются веса критериев и коэффициенты значимости, характеризующие важность вклада целей в обеспечение критериев. Значимость некоторой цели определяется коэффициентом связи, представляющим сумму произведений весов критериев на соответствующие коэффициенты значимости.

Общий коэффициент связи некоторой цели (с точки зрения достижения цели высшего уровня) определяется путем перемножения соответствующих коэффициентов связи в направлении вершины дерева.

6.7 Морфологические методы

Основная идея морфологических методов - систематически находить все «мыслимые» варианты решения проблемы или реализации системы путем комбинирования выделенных элементов или их признаков. Идеи морфологического образа мышления восходят к Аристотелю, Платону, к известной средневековой модели механизации мышления Р. Луллия. В систематизированном виде морфологический подход был разработан и применен впервые швейцарским астрономом Ф. Цвикки и долгое время был известен как метод Цвикки.

Цвикки предложил три метода морфологического исследования. Первый метод - метод систематического покрытия водя (МСПП), основанный на выделении так называемых опорных пунктов знания в любой исследуемой области и использовании для заполнения поля некоторых сформулированных принципов мышления. Второй -- метод отрицания и конструирования (МОК), базирующийся, на идее Цвикки, заключающейся в том, что на пути конструктивного прогресса стоят догмы и компромиссные ограничения, которые есть смысл отрицать, и, следовательно, сформулировав некоторые предложения, полезно заменить их затем на противоположные и использовать при проведении анализа. Третий - метод морфологического ящика (ММЯ), нашедший наиболее широкое распространение. Идея ММЯ состоит в определении всех «мыслимых» параметров, от которых может зависеть решение проблемы, и представлении их в виде матриц-строк, а затем в определении в этом морфологическом матрице-ящике всех возможных сочетаний параметров по одному из каждой строки. Полученные таким образом варианты могут затем подвергаться оценке и анализу с целью выбора наилучшего. Морфологический ящик может быть не только двумерным. Например, А. Холл использовал для исследования структуры систем трехмерный ящик.

Морфологические ящики Цвикки нашли широкое применение для анализа и разработки прогноза в технике. Для организационных же систем, систем управления такой ящик, который, по-видимому, был бы многомерным, практически невозможно построить. Поэтому, используя идею морфологического подхода для моделирования организационных систем, разрабатывают языки моделирования или языки проектирования, которые применяют для порождения возможных ситуаций в системе, возможных вариантов решения и часто - как вспомогательное средство формирования нижних уровней иерархической структуры как при моделировании структуры целей, так и при моделировании организационных структур. Примерами таких языков служат: системно-структурные языки (язык функций и видов структуры, номинально-структурный язык), язык ситуационного управления, языки структурно-лингвистического моделирования.

Литература:

1. Ильина Н.В., Лапшин Д.Д., Федянин В.И. Системный анализ и моделирование процессов в техносфере: Учеб. пособие. Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. 206 с.

2. Попов Г.В. Выбор решений и безопасность: Учеб. пособие / Иван. гос. энерг. ун-т. - Иваново. 2003. - 92 с.

Лекция 7. Теория управления

7.1 Основные положения теории управления

В теории управления принято считать, что системы с управлением создаются для достижения конкретных целей, которые определяются в рамках других наук, занимающихся исследованием конкретных систем. В зависимости от природы (люди или технические устройства) принято выделять три типа систем с управлением:

организационные (социальные) системы управления;

технические системы управления;

организационно-технические (комплексные) системы управления.

Рассмотрим основные положения по управлению в организационно-технических системах, опираясь на базовые понятия.

Общая структурная схема системы с управлением может быть представлена в виде, показанном на рис. 1.

Здесь S l - объект управления, S 2 - управляющая система, N - информация о состоянии внешней среды (внешние воздействия на объект управления), N' - информация о состоянии внешней среды, имеющаяся в управляющей системе, X - командная информация, Y - информация о состоянии объекта управления, Y' - информация о состоянии объекта управления, имеющаяся в управляющей системе.

Рис. 1. Общая структурная схема системы с управлением

Управляющая система реализует задачи целеполагания, стабилизации, выполнения программы, слежения или оптимизации и тем самым обеспечивает либо удержание выходных характеристик системы при изменениях внешней среды в требуемых пределах, либо выполнение системой действий по изменению значений ее характеристик или характеристик внешней среды.

Объект управления является исполнительным инструментом, реализующим основную функцию системы.

Система связи, являясь частью системы управления, обеспечивает обмен управляющей информацией между управляющей системой и объектом управления.

Задачами теории управления при таком рассмотрении являются:

? синтез структуры и параметров объекта управления, соответствующих цели (закону функционирования) создаваемой системы с управлением;

? синтез структуры и параметров управляющей системы, т.е. построение структуры управления с учетом ограничений по затратам различного вида (численность управленческого персонала и др.); определение мест размещения центров обработки информации; определение массивов информации, подлежащих передаче, хранению и обработке;

? синтез структуры и параметров системы связи.

Единых методов решения перечисленных задач для всех типов систем на настоящее время не существует. Однако для всех типов систем с управлением признается существование ряда аксиом и принципов управления, знание которых позволяет квалифицированно решать задачи управления.

7.2 Аксиомы теории управления

Для управления необходимо выполнение ряда естественных условий, которые сформулируем в виде аксиом.

Аксиома 1. Наличие наблюдаемости, объекта управления. В теории управления ОУ считается наблюдаемым в состоянии z(t) на множестве моментов времени Т, при входном воздействии x(t) и отсутствии возмущений, если уравнение наблюдения динамической системы, представленное в виде

где y*(t) - некоторая реализация выходного процесса, доступная для регистрации, имеет единственное решение

Если это утверждение справедливо для любого , то объект считается полностью наблюдаемым.

Это выражение означает, что определение любого из состояний ОУ (т.е. его наблюдаемость) реализуется только в том случае, если по результатам измерения выходных переменных y*(t) при известных значениях входных переменных x(t) может быть получена оценка z*(/) любой из переменных состояния z(t).

Такая задача в теории систем известна как задача наблюдения. В организационно-технических системах управления эта задача реализуется функцией контроля текущего состояния ОУ и воздействий внешней среды. Без этой информации управление или невозможно, или неэффективно.

Аксиома 2. Наличие управляемости - способности ОУ переходить в пространстве состояний Z из текущего состояния в требуемое под воздействиями управляющей системы. Под этим можно понимать перемещение в физическом пространстве, изменение скорости и направления движения в пространстве состояний, изменение структуры или свойств ОУ. Если состояние ОУ не меняется, то понятие управления теряет смысл.

Аксиома 3. Наличие цели управления. Под целью управления понимают набор значений количественных или качественных характеристик, определяющих требуемое состояние ОУ.

Если цель неизвестна, управление не имеет смысла, а изменение состояний превращается в бесцельное блуждание. Цель отображается точкой, в которую надо перевести систему из существующего состояния или траекторией перевода ОУ в требуемое состояние в виде, например, аддитивной свертки

с ограничениями типа

,

где - i характеристика;

- важность (вес) i-й характеристики;

- расход ресурсов на поддержание i-й характеристики в требуемом состоянии;

с - общее количество ресурсов

Аксиома 4. Свобода выбора - возможность выбора управляющих воздействий (решений) из некоторого множества допустимых альтернатив. Чем меньше это множество, тем менее эффективно управление, так как в условиях ограничений оптимальные решения часто остаются за пределами области адекватности. Если имеется единственная альтернатива, то управление не требуется. Если решения не влияют на изменение состояния ОУ, то управления не существует.

Аксиома 5. Наличие критерия эффективности управления. Обобщенным критерием эффективности управления считается степень достижения цели функционирования системы.

Кроме степени достижения цели качество управления можно оценивать по частным критериям: степени соответствия управляющих воздействий требуемым состояниям ОУ, качеству принимаемых решений, точности управления. Для оценки систем управления военного назначения вводятся требования к управлению по показателям устойчивости, непрерывности (длительности цикла управления), оперативности и скрытности.

Аксиома 6. Наличие ресурсов (материальных, финансовых, трудовых и т.д.), обеспечивающих реализацию принятых решений. Отсутствие ресурсов равносильно отсутствию свободы выбора. Управление без ресурсов невозможно

7.3 Модели основных функций организационно-технического управления

Управление заключается в преобразовании информации о состоянии объекта управления в командную информацию. Информация как любой объект обладает:

содержанием;

формой;

пространственным расположением;

временным расположением.

При таком рассмотрении управление может заключаться в преобразовании содержания (смысла) информации о состоянии объекта управления, в результате которого получают новую информацию; преобразовании формы, пространственного или временного расположения информации.

Проведем классификацию составных частей процесса управления с учетом того, что существует два принципа классификации: принцип разбиения и принцип покрытия.

Принцип разбиения состоит в том, что все исследуемое множество М разбивается на непересекающиеся подмножества Мх2, ... , Мп, называемые классами эквивалентности, так, что

и .

Принцип покрытия заключается в таком задании подмножеств ,что имеется хотя бы одна пара множеств и , в которой

, но

Подмножества Мi в этом случае называются классами толерантности.

Классифицировать функции управления на основе принципа разбиения нецелесообразно, так как они связаны между собой и выполнение одной из них почти всегда ведет к одновременному выполнению других.

Поэтому, используя принцип покрытия, будем рассматривать процесс управления с учетом того, что он содержит множество функций преобразования информации, включающее три известных подмножества функций:

- подмножество функций, связанных с обменом информацией между ЛПР (передача сигналов оповещения, текстовой и графической информации, телефонные переговоры), и функция обмена данными;

- подмножество рутинных функций управления (учет, хранение, поиск, отображение, обновление, редактирование, тиражирование текста и графики, разграничение доступа к информации)

- подмножество функций преобразования содержания и формы представления информации (расчеты, решение логических задач для анализа состояния ОУ, при подготовке предложений для принятия решений, при разработке планирующих и распорядительных документов).

При этом процесс управления включает в себя функции всех подмножеств, но основным является подмножество {fc}, так как преобразования содержания обеспечивают порождение новой информации - решений по управлению.

7.4 Описание функций управления

Управление в организационно-технических системах можно представить как последовательность функций, составляющих технологический цикл управления.

Под функцией управления понимают устойчивую упорядоченную совокупность операций, основанную на разделении труда в управляющей системе.

Основоположником функционального подхода в управлении считается А. Файоль. Он выделил пять функций управления: предвидение, организация, распорядительская деятельность, координация (согласование) и контроль. Одновременно А. Файоль разделил все функции на шесть групп: производство, финансы, охрана, учет, администрирование, техника безопасности. В настоящее время к основным функциям управления относят:

? сбор данных;

? формирование сообщения;

? передачу данных по каналам связи;

? учет;

? контроль;

? анализ;

? прогнозирование;

? планирование;

? оперативное управление;

? организацию и координацию;

? доведение решений.

Для учета человеческого фактора в отдельную группу выделяют функции стимулирование и мотивация.

Рассмотрим определения и взаимосвязь основных функций в форме функциональной модели цикла управления (рис. 2).

Рис. 2 Функциональная модель цикла управления

Сбор данных - функция измерения характеристик у(, выполняемая в объекте управления вручную или автоматически. Модели процессов измерения изучаются в метрологии.

Формирование сообщения (запроса) - преобразование информации к виду, пригодному для передачи по каналам связи в управляющую систему и/или обработки в автоматизированном режиме. Модели функций формирования сообщений рассматриваются в теории информации, теории баз данных.

Передача данных по каналам связи - осуществляется разными способами, в том числе с использованием средств автоматизации. Главными требованиями к передаче данных являются: своевременность, достоверность и безопасность обмена информацией. Модели функций передачи данных рассматриваются в теории информации.

Учет - система функций, обеспечивающих хранение информации. Включает ввод-вывод, регистрацию, преобразование формы, поиск, отображение, тиражирование, классификацию, статистическую обработку, выборку, получение агрегированных данных, обеспечение конфиденциальности и целостности информации. Модели функций учета изучаются в теории баз данных.

Контроль - система функций, обеспечивающих определение состояния ОУ (измерение, сбор, уточнение данных об объекте управления) и оценку степени отклонения текущего состояния от требуемого по заданным критериям эффективности (оценку соответствия состояния системы требуемому).

С английского языка control переводится как управление и часто термин «контроль» используется вместо термина «управление». Это объясняется тем, что все функции управления включают элементы контроля. Мы будем выделять эту функцию, так как для ее автоматизации требуется формальная постановка задач наблюдения, классификации и идентификации состояния ОУ.

В зависимости от объекта контроля в эту функцию включают, например, измерение и оценку достоверности, точности, объема, своевременности представления данных, прохождения и исполнения документов; решение задач информационной безопасности.

Различают три вида контроля: предварительный, текущий и заключительный.

Предварительный, контроль проводится до начала цикла управления для оценки ресурсов ОУ и внешних воздействий.

Текущий, или оперативный, контроль осуществляется на продолжении всего цикла управления в целях обнаружения отклонений от требуемого состояния.

Заключительный контроль предназначен для оценки степени достижения цели в конце цикла управления.

Функция анализа в общем случае зависит от его цели. Мы будем понимать под этой функцией средство, обеспечивающее объяснение причин отклонений состояния системы от требуемого и обоснование решения на переход к оперативному управлению или планированию. Например, пусть объект управления характеризуется параметром , который изменяется в пределах . Если в результате анализа выяснено, что , где - допустимое отклонение, то в цикле управления осуществляется переход к оперативному управлению. Если , то осуществляется переход к функции планирования. Анализ часто в отдельную функцию не выделяется, а рассматривается совместно с контролем как составная часть других функций управления.

Функция прогнозирования - это средство снятия неопределенности относительно возможной структуры, свойств или закона функционирования системы в будущем. Типичными целями прогнозирования могут служить:

? замедление процесса «старения» принимаемых решений и предупреждение неблагоприятных ситуаций, в которых может оказаться организационно-техническая система. Решение по управлению, основанное на правильном прогнозе, не потребуется изменять в ближайшем будущем, т.е. один вопрос не потребуется решать дважды;

? повышение производительности системы с управлением, адаптация к изменяющимся условиям (предсказание ветвлений в суперскалярных микропроцессорах ЭВМ, предсказание будущих значений сигнала в системах связи).

Во всех случаях прогноз - это научно обоснованное суждение о возможных состояниях системы в будущем и/или об альтернативных путях и сроках достижения целевого состояния.

Прогноз позволяет получить совокупность возможных вариантов развития системы. Однако реализованные варианты зависят не от прогноза, а всегда определяются конкретными решениями, принимаемыми в системе управления, и имеющимися ресурсами. Так, оптимистический прогноз может не состояться, если ЛПР не предпринимает мер по его реализации. В свою очередь, правильные решения могут смягчить последствия пессимистического прогноза.

Прогнозы могут быть разделены на группы по периодам упреждения и по методам прогнозирования.

По периодам упреждения - промежутку времени, на который рассчитан прогноз, различают оперативные (текущие), кратко-, средне- и долгосрочные прогнозы. Оперативный прогноз, как правило, рассчитан на период времени, в течение которого объект управления существенно не изменяется, краткосрочный - на перспективу количественных изменений. Среднесрочный прогноз охватывает период времени, когда количественные изменения преобладают над качественными, долгосрочный - перспективу качественных изменений системы.

Функция планирования состоит в последовательном снятии неопределенности относительно требуемой структуры, свойств, закона функционирования системы или внешней среды. Включает задачу принятия решений по целеполаганию (ЗПРЦ) и задачу принятия решения по действиям (ЗПРД) - совокупность процедур по определению требуемого (целевого, оптимального) состояния системы и действий по достижению этого состояния, объединенных в единый процесс. Осуществляется при изменении условий функционирования ОУ: целей планирования, воздействий внешней среды, препятствующих оперативному управлению, и др.

В терминологии менеджмента ЗПРЦ называют стратегическим или перспективным планированием, а ЗПРД - тактическим или текущим планированием. На стадии стратегического планирования рассматривается необходимость и возможность изменения структуры, свойств или закона функционирования системы.

Тактическое планирование заключается в принятии решения по выбору траектории перевода системы в новое состояние. При этом определяются действия ОУ, порядок использования ресурсов, решается задача оптимизации с учетом предполагаемых воздействий внешней среды. Детально прорабатываются средства и способы достижения целей, использования ресурсов, необходимые процедуры и технология. Характеристики системы считаются заданными и учитываются как ограничения. Точную границу между стратегическим и тактическим планированием провести трудно. Обычно стратегическое планирование охватывает в несколько раз больший промежуток времени, чем тактическое; оно имеет гораздо более отдаленные последствия, шире влияет на функционирование управляемой системы в целом и использует более мощные ресурсы. Оперативное управление обеспечивает функционирование системы в рамках действующего плана. Заключается в решении задач стабилизации, слежения или выполнения программы управления. Иногда в эту функцию включают задачу оптимизации. Планирование и оперативное управление являются задачами содержательной обработки информации.

Математические модели функций содержательной обработки информации разрабатываются с использованием теории принятия решений. Решения, принятые при планировании или оперативном управлении, учитываются в блоке учета и доводятся до объекта управления. После этого начинается новый цикл управления, в котором текущее состояние объекта управления сравнивается с требуемым, и в зависимости от величины отклонений управляемых характеристик ,. от допустимых отклонений yiuon осуществляется переход к оперативному управлению или планированию.

Функция организации заключается в установлении постоянных и временных связей между всеми элементами системы, в определении порядка и условий их функционирования, в объединении компонентов и ресурсов системы таким образом, чтобы обеспечить эффективное достижение намеченных целей.

Функция организации выполняет:

? группировку функциональных элементов и ресурсов в организационные структуры;

? распределение степени ответственности ЛПР в иерархии подсистем управления.

Функция координации - это согласование действий подсистем в соответствии с целями системы с управлением и поддержание этого согласования на протяжении цикла управления. Наличие нескольких ОУ и подсистем управления приводит к противоречию между их частными целями. Это, в свою очередь, приводит к разобщенности действий. Устранение этих противоречий - основная задача координации. Функцию координации иногда рассматривают совместно с организацией в рамках задач оперативного управления или планирования.

Модели координации и организации разрабатываются в общей теории систем, в теории принятия решений, на основе теории расписаний, в частности, с использованием методов сетевого планирования и управления.

Литература:

1. Ильина Н.В., Лапшин Д.Д., Федянин В.И. Системный анализ и моделирование процессов в техносфере: Учеб. пособие. Ч. 2. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008.

Лекция 8. Понятие и классификация моделей

8.1 Понятие модели, моделирования

Первоначальное определение модели - некоторое вспомогательное средство, который в определенной ситуации заменяет другой объект. Вначале понятие «модель» относилось только к материальным объектам, как, например, манекен (модель человеческой фигуры, чучело (модель животного), модели автомобилей, самолетов и т.п. Возможны и другие, более точные определения, например: «модель» - это некий объект - заместитель, который в определенной степени заменяет объект - оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем по сравнению с оригиналом модель имеет существенные преимущества для определенного вида работы с ней, а именно: наглядность, доступность испытаний и т.п.

Модель - это не абсолютная копия оригинала, она предполагает уже некоторую степень абстрагирования. Чертежи, рисунки, карты - это тоже модели, но они соответствуют более высокой степени абстрагирования от оригинала, поэтому их модельные свойства были осознаны намного позже.

В настоящее время понятие модели расширилось, оно включает и реальные и, так называемые «идеальные» модели, например, математические модели. Свойствами модели обладают такие формы научных представлений о мире как законы, гипотезы, теории.

Модели не только качественно различны, они иерархичны, т.е. могут быть модели более высокого уровня и менее высокого, как, например, в случае моделей научного знания (рис. 1).

Рис. 1. Модели научного знания

Выше было сказано, что моделирование есть неотъемлемое свойство человеческой деятельности. Можно уточнить, что это - неотъемлемый этап всякой целенаправленной деятельности.

Любая деятельность человека имеет целевой характер, а цель - не что иное, как образ ожидаемого будущего, т.е. Модель состояния, на реализацию которого направлена деятельность.

Далее: деятельность системна, т.е. она осуществляется не хаотично, а по определенному плану, или алгоритму. Следовательно, алгоритм тоже можно рассматривать как модель будущей деятельности.

Из этих рассуждений следует, что модель является не просто образом - заменителем оригинала, а целевым отображением. (Пример - роль бревна на тур. Стоянке). Т.е. модель отображает не сам по себе объект-оригинал, а то, что в нем нас интересует, т.е. то, что соответствует поставленной цели.

Поскольку модель - целевое отображение, один и тот же объект может иметь множество моделей в зависимости от целей.

8.2 Познавательные и прагматические модели

Вся деятельность человека связана с получением, переработкой и использованием информации. Модели объектов, модели деятельности целесообразно, таким образом, разделить по направленности основных информационных потоков, циркулирующих между субъектом и окружающим миром.

Познавательная модель - это форма организации и представления знаний, средство соединения новых знаний с уже имеющимися (рис. 2).

Рис. 2. Познавательная и прагматическая модели

При установлении расхождения между моделью и реальностью это рассуждение устраняется путем изменения модели (модель «подгоняется» под реальность, см. рис. 3а).

Прагматическая модель это средство управления, средство организации практических действий, способ представления образцово правильных действий или их результата.

По сути, прагматическая модель есть рабочее представление целей. Поэтому при обнаружении расхождений между моделью и реальностью прагматическая модель используется для изменения реальности, т.е. здесь реальность «подгоняется» под модель, см. рис.3б (пример: социально-политические доктрины преобразование мира, школьная педагогика изменение характеров, воздействие на личность, руководитель - коллектив).

Рис. 3. Модель и реальность

Прагматические модели являются как бы стандартом, образцом, носят нормативный характер. Под эти образцы «подгоняются» как сама деятельность, так и ее результат. Примеры: ССБТ, СНиПы, кодексы законов, уставы организаций, планы и программы действий, рабочие чертежи, шаблоны, технические допуски, экзаменационные требования и др.

Таким образом основное различие между познавательными и прагматическими моделями следующее:

Познавательные модели отражают существующее, а прагматические не существующее, но желаемое и (возможно) осуществимое. Не все модели легко классифицировать по этому признаку (например, произведения искусства, игрушки, географические карты). К тому же прагматические модели также претерпевают изменения как и познавательные.

Существуют и другие принципы классификации модели.

8.3 Статические и динамические модели

Вне зависимости от принципов, видов классификации модели в основе всегда лежит цель.

Так для одних целей необходима модель конкретного состояния объекта, своего рода его «моментальная фотография». Такие модели называются статическими. Пример: структурные модели систем.

Если наши цели связаны не с одним состоянием, а различием между состояниями, необходимо отображение процесса изменения состояния. Такие модели называются динамическими. Например, динамическими являются функциональные модели систем. Можно привести и более простой пример: фотография, характеристика - статические модели личности и биография - динамическая модель.

8.4 Классификация моделей по способу воплощения

По способу воплощения (т.е. в зависимости от того, на чем построена модель) модели делятся на:

1) идеальные и абстрактные;

2) материальные (реальные, вещественные).

Абстрактные модели. К ним относятся: модели, создаваемые средствами языка. Человеческий язык (естественный, плановый) является универсальным средством построения любых абстрактных моделей, что обеспечивается такими свойствами языка как:

возможность введения новых слов;

возможность иерархического построения языковых моделей (слово - предложение - текст - понятия - отношения - определения - конструкции…);

неоднозначность, расплывчатость, размытость.

Последнее свойство иногда используется сознательно (дипломатия, юмор, поэзия), иногда служит препятствием («мысль изреченная есть ложь…). В зависимости от целей приблизительность естественного языка преодолевается («профессиональный» язык).

2) дальнейшая дифференциация наук привела к созданию специализированных языков вплоть до моделей, имеющих максимально достижимую определенность и точность для сегодняшнего состояния данной отрасли знаний.

3) математические модели. Модели, обладающие абсолютной точностью. К.Маркс и И.Кант говорили о том, что любая отрасль знания может тем с большим основанием называется наукой, чем в большей степени в ней используется математика. Однако, чтобы зайти до использования математической модели в какой-либо области необходимо получить достаточное для этого количество знаний. Отсутствие развитого математического аппарата в какой-либо науке само по себе не означает ее «научности», а есть следствие сложности, недостаточной познанности ее предмета, т.е. временное явление.

Материальные модели

Материальная модель есть реальное, вещественное отображение объекта. Чтобы математическая модель выполняла свою функцию, т.е. замещала в каком-то отношении оригинал, она должна иметь определенное подобие по отношению к оригиналу.

Существуют различные виды подобия.

Прямое подобие - подобие, устанавливаемое в результате физического взаимодействия или последовательности взаимодействий (фотографии, модели самолетов и т.п., макеты зданий, куклы, протезы, шаблоны и т.п.). Однако никакая прямая модель не может быть абсолютной копией оригинала. Существуют проблемы переноса результатов моделирования результатов модельных экспериментов на оригинал (натурный образец). Яркий пример - гидродинамика. Отсюда возникла разветвленная, содержательная теория подобия.

Косвенное подобие. Косвенное подобие не устанавливается человеком, а объективно существует в природе, обнаруживается в виде совпадения или достаточной близости абстрактных моделей и в дальнейшем используется при моделировании.

Например, электромеханическая аналогия (одинаковые уравнения для электрических и механических процессов), шаг как аналог времени, подопытные животные - аналог человеческого организма и т.п.).

Условно подобные модели: подобие этих моделей оригиналу устанавливается в результате соглашения. Пример: деньги (модель стоимости), удостоверение личности (модель владельца), карты (модели местности), сигналы (модели сообщений и т.д.).

Условные подобные модели являются способом материального воплощения абстрактных моделей, вещественной формой, в которой абстрактные модели передаются от одного человека к другому, храниться долгое время, т.е. отчуждаются от сознания, сохраняя, тем не менее, способность возвращения в абстрактную форму. Это достигается с помощью соглашения о том, какое состояние реального объекта ставится в соответствие данному элементу абстрактной модели.

8.5 Место математического моделирования в системных исследованиях

Из рассмотренного ранее нам должно быть понятно, что системный анализ не есть какой-то конкретный метод. Это стратегия научного поиска, которая использует математические концепции, математический аппарат в рамках систематизированного научного подхода к решению сложных проблем. При этом так или иначе выделяется ряд последовательных, взаимосвязанных этапов (рис. 1). Рассмотрение вместо самой системы (т.е. явления, процесса, объекта) и модели всегда связано с упрощением. Главная проблема здесь - выделение тех особенностей, которые существенны для целей рассмотрения. К настоящему времени разработано множество удачных моделей, например, такие как:

конечноэлементная модель для решения различных прикладных задач (статика, динамика, прочность конструкций, динамика оболочек и т.п.);

генетический код;

и др.

Рис. 4. Решение проблемы

Ранее нами было выделено два основных вида моделей: материальные (макеты, физические модели, масштабированные модели и т.п.) и идеальные (вербальные, знаковые).

При построении моделей процессов в техносфере приходится прибегать как к так называемым интуитивным («ненаучным») моделям, так и к семантическим (смысловым).

Под интуитивным моделированием подразумевают моделирование, использующее представление объекта, не обоснованное с точки зрения формальной логики. Это представление может не поддаваться, или трудно поддаваться формализации или же вообще не нуждаться в ней. Такое моделирование человек осуществляет в своем сознании в форме мысленных экспериментов, сценариев и игровых ситуаций с целью подготовки к предстоящим практическим действиям. Основой для подобных моделей служит опыт - знания и умения людей, а также любое эмпирическое знание, полученное из эксперимента или процесса наблюдения без объяснения причин и механизма наблюдаемого явления.

Семантическое моделирование, в отличие от интуитивного, логически обосновано с помощью некоторого числа исходных предположений. Сами эти предположения нередко облекаются в форму гипотез. Семантическое моделирование предполагает знание внутренних механизмов явления. К методам семантического моделирования относятся вербальное (словесное) и графическое моделирование (рис. 5).

Рис. 5. Виды идеальных моделей

Семиотическое, или знаковое моделирование является, в отличие от семантического, наиболее формализованным, поскольку использует не только слова естественного языка и изображения, но и различные символы - буквы, цифры, иероглифы, нотные знаки. В последующем все они объединяются с помощью специфических правил. К этому виду моделирования относится математическое моделирование.

К знаковым моделям относятся химические и ядерные формулы, графики, схемы, графы, чертежи, топографические карты и т.п. Среди знаковых моделей выделяется их высший класс - математические модели, т.е. модели, при описании которых используется язык математики.

Математическая модель (ММ) - это описание протекания процесса, описание состояния или изменения состояния системы на языке алгоритмических действий с математическими формулами и логических переходов.

Кроме того, ММ допускает работы с таблицами, графиками, номограммами, выбор из совокупности процедур и элементов (последнее подразумевает использование операций предпочтения, частичной упорядоченности, включения, определение принадлежности и т.п.).

Различные математические правила манипулирования со связями системы позволяют делать предсказания относительно тех изменений, которые могут произойти в исследуемых системах, когда изменяются их составляющие.

Сложность формирования математической модели связана с необходимостью владения математическими методами и предметных знаний, т.е. знаний в той области, для которой создается модель. В реальности специалисту в данной практической области часто не хватает математических знаний, сведений о моделировании вообще, а для сложных задач - знания системного анализа. С другой стороны, прикладному математику трудно хорошо ориентироваться в предметной области.

Следует заметить, что деление моделей на вербальные, натурно знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения. Можно даже утверждать, что нет знаковой модели без сопровождающей описательной - ведь любые знаки и символы необходимо пояснять словами. Часто и отнесение модели к какому-либо типу является нетривиальным.

Общие и конкретные модели. Все типы моделей необходимо перед их применением к конкретной системе наполнить информацией, соответствующей используемым силам, макетам, общим понятиям. Наполнение информацией в большей степени свойственно знаковым моделям, в наименьшей - натурным. Так, для математической модели - это выделенные (вместо буквенных) значения физических величин коэффициентов, параметров; конкретные виды функций, определенные последовательности действий, графы структуры Наполненную информацией модель принято называть конкретной, содержательной.

Модель без наполнения информацией до уровня соответствия единичной реальной системе называется общей (теоретически абстрактной, системной).

Так, в процессе декомпозиции мы используем понятие формальной модели. Это относится ко всем типам моделей, в том числе, к математическим.

Чтобы уяснить место математической модели рассмотрим процесс формирования собственно научного знания. Принято делить науки на две группы.

а) точные - (скорее термин «точные» основан на вере, что открываемые закономерности являются абсолютно точными);

б) описательные.

Точные науки - обладают средствами предвидеть с практически достаточной точностью развитие процессов, изучаемых данной наукой на достаточно длительный (опять-таки по практическим соображениям) промежуток времени, или же предвидеть достаточно точно свойства и отношения изучаемых объектов по некоторой частичной информации о них.

Описательные науки - по сути перечень фактов об изучаемых ими объектах и процессах, иногда не связанных между собой, иногда связанных некоторыми качественными отношениями, а также порой разрозненными количественными (как правило, эмпирическими связями). К точным наукам относятся математика и науки физического цикла. Остальные науки - в большей или меньшей степени являются описательными.

Однако в Древнем Египте даже математика не могла быть в полной мере отнесена к точным наукам (так, геометрия была представлена как «сборник рецептов», например, вычислять площадь круга как ? площади описанного квадрата).

Развитие науки идет параллельными путями («руслами»). Различные русла начинаются в разное время, но раз начавшись, продолжаются.

накопление информации об объектах изучения; (научное накопление информации отличается от стихийного целеустремленностью);

процесс упорядочивания информации - классификация объектов (отличие от «наивной», «потребительской» классификации - цель: обеспечить анализ, следовательно субъективизма меньше) > находятся в постоянной взаимосвязи (процесс идентификации), т.е. каждый новый объект анализируется: принадлежит ли он к уже установленным классификационным группам, или указывает на необходимость перестройки системы классификации;

установление связей и соотношений (качественных или количественных) между объектами. Эти связи обнаруживаются в результате постоянного анализа накапливаемой и упорядоченной информации.

Эти три русла характеризуют «описательный» период развития науки, который может длиться весьма долго. Примером может служить развитие механики, геометрии.

Переход к точной науке означает попытки построения математического моделирования процессов. Но математическая модель может строиться на каких-то количественно строго определенных величинах. Отсюда - два необходимых этапа математического моделирования:

установление величины;

установление взаимосвязи.

Можно привести следующий пример: законы статики сформулировал Архимед, Аристотель ввел понятие силы, скорости, пути. Но потребовалось около 2000 лет (!) на установление связи величин. Становление механики как точной науки стало возможным, когда Ньютон понял, что силу надо связывать с ускорением, а не скоростью, как это пытались делать раньше.

Задачи математического моделирования сами имеют свою сложную структуру. Модель, описывающая широкий класс явлений (например, математическая модель механических движений - законы Ньютона) подразделяются на частные классы математических моделей: механика точки, системы материальных точек, сплошной среды, твердого тела > еще более частные модели, например, упругого тела и т.п. на самом нижнем уровне - ММ конкретных процессов.

Обычно процесс построения моделей часто осуществляется не дедуктивно, а «снизу вверх».

8.6 Типы и виды математических моделей

В рамках данного курса невозможно рассмотреть все виды математических моделей. Остановимся на некоторых из них.

Динамические модели

Динамические модели стали развиваться во многом благодаря развитию вычислительной техники, так как связаны с необходимостью решать большое число (сотни) уроавнений за котороткий промежуток времени. Эти уравнения являются более или менее сложными математическими описаниями того, как функционирует исследуемая система и даются они в форме выражений для “уровней” различных типов, “темп” изменения которых регулируется управляющими функциями. Уравнения для уровней описывают накопление в системе таких, например, величин, как вес, количество энергии, количество организмов, а уравнения для темпов управляют изменением этих уровней во времени. Управляющие функции отражают правила, регулирующие функционирование системы. В динамических моделях часто используются уравнения неразрывности - соотношения между потоками переменной в какую-то часть системы и из нее со скоростью изменения этой переменной.

Балансовые модели представляют моделируемый объект как совокупность неких потоков вещества и энергии, баланс которых рассчитывается на каждом шаге моделирования. Являются разновидностью динамических моделей. В настоящее время эти модели получили очень широкое распространение благодаря наглядности и сравнительно простой реализации. Однако применение их возможно лишь при решении, общеметодологических вопросов: баланс каких веществ является наиболее важным для рассмотрения; насколько целесообразно подробно прослеживать потоки данного вещества; как, выразить смену режимов трансформация веществ и.;т.п.

поиск равновесия. Этот подход основан на постулате о том, что любая большая система может иметь состояние равновесия. Например, в экономических системах это равновесие между спросом и предложением (по Н.Д.Кондратьеву - это равновесие «1-го порядка»), равновесие в структуре цен (равновесие 2-го порядка), равновесие основных капитальных благ» - промышленных изделий, сооружений, квалифицированной рабочей силы, технологий, источников энергии и т.д. (равновесие 3-го порядка).

В экологии может рассматриваться равновесие между определенной численностью хищников и их жертв, между загрязнением окружающей среды и ее способностью к самовосстановлению.

Поиск равновесия очень важен для исследования экономических и экологических систем. При этом следует различать динамическое и статическое равновесие.

Динамическое («подвижное») равновесие предполагает непрерывный обмен веществом и энергией между системой веществ и энергии, поглощаемых и выделяемых системой одинаковы.

При динамическом равновесии сохраняется соответствие между частями системы, все размеры которой одновременно меняются.

Статическое равновесие означает сохранение того же соответствия при неизменных размерах (величинах) частей системы и системы в целом.

Можно проиллюстрировать поиск равновесия на примере определения состояния насыщения рынка (рис. 6). Для этого было предложено уравнение

где х - количество товара, t - время, А,Р - константы.

Рис. 6. Пример

Эта функция описывается «затухающей кривой». Было показано, что она описывает ряд общественных и экономических процессов, например, насыщение рынка книгами по специальным дисциплинам и т.п., если выполняются такие условия, как

незаменимость товара,

неизменность цен;

отсутствие спекулятивных перепродаж;

приобретение каждым покупателем равного количества;

отсутствие повторных покупок товара.

Разумеется, это достаточно примитивное уравнение, которое не соответствует подвижному и динамическому равновесию. Для построения более адекватных моделей с равновесием необходимо использование обратных связей.

модели с обратной связью.

Если при составлении модели попытаться учесть внутреннюю структуру и отойти от модели «черного ящика» и поставить одни параметры («входы») в зависимость от других («выходы») получим модель с обратной связью (рис. 7).

Рис. 7. Модель с обратной связью

Если результат меньше эталона, то за счет регулирования подается сигнал, увеличивающий интенсивность входа. Если больше эталона - подается сигнал, уменьшающий интенсивность входа. Обратная связь положительна, если возрастающие результаты увеличивают интенсивность входа и отрицательна, если возрастающие результаты ослабляют интенсивность входа.

В сложных системах можно выделить несколько последовательно и параллельно связанных между собой контуров обратной связи, т.е. сложные системы являются многоконтурными.

Оптимизационные модели

Оптимизационные модели охватывают модели, математический аппарат которых позволит решать задачи оптимального управления моделируемым объектом. Они применяются при решении экономических, технических задач, проблем взаимодействия природы и общества. Их построение основано на использовании методов математического программирования (линейного, нелинейного и динамического программирования) при .исследовании систем, описанных дифференциальными уравнениями. Другим примером оптимизационных моделей являются модели, построенные с помощью теории игр. В общем случае они тоже не исключают вероятностного подхода.

4.Модели макрокинетики трансформации веществ и потоков энергии.

К этим моделям относятся модели прогнозирования зон неуправляемого распространения потоков энергии и вредных веществ, прогнозирования концентрации вредных веществ в техносфере. Подобные модели применяются также при моделировании водных экосистем, распространения загрязнителей воздушной среды. Это модели, математическим аппаратом построения которых являются уравнения диффузии. Применение этих моделей ограничено, во-первых, необходимостью при их построении делать ряд допущений в общем случае неверных в реальных ситуациях (например, допущение об отсутствии влияния примесей на скоpoсть течения воды, хотя в реальных условиях в реках, озерах движение воды сплошь и рядом вызвано именно различиями в мутности), Во-вторых, существуют и чисто математические трудности решения систем уравнений в частных производных, каковыми являются уравнения диффузии. Например, непростая проблема выбора шага моделирования (интегрирования) при существенно различных характерных временах изменения параметров системы.


Подобные документы

  • Сущность и виды риска, основные положения его теории. Концепция приемлемого (допустимого) риска. Последовательность изучения опасностей. Цель системного анализа безопасности, принципы ее обеспечения и средства управления ею. Причины отказов оборудования.

    презентация [226,2 K], добавлен 09.02.2014

  • Цели и задачи системного анализа опасности, его этапы и принципы реализации. Исследование и оценка опасных и вредных факторов, возникающих на рабочем месте продавца продовольственных товаров. Производственный шум и вибрация, существующие способы защиты.

    контрольная работа [40,3 K], добавлен 22.12.2015

  • Безопасное использование ядерных технологий. Основные принципы построения системы физической защиты. Этапы проведения анализа уязвимости ядерного объекта. Понятие особо важной зоны. Система контроля управления доступом. Перегрузка ядерного топлива.

    курсовая работа [1,6 M], добавлен 10.11.2014

  • Методы и функции управления охраной труда. Принципы, направления и задачи государственной политики в области охраны труда в Республике Беларусь. Органы управления государственной системой охраны труда. Система управления охраной труда на предприятии.

    реферат [473,1 K], добавлен 25.12.2011

  • Полномочия и основные функции Межрегионального управления № 91 Федерального медико-биологического агентства России. Принципы проведения внеплановой проверки исполнения санитарного законодательства индивидуальными предпринимателями и юридическими лицами.

    отчет по практике [25,6 K], добавлен 10.12.2012

  • Задачи, функции, организационная структура и элементы системы управления охраной труда. Обеспечение производственной безопасности, снижение или исключение риска несчастных случаев и аварий. Этапы и принципы внедрения СУОТ. Нормативно-правовая база.

    презентация [629,0 K], добавлен 07.02.2016

  • Формирование здорового образа жизни путем системного и комплексного подхода к вопросам профилактики. Совершенствование работы по предупреждению дорожно-транспортных происшествий с участием детей и подростков. Программы развития здравоохранения в РБ.

    реферат [687,9 K], добавлен 25.11.2014

  • Понятие управления безопасностью, его сущность и особенности, подходы и методы. Основные мероприятия по обеспечению безопасности населения в чрезвычайных ситуациях, порядок их совершения. Особенности управления безопасностью в медицинских учреждениях.

    реферат [148,8 K], добавлен 16.04.2009

  • Понятие и значение, внутренняя структура и принципы работы системы управления охраной труда в РФ. Классификация производственных факторов, их негативное воздействие, оценка условий труда. Профилактика влияния производственных факторов, способы защиты.

    дипломная работа [886,4 K], добавлен 29.05.2015

  • Основные положения теории риска. Концепция приемлемого риска. Действие техногенных опасностей. Методические подходы к определению риска. Выявление источников опасностей. Системный анализ безопасности. Причины отказов оборудования на предприятиях.

    лекция [75,1 K], добавлен 24.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.