Аппроксимация функций

Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 01.12.2009
Размер файла 1004,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

16

16

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Авиа- и ракетостроение»

Специальность 160801- «Ракетостроение»

Расчетно-графическая работа

по дисциплине «Основы САПР»

Аппроксимация функций

Омск 2006

Введение

Цель работы: Ознакомиться с методами интерполяции и аппроксимации функций

Задания:

Задание 1. Построить таблицу конечных разностей. Выполнить экстраполяцию на два узла от начала и от конца таблицы.

Задание 2. Построить интерполяционный многочлен Лагранжа и с его помощью найти

значения функции в узлах, соответствующих полушагу таблицы.

Задание 3. Найти значение f(x) с помощью формул Ньютона интерполирования вперед и назад.

Задание 4. Выполнить квадратичную сплайн-интерполяцию (по 6 узлам). Проконтролировать полученные оценки для промежуточных узлов.

Задание 5. Считая выбранную таблицу заданной для диапазона от 0 до 2?, выполнить среднеквадратическую аппроксимацию тригонометрическим многочленом (отрезком ряда Фурье) третьей степени.

Исходные данные:

x=[11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12];

y=[-0.00023,1.080087,2.064282,2.854531,3.37121,3.560925,3.402017,2.90698,2.121544,1.120452,0.000357];

1. Построение массива конечных разностей. Выполнение экстраполяции

Массив конечных разностей рассчитываем по формуле:

.

for i=1:10

for j=1:11-i

y(i+1,j)=y(i,j+1)-y(i,j);

end

end

Результат расчёта:

11,0

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8

11,9

11,0

-0,0002

1,0801

2,0643

2.8545

3.3712

3.5609

3.4020

2.9070

2.1215

1.1205

0.0004

1.0803 0.9842 0.7902 0.5167 0.1897 -0.1589 -0.4950 -0.7854 -1.0011 -1.1201

-

-0.0961 -0.1939 -0.2736 -0.3270 -0.3486 -0.3361 -0.2904 -0.2157 -0.1190 -

-

-0.0978 -0.0796 -0.0534 -0.0217 0.0125 0.0457 0.0747 0.0967

-

-

-

0.0182 0.0262 0.0317 0.0342 0.0332 0.0290 0.0219

-

-

-

-

0.0080 0.0055 0.0024 -0.0009 -0.0042 -0.0071

-

-

-

-

-

-0.0025 -0.0031 -0.0033 -0.0033 -0.0029

-

-

-

-

-

-

-0.0006 -0.0002 0.0000 0.0004

-

-

-

-

-

-

-

0.0003 0.0003 0.0004

-

-

-

-

-

-

-

-

-0.0000 0.0001

-

-

-

-

-

-

-

-

-

0.0002

-

-

-

-

-

-

-

-

-

-

Экстраполяция на два узла от начала и конца таблицы с помощью многочлена Лагранжа.

n=11; % Степень многочлена

i=0;

for p=10.8:0.1:12.2

i=i+1;

x1(i)=p;

ff(i)=Lagrange(x,y,p,n);

end

for j=1:11

yy(j)=y(1,j);

end

subplot(2,1,1); plot(x,yy,'.-'); ylabel('y'); xlabel('x'); grid on; title('Первоначальные данные')

subplot(2,1,2); plot(x1,ff,'.-'); ylabel('y'); xlabel('x'); grid on; title('Экстраполяция')

Получим:

х

10.8

10.9

12.1

12.2

f(х)

-2,0234

-1,0701

-1,1291

-2,1535

Рис. 1. Экстраполяция на два узла многочленом Лагранжа

2. Нахождение значения приближенной функции с помощью многочлена Лагранжа

Запишем интерполяционный многочлен Лагранжа:

,

где х - произвольная координата на заданном интервале.

_____________________________________________________________

function [x]=Lagrange(x,y,a,n)

for i=1:n

for j=1:n

s(i,j)=1;

end

end

ss=1;

for j=1:n

for i=1:n

if j~=i

s(j,i)=(a-x(i))/(x(j)-x(i));

end

end

end

ss=prod(s,2);

L=0;

for k=1:n

L=L+y(1,k)*ss(k);

end

x=L;

_____________________________________________________________

i=0;

for p=11:0.01:12

i=i+1;

x1(i)=p;

ff(i)=Lagrange(x,y,x1(i),n);

end

subplot(2,1,2); plot(x1,ff,'.-'); ylabel('y'); xlabel('x'); grid on; title('Интерполяция многочленом Лагранжа')

Рис. 2. Интерполяция многочленом Лагранжа

3. Определение значения функции с помощью формул Ньютона

а) Интерполяционная формула Ньютона для интерполирования вперёд:

где - промежуток между последовательными узлами интерполирования, (в рассматриваемом случае промежуток постоянен);

n - степень многочлена;

.

_____________________________________________________________

function [x]=Nuton_vp(k,x,y,n);

n=round(k)+1; % Степень многочлена

if n==12

n=11;

end

t=(k-1)/1;

t1(1)=1;

for j=2:n

t1(j)=t-(j-2);

end

t2=cumprod(t1);

for j=1:n

Pn(j)=y(j,1)*t2(j)/FACTORIAL(j-1);

end

x=sum(Pn,2);

_____________________________________________________________

n=11;

i=0;

for p=11:0.05:12

i=i+1;

a=0.5+i*0.5;

x1(i)=p;

ff(i)=Nuton_vp(a,x,y,n);

end

% Построение графика

subplot(2,1,2); plot(x1,ff,'.-'); ylabel('y'); xlabel('x'); grid on

title('Интерполяция многочленом Ньютона вперёд')

Рис. 3. Интерполяция многочленом Ньютона вперёд

б) Формула Ньютона для интерполяции назад:

_____________________________________________________________

function [x]=Pnz(k,x,y);

n=12-round(k)+1; % Степень многочлена

if n==12

n=11;

end

t=(k-11)/1;

t1(1)=1;

for i=2:n

t1(i)=t+(i-2);

end

t2=cumprod(t1);

for i=1:n

Pn(i)=y(i,12-i)*t2(i)/FACTORIAL(i-1);

end

x=sum(Pn,2);

_____________________________________________________________

i=0;

for p=11:0.05:12

i=i+1;

a=0.5+i*0.5;

x1(i)=p;

ff(i)=Nuton_nz(a,x,y);

end

% Построение графика

subplot(2,1,2); plot(x1,ff,'.-'); ylabel('y'); xlabel('x'); grid on

title('Интерполяция многочленом Ньютона назад')

Рис. 4. Интерполяция многочленом Ньютона назад

4. Квадратичная сплайн-интерполяция

Для того, чтобы выполнить квадратичную сплайн-интерполяцию по 6-ти узлам, необходимо задаться пятью уравнениями.

Рис. 5. К выводу коэффициентов при сплайн-интерполяции

При квадратичном сплайне уравнения будут иметь вид:

, .

На эти уравнения наложены следующие граничные условия:

, , , .

Вычислим производную

: , . (1)

Определим при : , . (2)

В рассматриваемом примере . С учетом этого, а также с учетом выражения (2) и условия , запишем следующую зависимость:

, .

Из условия и выражения (1) получим: .

Составим систему уравнений:

Решая эту систему, получим следующие зависимости для вычисления коэффициентов:

_____________________________________________________________

function [k]=Spl(aa,n,x,y);

c(1)=0;

b(1)=10*y(1,2)-10*y(1,1)-0.1*c(1);

for k=1:n-2

b(k+1)=0.2*c(k)+b(k);

c(k+1)=100*y(1,k+2)-100*y(1,k+1)-10*b(k+1);

end

j=floor(10*aa-109);

if j==6

j=5;

end

k=y(1,j)+b(j)*(aa-x(j))+c(j)*(aa-x(j))^2;

_____________________________________________________________

n=6;

clear yy; clear ff; clear x1; clear x1

for i=1:11

a=10.95+i*0.05;

ff(i)=Spline(a,n,x,y);

x3(i)=10.95+0.05*i;

end

for j=1:6

yy(j)=y(1,j);

x1(j)=x(j);

end

% Построение графика

subplot(2,1,1); plot(x1,yy,'o-'); ylabel('y'); xlabel('x'); grid on

title('Первоначальные данные')

subplot(2,1,2); plot(x3,ff,'.-');ylabel('y'); xlabel('x'); grid on

title('Интерполяция сплайнами')

Рис. 6. Интерполяция квадратичным сплайном

5. Среднеквадратичная аппроксимация тригонометрическим многочленом третьей степени

Тригонометрический многочлен ищется в виде:

.

Коэффициенты вычисляются по следующим формулам:

, , , .

где n - степень многочлена (в данном случае принимается n=3);

- число узловых точек.

_____________________________________________________________

function [x]=Furie(aa,x,y);

for i=1:11

xpi(i)=i*2*pi/11;

a=(aa-10.9)*10*2*pi/11;

end

n=3;

a0=sum(y,2)/11;

for i=1:3

for j=1:11

ak(i,j)=y(1,j)*cos(i*xpi(j));

bk(i,j)=y(1,j)*sin(i*xpi(j));

end

end

aksum=2*sum(ak,2)/11;

bksum=2*sum(bk,2)/11;

Tna=a0(1)+aksum(1)*cos(a)+bksum(1)*sin(a)+aksum(2)*cos(2*a)+bksum(2)*sin(2*a)+aksum(3)*cos(3*a)+bksum(3)*sin(3*a);

x=Tna;

_____________________________________________________________

for i=1:100

k(i)=10.99+i*0.01;

ff(i)=Furie(k(i),x,y);

end

for j=1:11

yy(j)=y(1,j);

end

subplot(2,1,2);

plot(x,yy,'o-',k,ff,'.-');ylabel('y');xlabel('x');grid on;

title('Аппроксимация тригонометрическим многочленом');

Рис. 7. Аппроксимация тригонометрическим многочленом

Список использованных источников

1. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.

2. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Физматгиз, 1966.

3. Калиткин Н.Н. Численные методы. М.: Наука, 1978.

4. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. М.: Наука, 1967.

5. Бахвалов Н.С. Численные методы. М.: Наука, 1987.

6. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989.

7. Волков Е.А. Численные методы. М.: Наука, 1987.


Подобные документы

  • Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа [434,5 K], добавлен 14.03.2014

  • Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация [204,5 K], добавлен 18.04.2013

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат [71,6 K], добавлен 06.03.2011

  • Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

    контрольная работа [155,2 K], добавлен 02.06.2011

  • Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.

    презентация [251,7 K], добавлен 29.10.2013

  • Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.

    реферат [139,0 K], добавлен 26.07.2009

  • Интерполяция (частный случай аппроксимации). Аппроксимация функцией. Метод наименьших квадратов. Из курса математики известны 3 способа задания функциональных зависимостей: аналитический, графический, табличный.

    реферат [70,4 K], добавлен 26.05.2006

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа [299,3 K], добавлен 30.04.2011

  • Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.

    курсовая работа [954,7 K], добавлен 10.01.2015

  • Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.

    курсовая работа [304,9 K], добавлен 07.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.