Динамика развития некоторых понятий и теорем теории вероятностей
Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 23.08.2009 |
Размер файла | 388,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
62
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
«Гомельский государственный университет имени Франциска Скорины»
Математический факультет
Кафедра математического анализа
Дипломная работа
"Динамика развития некоторых понятий и теорем теории вероятностей"
Гомель 2003
Реферат
Дипломная работа 45 страниц, 3 рисунка, 2 таблицы, 10 источников.
Перечень ключевых слов: вероятность, классическое определение, математическое ожидание, закон больших чисел, событие, теория вероятностей.
Объектом исследования в данной работе являются: понятие вероятности, математического ожидания, закон больших чисел, а точнее динамика их развития.
Цель работы: проследить динамику развития указанных понятий и теоремы от простейших форм, до завершённых, современных. Это позволит понять и осмыслить сущность закона больших чисел (статистической закономерности), что играет важную роль с методической точки зрения.
Основными методами исследования в этой области являются: изучение историко-математической литературы, аналитический метод исследования.
В результате проведённого исследования можно сделать такие выводы: развитие понятий вероятности и математического ожидания происходило скачкообразно. Это связано со многими факторами. В качестве примера можно привести такой фактор: с постановкой новых задач в теории вероятностей требовались и новые подходы к их решению, а это означало иногда пересмотр определений основных понятий, критическая их переоценка. С законом больших чисел таких изменений не происходило. Он плавно развивался от простейших форм до завершённых, современных. Это связано с тем, что изначально он был полностью осмыслен, сформулирован верно, поэтому его трудно было истолковать как-то иначе, или ложно. В связи с этим его смысловое значение не менялось с течением времени.
Полученные результаты могут быть использованы как наглядное пособие, прежде всего с целью осмысления указанных понятий и теоремы, для иллюстрации их исторического развития, как методическая помощь.
Содержание
Введение
1. Динамика развития понятия вероятности
1.1 Первые попытки введения понятия вероятности
1.2 Появление классического определения понятия вероятности
1.3 Первые попытки аксиоматического введения понятия вероятности
1.4 Появление аксиоматического определения понятия вероятности
2. динамика развития понятия математического ожидания
2.1 Предпосылки введения понятия математического ожидания
2.2 Введение понятия математического ожидания и его дальнейшее развитие
3. Закон больших чисел
3.1 Первоначальное осмысление статистической закономерности
3.2 Появление теорем Бернулли и Пуассона - простейших форм закона больших чисел
3.3 Неравенство Чебышева. Закон больших чисел в форме Чебышева
3.4 Закон больших чисел для зависимых случайных величин
3.5 Усиление закона больших чисел. Появление необходимого и достаточного условий закона больших чисел
Заключение
Список источников
Введение
В истории теории вероятностей можно выделить следующие этапы.
1. Предыстория теории вероятностей. В этот период, начало которого теряется в дали веков, ставились и примитивно решались элементарные задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов в этот период не возникает. Идёт накопление материала. Этот период кончается в XVI в. работами Кардано, Пачоли, Тарталья и др.
2. Возникновение теории вероятностей как науки. В этот период вырабатываются первые специфические понятия, такие, как математическое ожидание. Устанавливаются первые теоремы-теоремы сложения и умножения вероятностей. Начало этого периода связано с именами Паскаля, Ферма, Гюйгенса. Этот период продолжается от середины XVII в. до начала XVIII в. В это время теория вероятностей находит свои первые применения в демографии, страховом деле, в оценке ошибок наблюдения.
3. Следующий период начинается с появления работы Я. Бернулли «Искусство предположения» (1713 г.). Это первая работа, в которой была строго доказана предельная теорема - простейший случай закона больших чисел. Теорема Бернулли дала возможность широко применять теорию вероятностей к статистике. К этому периоду относятся работы Муавра, Лапласа, Гаусса, Пуассона и др.; теория вероятностей начинает применяться в различных областях естествознания. Центральное место в этом периоде занимают предельные теоремы.
4. Следующий период развития теории вероятностей связан, прежде всего, с русской (Петербургской) школой. Здесь можно назвать такие имена, как Чебышев П.Л., Марков А.А., Ляпунов А.М. В этот период распространение закона больших чисел и центральной предельной теоремы на различные классы случайных величин достигает своих естественных границ. Законы теории вероятностей стали применяться к зависимым случайным величинам. Всё это дало возможность приложить теорию вероятностей ко многим разделам естествознания, в первую очередь - к физике. Возникает статистическая физика, которая развивается во взаимосвязи с теорией вероятностей.
5. Современный период развития теории вероятностей начался с установления аксиоматики. Этого в первую очередь требовала практика, так как для успешного применения теории вероятностей к физике, биологии и другим областям науки, а также к технике и военному делу необходимо было уточнить и привести в стройную систему её основные понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с теорией множеств, а через неё-с другими математическими дисциплинами. Это обусловило небывалую широту исследований по теории вероятностей, начиная от хозяйственно - прикладных вопросов и заканчивая самыми тонкими вопросами кибернетики. Первые работы этого периода связаны с именами Бернштейна, Мизеса, Бореля. Окончательное установление аксиоматики произошло в 30-е годы XX в., когда была опубликована, и получила всеобщее признание аксиоматика А.Н. Колмогорова.
В последние время наметились новые подходы к основным понятиям теории вероятностей. Об этом свидетельствует появление теории надёжности, теории информации, теории массового обслуживания и т.п.
Мы же рассмотрим динамику развития определения понятия вероятности; такого понятия в теории вероятностей, как математическое ожидание, а также известного закона больших чисел.
Проследив развитие этих понятий от простейших представлений до законченных и обдуманных их форм, мы сможем глубже понять их смысл, что, несомненно, важно с методической точки зрения.
1. Динамика развития понятия вероятности
1.1 Первые попытки введения понятия вероятности
Рассмотрим, как развивалось понятие вероятности.
Д. Кардано (1501-1576 гг.) в своей работе «Книги об игре в кости» вплотную подошёл к определению понятия вероятности через отношение равновозможных событий [1].
«Итак, имеется одно общее правило для расчёта: необходимо учесть общее число возможных выпадений и число способов, какими могут появиться данные выпадения, а затем найти отношение последнего числа к числу оставшихся возможностей выпадений; приблизительно в такой же пропорции определяются относительные размеры ставок для того, чтобы игра шла на равных условиях».
Кардано в этом отрывке говорит, что если возможное число испытаний равно n, а число благоприятных испытаний - m, то ставки должны быть в отношении (речь идёт о разделении ставки, т.к. учёных того времени очень волновал этот вопрос, многие из них пытались решать эту задачу).
В работах Л. Пачоли, Н. Тарталья делается попытка выделить новое понятие вероятности - отношение шансов - при решении ряда специфических задач, прежде всего комбинаторных.
Надо отметить, что понятием вероятности активно пользовались учёные того времени, не определяя его а понимая его интуитивно. Паскаль и Ферма в письмах друг другу использовали понятие вероятности в скрытой форме, не обликая его в конкретное определение.
Гюйгенс (1629-1695 гг.) в своей книге «О расчётах в азартных играх» выделил понятие «шанс», которое по существу, есть ещё не очень осознанное понятие вероятности [2]. Во введении Гюйгенс пишет: «Хотя в играх, основанных на чистом случае, результаты являются неизвестными, однако шанс игрока на выигрыш, или на проигрыш имеет определённую стоимость. Например, если кто-нибудь держит пари, что он выбросит при первом бросании одной кости шесть очков, то неизвестно, выиграет ли он или проиграет, но что является определённым и поддающимся исчислению это то, насколько его шансы проиграть пари превосходят его шансы на выигрыш пари».
Т. Байес (1702-1761 гг.) в своей работе, опубликованной в «Философских трудах» за 1763 г. Р. Прайсом под названием «Опыт решения задачи по теории вероятностей покойного достопочтенного мистера Байеса, члена Королевского общества, сообщено мистером Прайсом в письмах Джону Кентону, магистру искусств, члену Королевского общества» ввёл наряду с другими определениями и определение понятия вероятности. Байес формулирует следующие определения.
1. Несколько событий являются несовместимыми, если наступление одного из них исключает наступление остальных.
2. События являются исключающими друг друга, если одно из них должно наступить, но оба одновременно наступить не могут.
3. Говорят, что событие не состоялось, если оно не наступает или, если наступает исключающее событие.
4. Говорят, что событие определено, если оно наступило или не наступило.
5. Вероятность какого-нибудь события есть отношение значения, которое даётся ожиданию, связанному с наступлением события, и значения ожидаемой в этом случае прибыли.
6. Под шансом я понимаю то же самое, что и под вероятностью.
7. События являются независимыми, если наступление одного не уменьшает и не увеличивает вероятности остальных [1,2].
Некоторые из этих определений, например 1 и 7, почти полностью совпадают с современными. Определение же вероятности не отличается ясностью, возможно потому, что в формулировке используется неопределённое понятие: «значение ожидания, связанного с наступлением события».
Во втором разделе своей работы Байес пользуется геометрическим определением вероятности в его современном смысле (не определяя его), решая задачу о бросании шара W на квадратную доску ABCD
На AB берутся две любые точки f и b и через них C F s L D проводятся линии, параллельные AD до пересечения с CD в точках F и L. После этого Байес формулирует следующую лемму.
Лемма.
Вероятность того, что точка O (точка остановки OO шара) будет находиться между двумя какими-нибудь точками линии AB, есть отношение расстояния между двумя точками ко всей линии AB.
Другими словами, вероятность того, что шар, брошенный случайным образом на ABCD, остановится в прямоугольнике bfFL, равна . Аналогично мы вычисляем геометрическим способом вероятность и сейчас, как отношение мер.
P(A)=, () - вероятностное пространство,
-класс или семейство подмножеств в ,
-область в ,
P-вероятность.
Но у Байеса не было определения геометрической вероятности.
Кондорсе (1743-1794 гг.), известный политический и общественный деятель буржуазной французской революции, занимался вопросами теории вероятностей. В своей работе «Suite du Memoire sur le calcul des Probabilites» Кондорсе пытался наряду с вероятностью ввести понятие «собственно вероятность» [1,2].
«Не следует понимать под собственно вероятностью события отношение числа имеющих место сочетаний к общему числу сочетаний. Например, если из 10 карт извлекается одна карта и свидетель говорит, что это была именно такая-то карта, то собственно вероятность этого события, которую нужно сопоставить с вероятностью рождающейся из свидетельства, не есть вероятность извлеч эту карту, которая будет , а есть вероятность извлеч эту карту предпочтительно, чем другую какую-либо определённую карту, и так как все эти вероятности одинаковы, то собственно вероятность будет в этом случае …
В случае, когда извлекается одна из десяти карт, число сочетаний, при которых извлекается какая-либо определённая карта, есть единица и число сочетаний, при которых будет извлечена какая-либо другая определённая карта, тоже есть единица, значит, собственно вероятность выразится -.»
Понятие собственно вероятности необоснованно. Его противопоставление понятию вероятности чисто субъективное и математически ничем не подтверждено. Возможно именно поэтому в науке оно не сохранилось.
К XVIII в. понятие вероятности уже очень активно использовалось при решении различных задач.
Л. Эйлер (1707-1783 гг.), исследуя различные лотереи, которые предлагали Прусскому королю Фридриху II для пополнения казны государства, пользовался именно классическим определением вероятности.
1.2 Появление классического определения понятия вероятности
П. Лаплас (1749-1827 гг.) в своих лекциях под названием «Опыт философии теории вероятностей» вводил следующее классическое определение вероятности: вероятность P(A) события A равняется отношению числа возможных результатов испытания, благоприятствующих событию A, к числу всех возможных результатов испытания. В этом определении предполагается, что отдельные возможные результаты испытания равновероятны [1,2].
Этому определению вероятности Лаплас придал субъективный смысл, введя принцип недостаточности или отсутствия оснований. Этот принцип состоит в том, что если вероятность события неизвестна, то мы для её значения назначаем некоторое число, которое нам представляется разумным. В случае, если мы имеем несколько событий, которые составляют полную систему, но не знаем вероятности каждого события в отдельности, то мы считаем, что все эти события равновероятны.
Магистр философии Сигизмунд (Зигизмунт) Ревковский (1807-1893 гг.) в 1829/30 г. впервые в России стал читать курс теории вероятностей. Вероятность он называл мерой надежды, величиной надежды и давал ей классическое определение.
Н.И. Лобачевский серьёзно занимался теорией вероятностей. В своей работе «Новые начала геометрии с полной теорией параллельных» он определяет вероятность, следуя Лапласу: «под словами вероятность разумеют содержание числа благоприятных случаев к числу всех случаев вместе». Равновозможность случаев, очевидно, подразумевалась Лобачевским.
Профессор математики Московского университета Зернов Н.Е. (1804-1862)
в своей речи «Теория вероятностей, с приложением преимущественно к смертности и страхованию», которая была издана в 1843 г., ввёл определение вероятности () и любопытное определение понятия относительной вероятности.
«Вероятность событий, рассматриваемых в таком виде, как будто прочие события совсем не имели места, называется вероятностью относительного. Относительная вероятность какого-либо события равна частному, происшедшему от деления самостоятельной вероятности того же события на сумму сей последней вероятности и противоположной ей, также самостоятельной».
Это определение сопровождается примером. В сосуде имеется 3 красных, 1 чёрный, 2 белых шара. Вероятность вытащить красный шар ; ; - это всё вероятности самостоятельные. Держат пари относительно появления белого или чёрного шара, не обращая внимания на красные. Вероятность выиграть пари на белом шаре - , на чёрном -. Это, по Зернову, относительные вероятности. Для них справедливы соотношения:
; .
Даже на этом примере видно, что понятие относительной вероятности излишне (можно рассматривать, что в урне только 2 белых и 1 чёрный шар).
Крупным представителем русской теории вероятностей был М.В. Остроградский. В своей статье «О страховании», опубликованной в журнале «Финский вестник» в 1847 г., Остроградский трактует понятие вероятности с субъективных позиций, как меру уверенности познающего субъекта [1].
Он подробно говорит о том, что вероятность есть мера нашего незнания, что это субъективное понятие, что у вероятности в субъективном мире нет никакого соответствия, что весь мир детерминистичен и случайного в нём нет, есть только то, что мы не знаем или не познали, которое мы и называем случайным.
«Если явление совершенно зависит от нескольких других явлений или случаев, из которых одни могут его произвести, другие ему противны, и если притом все эти случаи таковы, что для нас, мы повторяем, для нас, нет причины одни из них предпочитать другим, то вероятность ожидаемого явления измеряется дробью, которой числитель равен числу случаев, доставляющих явление, - а знаменатель числу всех случаев». Это утверждение совпадает с так называемым классическим определением Лапласа с толкованием равновозможности, как недостаточности оснований давать предпочтение одним событиям перед другими. Рассматривается пример. В урне находится 5 шаров (3 белых и 2 чёрных), из неё извлекается один шар. Какова вероятность, что этот шар будет белым? Относительно этого примера Остроградский пишет: «Пять шаров находятся в вазе; нет никакой причины думать, что один из них попадёт в руку скорее, нежели другой. Говоря, нет никакой причины, разумеем, что её нет для нас, - она есть, но совершенно нам неизвестна.… И как мы не можем дать одному шару преимущество пред другим, то все шары представляют для нас случаи равновозможные. Тот, кто знал бы расположение шаров в урне и мог бы вычислить движение вынимающей руки, тот сказал бы наперёд, какой именно выйдет шар, - для него не было бы вероятности.
Если бы для нас, в самом деле, не было причин вынуть такой-то шар, а не другой, тогда появление шара было бы действительно невозможно, как невозможно действие без причины.
Мы повторяем, что вероятность и одинаковая возможность случаев, и мера вероятности существуют только для нас. Для существ же всеведущих, т.е. имеющих все сведения обо всех явлениях, вероятность не может иметь не только меры, но и никакого значения.
Это высказывание является типичным высказыванием в духе механического детерминизма, который был в то время широко распространён в теории вероятностей.
1.3 Первые попытки введения аксиоматического определения понятия вероятности
П.Л. Чебышев (1821-1894 гг.) был создателем и идейным руководителем петербургской математической школы. Чебышев сыграл крупную роль в развитии многих разделов математики, в том числе теории вероятностей. В своей магистерской диссертации в первой главе он вводит понятие вероятности. Для этого он, прежде всего, определяет равновозможные события: «Если из определённого числа различных событий при известных обстоятельствах одно необходимо должно случиться, и нет особенной причины ожидать какого-либо из этих событий преимущественно пред другими, то такие события отличаем названием случаев равновозможных». Нельзя сказать, чтобы это определение было достаточно чёткое.
Если из n случаев m имеют следствием некоторое событие, то мерой вероятности этого события, которое называют вероятным, принимают , т.е. «отношение числа равновозможных случаев, благоприятных для события, к числу всех равновозможных случаев».
А.А. Марков (1856-1922 гг.) был ближайшим учеником и лучшим выразителем идей Чебышева. В своей работе «Исчисление вероятностей» Марков давал классическое определение вероятности, но к определению равновозможности («Два события мы называем равновозможными, если нет никаких оснований ожидать одного из них предпочтительно перед другим. Несколько событий мы называем равновозможными, если каждые два из них равновозможны») он делал следующее примечание: «По моему мнению, различные понятия определяются не столько словами, каждое из которых может, в свою очередь, потребовать определения, как нашим отношением к ним, которое выясняется постепенно». Определение понятия вероятности выглядит так:
«Вероятностью события называется дробь, числитель которой представляет число равновозможных случаев, благоприятных этому событию, а знаменатель-число всех равновозможных случаев, соответствующих вопросу». [1,2]
В своей книге «Теория вероятностей» С.Н. Бернштейн попытался ввести определение понятия вероятности аксиоматическим способом.
Из аксиомы сравнения вероятностей и аксиомы о несовместимых событиях Бернштейн делает следующий вывод: «Если событию X благоприятствуют m случаев из общего числа всех n единственно возможных, несовместимых и равновероятных случаев, то вероятность события X зависит только от чисел m и n (а не от природы рассматриваемого опыта), т.е. вероятность X=F (m, n), где F (m, n) есть некоторая определённая функция».
Но, этим аксиомам удовлетворяет только функция вида F(), причём-это возрастающая функция дроби . Любую такую функцию F() можно принять за вероятность X. Общепринято считать F()=. Это и есть вероятность события X в высказанных условиях, а точнее классическое определение вероятности.
С уверенностью можно сказать, что определение понятия вероятности лежит в основе любой аксиоматической системы теории вероятностей. На недостатки классического определения вероятности указывали давно. Были видны и недостатки субъективной трактовки вероятности, идущей от Лапласа. Критику этих недостатков встречали доброжелательно. Наиболее широкое распространение получили работы в этом направлении немецкого учёного Р. Мизеса (1883-1953 гг.), который из гитлеровской Германии эмигрировал в США, где он возглавил Институт прикладной математики. Мизес является основателем так называемой частотной концепции в теории вероятностей.
Основным понятием в частотной теории Мизеса является понятие коллектива. Под коллективом понимается бесконечная последовательность k-одинаковых наблюдений, каждое из которых определяет некоторую точку, принадлежащую заданному пространству конечного числа измерений. Говорить о вероятности, по Мизесу, можно только тогда, когда существует эта определённая совокупность событий. Коллектив, по Мизесу, "…должен удовлетворять следующим двум требованиям:
относительные частоты появления определённого события в последовательности независимых испытаний имеют определённые предельные значения;
предельные значения, о которых говорится в первом требовании, остаются неизменными, если из всей последовательности выбрать любую подпоследовательность.
Приняв за основу тот факт, что вероятность и частота - связанные между собой величины, Мизес определяет вероятность как предельное значение частоты: «Обосновано предположение, что относительная частота появления каждого единичного наблюдаемого признака стремится к определённому предельному значению. Это предельное значение мы называем вероятностью».
Но на самом деле никакого обоснованного предположения у нас нет. Мы никогда не можем знать, имеет ли данная частота предел или нет, хотя бы уже потому, что для этого пришлось бы произвести бесконечное число опытов. Это определение несостоятельно математически, так как мы не можем указать функциональной зависимости между количеством испытаний n и частотой появления событий , где m-количество появлений события, а, не указав такой зависимости, мы не можем вычислить предел, , который принят за вероятность.
Крупнейшие представители теории вероятностей никогда не были приверженцами частотной школы, а приверженцы этой школы не получили существенных результатов в теории вероятностей.
Попыток обосновать теорию вероятностей было достаточно много. Например, итальянский математик Б. Финетти выдвинул субъективное толкование вероятности. Таким подходом к вероятности он пытался преодолеть противоречия, которые возникли и в классической теории вероятностей и в частотной школе Мизеса. По Финетти вероятность является чисто субъективной величиной. Каждый человек по-своему оценивает вероятность того или иного события.
Несколько позже Джеффрис разрабатывал понятие вероятности как степени правдоподобия. Впервые эта концепция была выдвинута Кейнесом в 1921 г. По этой теории каждое предложение имеет определённую вероятность. Вероятностям такого рода нельзя дать частотной интерпретации. Разработка теории степеней правдоподобия продолжается некоторыми математиками и в наши дни.
1.4 Появление аксиоматического определения понятия вероятности
На сегодняшний день закрепилось определение понятия вероятности данное А.Н. Колмогоровым в книге «Основные понятия теории вероятностей» (1933 г.) аксиоматически.
Уже были вскрыты глубокие аналогии между понятиями теории вероятностей и понятиями метрической теории функций. Были установлены аналогии между множеством и событием, мерой множества и вероятностью события, интегралом и математическим ожиданием и др.
Возникла потребность в аксиоматизации теории вероятностей исходя из теоретико-множественных представлений, что и было выполнено в книге Колмогорова. После этой аксиоматизации теория вероятностей заняла равноправное место среди других математических дисциплин.
Рассмотрим аксиоматику Колмогорова.
Пусть имеются наблюдения или испытания, которые хотя бы теоретически допускают возможность неограниченного повторения. Каждое отдельное испытание может иметь тот или иной исход в зависимости от случая. Совокупность всех этих возможных исходов образует множество E, которое является первым основным понятием аксиоматики. Это множество E называется множеством элементарных событий. Что из себя представляют события, являющиеся элементами этого множества, для дальнейшего логического построения совершенно безразлично, как безразлично для аксиоматического построения геометрии, что мы будем понимать под словами «точка», «прямая» и т.п. Только после такого аксиоматического построения теория вероятностей допускает различные интерпретации, в том числе и не связанные со случайными событиями. Любое подмножество множества E, т.е. любую совокупность возможных исходов, называют событием. Или другими словами: случайными событиями называются элементы множества F подмножеств из E. Далее рассматриваются не все события, а только некоторое тело событий. Теория вероятностей занимается только теми событиями, частота которых устойчива. Это положение в аксиоматической теории Колмогорова формализуется таким образом, что каждому событию, которое мы рассматриваем, ставится в соответствие некоторое положительное число, которое называется вероятностью данного события. При этом абстрагируются от всего того, что помогало сформулировать это понятие, например, от частоты. Это даёт возможность интерпретировать вероятность не только вероятностным способом. Тем самым значительно расширяются возможности вероятностей.
Сформулируем аксиомы Колмогорова [1,5].
Если случайные события A и B входят в состав F, то события A или B, A и B, не A и не B также содержатся в F.
F содержит в качестве элементов множество E и все отдельные его элементы.
Каждому элементу A из F поставлено в соответствие неотрицательное вещественное число P(A), называемое вероятностью события A.
P(E)=1.
Если A и B не пересекаются и принадлежат F, то P (A+B)=P(A)+P(B). Для бесконечных множеств F имеется ещё одна аксиома, которая для конечных множеств является следствием пяти приведённых аксиом.
Если пересечение последовательности событий пусто, то .
Аксиоматика Колмогорова способствовала тому, что теория вероятностей окончательно укрепилась как полноправная математическая дисциплина.
Проследив динамику развития и формирования понятия вероятности можно сделать вывод, что оно вырабатывалось сложными путями. Математики и философы, политики и просто увлечённые теорией вероятностей учёные пытались облечь понятие вероятности в конкретную форму. Давая правильные и ошибочные определения понятию вероятности, они маленькими шагами продвигались к верному решению этого вопроса. Но даже в хорошо и правильно сформулированных вариантах классического определения вероятности можно обнаружить пробелы и упущения. Например, почти во всех данных вариантах классического определения отсутствует условие конечности числа равновозможных событий, т.е. условие, что . Возможно это условие не оговаривалось, но подразумевалось. С построением системы аксиом для определения понятия вероятности задача некоторой несостоятельности классического определения вероятности была решена. Однако наблюдаются попытки дать трактовку вероятности с более широких позиций, в том числе и с позиций теории информации.
2. Динамика развития понятия математического ожидания
2.1 Предпосылки введения понятия математического ожидания
Одним из первых приблизился к определению понятия математического ожидания Д. Кардано в своей работе «Книга об игре в кости». Он определил условия безобидной игры, которые можно увидеть на следующем примере Кардано: бросаются две игральные кости. «Если, стало быть, кто-либо заявит, что он желал бы получить 1, 2 или 3, то ты знаешь, что для этого имеется 27 шансов, а так как вся серия состоит из 36, то остаётся 9 бросаний, в которых эти числа очков не выпадут; таким образом, эти числа будут находиться в тройном отношении. Следовательно, при четырёх бросаниях три выпадения будут благоприятны 1, 2 или 3, и только один раз не выйдет ни одного из трёх указанных чисел очков. Если тот, кто ждёт выпадения одного из трёх указанных чисел очков, поставит три асса (древнеримские медные монеты), а другой один, то сначала первый выиграет трижды и получит три асса, а затем второй выиграет один раз и получит три асса; таким образом, в общем итоге четырёх бросаний шансы их всегда сравняются. Стало быть, такие условия расчёта в игре - правильные; если же второй из них поставит больше, то ему придётся состязаться в игре на неравных условиях и с ущербом для себя; а если он поставит меньше, то с барышом.» Однако Кардано понимает, что эти утверждения справедливы только тогда, когда игра будет продолжаться достаточно долго [1].
2.2 Введение понятия математического ожидания и его дальнейшее развитие
Обратимся к работе Х. Гюйгенса «О расчёте в азартных играх». Книга состоит из введения и 14 предложений. Рассмотрим первые три предложения [1].
Предложение 1: «Если я имею равные шансы получения a или b, то это мне стоит «.
Предложение 2: «Если я имею равные шансы на получение a, b или c, то это мне стоит столько же, как если бы я имел .
Предложение 3: «Если число случаев, в которых получается сумма a, равно p и число случаев, в которых получается сумма b, равно q, и все случаи одинаково легко могут произойти, то стоимость моего ожидания равна .
По существу Гюйгенс здесь так определяет математическое ожидание. Он фактически впервые вводит понятие математического ожидания и использует его. Математическое ожидание является обобщением понятия средней арифметической. Средняя арифметическая широко применялась в торговле и промышленности для определения средних цен, средней прибыли и т.п.
Терминология Гюйгенса в теории вероятностей несёт на себе отпечаток коммерческой терминологии. Он считает, что математическое ожидание - это цена шанса на выигрыш в безобидной игре и приходит к выводу, что справедливая цена - есть средняя цена. Он вычисляет «за какую справедливую цену я мог бы уступить своё место в игре другому». Сам Гюйгенс не называет математическое ожидание ожиданием, оно у него фигурирует как стоимость шанса. Впервые термин «ожидание» появляется в переводе работы Гюйгенса Францем ван Схоутеном.
Работа Х. Гюйгенса оказала большое влияние на Я. Бернулли. К предложениям 1, 2 и 3 Гюйгенса Бернулли делает обширное примечание.
«Автор этого трактата излагает …в этом и двух следующих предложениях основной принцип искусства предположений. Так как очень важно, чтобы этот принцип был хорошо понят, то я попытаюсь доказать его при помощи исчислений более обычных и более доступных всем, исходя исключительно из той аксиомы, или определения, что каждый должен ожидать или предполагает ожидать столько сколько он неминуемо получит.
Слово «ожидание» здесь не должно пониматься в его обычном смысле, согласно которому «ожидать» или «надеяться» относится к событию наиболее благоприятному, хотя может произойти наихудшее для нас; нужно понимать под этим словом надежду, которую мы имеем на получение лучшего, уменьшенную страхом худшего. Так что стоимость нашего ожидания всегда означает нечто среднее между лучшим, на что мы надеемся, и худшим, чего мы боимся…»
После рассмотрения предложения 3 Бернулли отмечает следующее: «Из рассмотрения …очевидно, что имеется большое сходство с правилом, называемым в арифметике правилом товарищества, которое состоит в нахождении цены смеси, составленной из определённых количеств различных вещей с различной ценой. Или, скорее, что вычисления являются абсолютно одинаковыми. Так, подобно тому, как сумма произведений количеств смешиваемых веществ на их соответственные цены, разделённая на сумму веществ, даёт искомую цену, которая всегда находится между крайними ценами, также сумма произведений случаев на соответственно приносимые ими выгоды, разделённая на число всех случаев, указывает стоимость ожидания, которая вследствие этого всегда является «средней между наибольшей и наименьшей из этих выгод».
Это достаточно хорошее объяснение математического ожидания и его связи со взвешенной средней арифметической [1].
В середине и во второй половине XVIII в. многие учёные занимались вопросами связанными с теорией вероятностей. Прежде всего, это относится к математикам, из которых можно выделить Д. Бернулли (1700-1778 гг.). Наиболее известной работой Д. Бернулли по теории вероятностей является «Опыт новой теории меры случая» (1738 г.), в которой он вводит понятие морального ожидания [2]. Однако, несмотря на то, что в дальнейшем многие учёные разрабатывали это понятие оно не прижилось в теории вероятностей. Д. Бернулли вводит правило подсчёта математического ожидания, которое он называет основным правилом: «Значение ожидаемой величины получается путём умножения значений отдельных ожидаемых величин на число случаев, в которых они могут появиться, и последующего деления суммы произведений на сумму всех случаев, при этом требуется, чтобы рассматривались те случаи, которые являются равновозможными между собой» [1, 2]. Это правило полностью соответствует определению математического ожидания дискретной случайной величины.
.
Здесь -значения отдельной i-ой ожидаемой величины,
-число случаев в которых может появиться i-ая ожидаемая величина,
n-число всех случаев.
Мы видим, что определение математического ожидания дискретной случайной величины окончательно сформировалось к середине XVIII в. и активно использовалось при решении различных задач. Однако понятие математического ожидания иногда считали недостаточным. Поэтому были попытки ввести понятие морального ожидания (нравственное ожидание), которое связано с «выгодой, зависящей от личных условий». Несмотря на то, что разработкой понятия морального ожидания занимались многие учёные (Д. Бернулли, Ж.Л. Бюффон, В.Я. Буняковский, Н.Е. Зернов, Лаплас, Пуассон, Лакруа), это понятие не закрепилось в науке.
Можно сделать вывод, что понятие математического ожидания преодолело сложный путь чтобы стать одним из главных и основных понятий в теории вероятностей.
3. Закон больших чисел
3.1 Первоначальное осмысление статистической закономерности
Закон больших чисел занимает одно из центральных мест в теории вероятностей. До недавнего времени проблема закона больших чисел не была окончательно решена. Рассмотрим динамику развития этого закона.
Одним из первых к пониманию статистической закономерности и закона больших чисел подошёл Кардано. Относительно своего заключения о 6 возможностях получить одинаковые числа очков на двух костях и 30 возможностях - разные, он пишет: «Целая серия игр (36 бросков) не даёт отклонения, хотя в одной игре это может случиться…, при большом числе игр оказывается, что действительность весьма приближается к этому предположению» [1].
Здесь Кардано утверждает, что при малом количестве наблюдений частота может отклоняться довольно сильно от доли, или, другими словами, - от вероятности; при большом числе испытаний это отклонение будет незначительно.
3.2 Появление теорем Бернулли и Пуассона - простейших форм закона больших чисел
Я. Бернулли писал: «…И что не дано вывести a priori то, по крайней мере, можно получить a posteriori, т.е. из многократного наблюдения результатов…».
Бернулли утверждает, что если в азартных играх всегда можно посчитать число случаев, а сами случаи встречаются одинаково легко, то в других явлениях в природе и обществе ни то ни другое не имеет.
«Всё дело сводится к тому, чтобы для правильного составления предложений о какой-либо вещи были точно исчислены как числа случаев, так и было бы определено насколько одни случаи могут легче встретиться, чем другие…». Но это совершенно невозможно сделать для большинства явлений. Однако Бернулли нашёл выход из сложившейся ситуации. Он утверждает, что при увеличении числа испытаний, частота появления какого-либо события будет мало отличаться от вероятности появления этого события. И чем больше число испытаний, тем меньше это отличие. «Следует заметить, что отношение между числами случаев, которые мы желаем определить опытом, понимается не в смысле точного отношения…, но до известной степени приближённого, т.е. заключённого в двух границах, которые можно взять сколь угодно тесными».
В помощь доказательству своей теоремы Бернулли доказывает ряд лемм [1].
Лемма 1.
Рассматриваются два ряда
0, 1, 2, …, r - 1, r, r + 1, …, r + s;
0, 1, 2, …, nr - n, …, nr, …, nr + n, …, nr + ns
и утверждается, что с увеличением n растёт количество членов между nr и nr + n; nr и nr - n; nr + n и nr + ns; nr и 0. Кроме того, как бы велико ни было n, число членов после nr + n не будет превышать более чем в s - 1 раз число членов, заключённых между nr и nr + n или между nr и nr - n, а также число членов до nr - n не будет превышать более чем в r - 1 раз число членов между теми же числами.
Доказательство.
Найдём количество членов между указанными в лемме членами рассматриваемых рядов. Для этого введём обозначения:
-число членов между nr и nr+n;
-число членов между nr и nr-n;
-число членов между nr+n и nr+ns;
-число членов между nr и 0;
-число членов после nr+n;
-число членов до nr-n.
;
;
;
.
Очевидно, что с увеличением n (т.е. при ) , , , будут неограниченно возрастать.
Найдём число членов после nr+n (), очевидно, что ==.
Очевидно, что ==, т.е. число членов после nr+n не превышает более чем в s-1 раз число членов заключённых между nr и nr+n или между nr и nr-n, для любого n.
Найдём число членов до nr-n (), очевидно, что , а значит ==, т.е. число членов до nr-n не превышает более чем в r-1 раз число членов заключённых между nr и nr+n или между nr и nr-n, для любого n.
Что и требовалось доказать.
Лемма 2.
Всякая целая степень какого-либо двучлена r + s выражается числом членов, на единицу большим числа единиц в показателе степени.
Доказательство.
Рассмотрим , где x (x - целое число)
= .
Составим ряд из степеней одночлена s (или r)
0,1,2,…, x-2, x-1, x. Число членов в этом ряду равно x+1.
Т. о. всякая целая степень двучлена r + s выражается числом членов, на единицу большим числа единиц в показателе степени. Что и требовалось доказать.
Лемма 3.
В любой степени двучлена r + s, по крайней мере в t=r+s или nt=nr+ns, некоторый член M будет наибольшим, если числа предшествующих ему и следующих за ним членов находятся в отношении s к r или, что то же, если в этом члене показатели букв r и s находятся в отношении самих количеств r и s; более близкий к нему член с той и другой стороны больше более удалённого с той же стороны; но тот же член M имеет к более близкому меньшее отношение, чем более близкий к более удалённому при равном числе промежуточных членов.
Доказательство.
Отмечается, что коэффициенты членов равноудалённых от концов равны. Число всех членов nt+1=nr+ns+1. Наибольший член будет:
M==.
M можно записать в другом виде, воспользовавшись следующей формулой .
M==.
Ближайший к нему слева член равен ;
справа - .
Следующий слева - ;
справа - и т.д.
; ;
; , и т.д.
Очевидно, что:
, M-наибольший член.
Что и требовалось доказать.
Лемма 4.
В степени двучлена с показателем nt число n может быть взято столь большим, чтобы отношение наибольшего члена M к двум другим L и , отстоящим от него налево и направо на n членов, превзошло всякое данное отношение.
Доказательство.
M==;
L=;
=.
Для доказательства леммы необходимо установить, что
и .
===
=.
===
=.
Но эти отношения будут бесконечно большими, когда n полагается бесконечным, ибо тогда исчезают числа 1, 2, 3 и пр. по сравнению с n, и сами числа , , и пр. , , и пр. будут иметь те же значения, как и . После этого отбросив эти числа и проведя соответствующие сокращения на n, получим, что
=; =.
Количество сомножителей в числителе и знаменателе равно n. Вследствие чего эти отношения будут бесконечными степенями выражений: и и поэтому бесконечно большими.
Таким образом, мы выяснили, что в бесконечно высокой степени двучлена отношение наибольшего члена к другим L и превосходит всякое заданное отношение.
и .
Что и требовалось доказать.
Лемма 5.
Отношение суммы всех членов от L до ко всем остальным с увеличением n может быть сделано больше всякого заданного числа.
Доказательство.
M - наибольший член разложения.
Пусть соседние с ним слева будут F, G, H,…;
пусть соседние с L слева будут P, Q, R,….
На основании леммы 3 имеем:
<;<;<, … или <<<<….
Так как по лемме 4, при n бесконечно большом, отношение бесконечно, то тем более будут бесконечными отношения , , ,…, и потому отношение также бесконечно, т.е. сумма членов между наибольшим M и пределом L бесконечно больше суммы такого же числа членов за пределом L и наиболее к нему близких. И так как число всех членов за пределом L превышает, по лемме 1, не более чем в s-1 раз (т.е. конечное число раз) число членов между этим пределом и наибольшим членом M, а сами члены делаются тем меньше, чем дальше они отстоят от предела, по первой части леммы 3, то сумма всех членов между M и L (даже не считая M) будет бесконечно больше сумм всех членов за пределом L. Аналогичное утверждение можно доказать относительно членов между M и . Оба эти утверждения и доказывают лемму.
Что и требовалось доказать.
Главное предложение.
Пусть число благоприятных случаев относится к числу неблагоприятных точно или приближённо, как r к s, или к числу всех случаев, как r к r+s или r к t, это отношение заключается в пределах и . Требуется доказать, что можно взять столько опытов, чтобы в какое угодно данное число раз (c раз) было вероятнее, что число благоприятных наблюдений попадёт в эти пределы, а не вне их, т.е. отношение числа благоприятных наблюдений к числу всех будет не более чем и не менее .
Доказательство.
Пусть число необходимых наблюдений будет nt. Вероятность того что все наблюдения будут благоприятны, равна
,
что все кроме одного-
,
кроме двух
и т.д.
А это есть члены разложения (r+s) в степени nt (делённые на ), которые исследовались в прошлых леммах. Все дальнейшие выводы основываются на доказанных леммах. Число случаев с ns неблагоприятными набдюдениями и nr благоприятными даёт член M. Число случаев, при которых будет nr+n или nr-n благоприятных наблюдений, выражается членами L и , отстоящих на n членов от M. Следовательно, число случаев, для которых благоприятных наблюдений окажется не более nr+n и не менее nr-n, будет выражаться суммой членов, заключённых между L и . Общее же число случаев, для которых благоприятных наблюдений будет или больше nr+n или меньше nr-n, выражается суммой членов, стоящих левее L и правее .
Так как степень двучлена может быть взята столь большая, чтобы сумма членов, заключённых между обоими пределами L и превосходила более чем в c раз сумму всех остальных из этих пределов выходящих, по леммам 4-й и 5-й, то, следовательно, можно взять столь большое число наблюдений, чтобы число случаев, при которых отношение числа благоприятных наблюдений к числу всех оказывается заключённым в пределы и или и , превышало более чем в c раз число остальных случаев, т.е. сделалось более чем в c раз вероятнее, что отношение числа благоприятных наблюдений к числу всех заключается в пределах и , а не вне этих пределов.
Что и требовалось доказать.
Для сравнения дадим современную формулировку теоремы Бернулли.
Теорема Бернулли.
Если вероятность наступления события A в последовательности независимых испытаний постоянна и равна p, то, каково бы ни было положительное число , с вероятностью как угодно близкой к единице, можно утверждать, что при достаточно большом числе испытаний n разность по абсолютной величине окажется меньшей, чем :
,
где -любое малое число.
Эта теорема будет доказана нами позже (после введения неравенства Чебышева).
Всегда может случиться, что, каким бы большим ни было n, в данной серии из n испытаний окажется больше . Но, согласно теореме Бернулли мы можем утверждать, что если n достаточно велико и если произведено достаточно много серий испытаний по n испытаний в каждой серии, то в подавляющем числе серий неравенство будет выполнено.
Бернулли считает, что из доказанной теоремы «вытекает то удивительное, по-видимому, следствие, что если бы наблюдения над всеми событиями продолжать всю вечность (причём вероятность, наконец, перешла бы в полную достоверность), то было бы замечено, что всё в мире управляется точными отношениями и постоянным законом изменения, так, что даже в вещах, в высшей степени случайных, мы принуждены были бы признать как бы некоторую необходимость и, скажу я, рок».
А.А. Марков писал, что в этой работе Бернулли «впервые была опубликована и доказана знаменитая …теорема, положившая начало закону больших чисел…». Пуассон (1781-1840 гг.) в своей работе «Исследования о вероятности судебных приговоров по уголовным и гражданским делам» занимался предельными предложениями. В результате он доказал свою знаменитую теорему, которой дал название «закон больших чисел» [1]. Теорема Пуассона формулировалась следующим образом.
Теорема.
Если производится n независимых испытаний, результатами которых является наступление или не наступление события A, причём вероятность наступления события в отдельных испытаниях неодинакова, то с вероятностью, сколь угодно близкой к единице (или, другими словами, - к достоверности), можно утверждать, что частота наступления события A будет сколь угодно мало отличаться от средней арифметической вероятностей наступления события в отдельных испытаниях.
Теперь эту теорему записывают так:
Если же вероятность наступления события не будет изменяться от испытания к испытанию, то =p, и теорема Пуассона в этом случае переходит в теорему Я. Бернулли, которая, таким образом, является частным случаем теоремы Пуассона.
3.3 Неравенство Чебышева. Закон больших чисел в форме Чебышева
17.12.1866 г. Чебышев доложил Академии наук свою работу «О средних величинах», которая была опубликована в 1867 г. В «Математическом сборнике». В этой работе Чебышев доказал одно важное неравенство, которое теперь называется неравенством Чебышева. При помощи этого неравенства Чебышев получил теорему, из которой как следствия получаются теоремы Бернулли и Пуассона. В начале работы «О средних величинах» Чебышев доказывает теорему [1,6].
Теорема.
Если математическое ожидание величин x, y, z,… суть a, b, c,…,
а математическое ожидание квадратов , , ,… суть , , ,…, то вероятность, что сумма x+y+z+… заключается в пределах
,
,
при всяком значении остаётся больше .
Далее Чебышев переходит к следующей теореме.
Если мы изобразим через N число величин x, y, z,…, u, полагая в доказанной сейчас теореме , разделим на N как сумму x+y+z+…, так и пределы её
,
,
то из этой теоремы получим следующую относительно средних величин.
Теорема.
Если математическое ожидание величин
x, y, z,…,, , ,… суть a, b, c,…,, , ,…, то вероятность, что среднее арифметическое N величин x, y, z,…, от среднего арифметического математических ожиданий этих величин разнится не более как на при всяком значении, будет превосходить .
Подобные документы
Представление доказательства неравенства Чебышева. Формулирование закона больших чисел. Приведение примера нахождения математического ожидания и дисперсии для равномерно распределенной случайной величины. Рассмотрение содержания теоремы Бернулли.
презентация [65,7 K], добавлен 01.11.2013Теорема Бернулли как простейшая форма закона больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Качественные и количественные утверждения закона больших чисел, его практическое применение.
курсовая работа [75,2 K], добавлен 17.12.2009Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы. Примеры решения задач с игральными костями, выигрыша в лотерею, вероятности брака и др. Биноминальный закон распределения: решение математического ожидания и дисперсии.
контрольная работа [74,4 K], добавлен 31.05.2010Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.
контрольная работа [90,2 K], добавлен 04.01.2011Возникновение и развитие теории вероятностей и ее приложений. Решение классических парадоксов игры в кости и "азартных игр". Парадокс закона больших чисел Бернулли и Бертрана, дня рождения и раздачи подарков. Изучение парадоксов из книги Г. Секея.
контрольная работа [64,8 K], добавлен 29.05.2016Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.
контрольная работа [167,7 K], добавлен 29.04.2012Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
курсовая работа [29,7 K], добавлен 31.05.2010Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.
презентация [422,7 K], добавлен 02.06.2013Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа [212,0 K], добавлен 01.05.2010