Граничні теореми теорії ймовірностей
Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.
Рубрика | Математика |
Вид | реферат |
Язык | украинский |
Дата добавления | 02.02.2010 |
Размер файла | 88,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Міністерство освіти і науки України
Приватний вищий навчальний заклад
Європейський університет
Запорізька філія
Реферат
Граничні теореми теорії ймовірностей
з дисципліни: Теорія ймовірностей та математична статистика
Запоріжжя,
2007р.
Теорема Бернуллі. Нехай імовірність появи події А в кожному із п незалежних повторних випробувань дорівнює р, т - число появ події А (частота події) в п випробуваннях. Тоді
Доведення. Частість можна розглядати як невід'ємну випадкову величину. Знайдемо її математичне сподівання
Отже, необхідно оцінити імовірність відхилення випадкової величинивід її математичного сподівання. Для цього знайдемо дисперсію цієї випадкової величини
За нерівністю Чебишова одержимо
Звідси граничним переходомодержуємо (4), що й треба було довести.
Теорема Чебишова. Нехай - послідовність попарно незалежних випадкових величин, які задовольняють умовам
для усіх t = 1,2,..., п.
Тоді
Доведення. Знайдемо математичне сподівання та дисперсіюсередньої випадкових величин, тобто
Застосуємо для випадкової величини нерівність Чебишова (2)
Границя цієї імовірності при дорівнює одиниці, тобто рівність (5) доведено.
Центральна гранична теорема. Нехай задана послідовність незалежних однаково розподілених випадкових величин
Розглянемо випадкову величинуТоді
Прифункція розподілу
тобто сумабуде розподілена за нормальним законом з математичним сподіванням 0 та дисперсією
Для доведення цієї теореми треба знайти границю характеристичної функції, побудованої для нормованої випадкової величини
Наслідок. При розподіл суми однаково розподілених випадкових величин мало відрізняється від нормального розподілу.
Теорема Ляпунова. Нехай задана послідовність незалежних випадкових величин таких, що
Побудуємо суму випадкових величин ПозначимоЯкщо виконується умова рівномірної малості величин, що утворюють суму
то сумабуде розподіленою нормально з математичним сподіваннямта дисперсією
Доведення цієї теореми досить складне, але відмітимо, що у випадку, колиможна розглядати випадкові величини Величинибудуть задовольняти умову теореми Ляпунова.
Приклад 2. Скільки додатків треба взяти у теоремі Чебишова, щоб з надійністю 96% і точністю до 0.01 виконувалась наближена рівність
Розв'язок. В цьому прикладі є = 0.01. Щоб одержати надійність 96% згідно формули (6) достатньо підібрати таке п, яке задовольняє нерівність
Зауваження 1. Приклад 2 показує, що навіть у випадку не дуже великих точності та надійності, треба брати значну кількість додатків (п - досить велике число). Це означає, що оцінки, одержані з використанням нерівності (6), - завищені. Більш точні оцінки можна одержати за допомогою теореми Ляпунова.
Список використаної літератури
1. Барковський В.В., Барковська Н.В., Лопатін О.К. теорія ймовірностей та математична статистика. - К.: ЦУЛ, 2002. - 448с.
2. Гмурман В.Е. теория вероятностей и математическая статистика. - М.: Высшая школа, 1980.
3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М.: Высшая школа, 1975.
4. Гнеденко Б.В. Курс теории вероятностей. - М.: наука, 1988.
5. Леоненко М.М., Мішура Ю.С. та ін. Теоретико-ймовірностні та статистичні методи в економетриці та фінансовій математиці. - К.: Інформтехніка, 1995.
Подобные документы
Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.
контрольная работа [84,2 K], добавлен 23.09.2014Визначення кількості сполучень при дослідженні ймовірностей. Закон розподілу випадкової величини. Функція розподілу, знаходження середнього квадратичного відхилення. Визначення щільності розподілу ймовірностей. Закон неперервної випадкової величини.
контрольная работа [71,3 K], добавлен 13.03.2015Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.
реферат [134,7 K], добавлен 27.02.2012Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.
реферат [113,9 K], добавлен 12.03.2011Функція розподілу випадкової величини. Найважливіші закони розподілу дискретних випадкових величин. Властивості функції розподілу. Дискретні і неперервні випадкові величини. Геометричний закон розподілу. Біноміальний розподіл випадкової величини.
реферат [178,2 K], добавлен 26.01.2011Імовірність несплати податку для кожного підприємця. Випадкова величина в інтервалі. Ряд розподілу добового попиту на певний продукт. Числові характеристики дискретної випадкової величини. Біноміальний закон розподілу, математичне сподівання величини.
контрольная работа [152,5 K], добавлен 16.07.2010Знаходження ймовірності настання події у кожному з незалежних випробувань. Знаходження функції розподілу випадкової величини. Побудова полігону, гістограми та кумуляти для вибірки, поданої у вигляді таблиці частот. Числові характеристики ряду розподілу.
контрольная работа [47,2 K], добавлен 20.11.2009Знаходження імовірності за локальною теоремою Муавра-Лапласа. Формула Муавра-Лапласа, інтегральна теорема Лапласа. Дискретна випадкова величина, знаходження функції розподілу. Математичне сподівання і дисперсія випадкової величини; закон розподілу.
контрольная работа [209,3 K], добавлен 10.04.2009Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.
курсовая работа [105,2 K], добавлен 09.07.2009Класична ймовірність події як відношення кількості сприятливих до загальної кількості можливих подій. Інтегральна теорема Мавра-Лапласа. Підпорядкування випадкової величини біноміальному закону розподілу з певними параметрами. Ряд розподілу цієї величини.
задача [22,2 K], добавлен 14.06.2009