Исследование динамических свойств моделей типовых звеньев систем автоматического управления
Сущность и порядок внедрения экспериментального метода построения частотных характеристик для сложного объекта автоматического регулирования, его особенности и расчеты. Применение аппаратных средств определения амплитудно-фазовых характеристик звеньев.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 26.04.2009 |
Размер файла | 399,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Лабораторная работа
«Исследование динамических свойств моделей типовых звеньев систем автоматического управления по их частотным характеристикам»
Введение
Цель работы - изучение экспериментального метода и аппаратных средств определения амплитудно-фазовых частотных и динамических характеристик типовых звеньев.
1. Теоретические сведения
Для сложного объекта автоматического регулирования не всегда удается произвести исследование с помощью аналитических методов ввиду того, что заранее неизвестны математические модели, параметры объекта или существуют значительные нелинейности в объекте. В этом случае применим экспериментальный метод построения частотных характеристик исследуемого объекта, базирующийся на том, что если на его вход подать сигнал синусоидальной формы с частотой и амплитудой, равной единице, то на выходе в установившемся режиме получится тоже синусоидальный сигнал с той же частотой но с другими амплитудой и фазой.
Синусоидальные функции могут выражаться в векторной форме показательными функциями с мнимым аргументом:
Величина W(j) называется комплексным коэффициентом передачи или усиления, представляющим комплексное число, модуль которого равен отношению амплитуд выходного и входного сигналов при неизменной частоте входного сигнала. Если положить =0, то получается коэффициент усиления или коэффициент передачи системы или звена.
Процесс регулирования Y(t) складывается из двух частей: переходного процесса YПП(t) и установившегося процесса YУСТ(t):
Y(t) = YПП(t) + YУСТ(t).
Математически переходный процесс определяется общим решением однородного уравнения (1.1), при Х(t)=0, а установившийся процесс - частным решением уравнения неоднородного уравнения (1.1), при заданной правой части Х(t). С точки зрения теоретической механики переходный процесс есть свободное движение системы, а установившийся процесс - вынужденное движение. С точки зрения теории колебаний первое есть собственные колебания, а второе - вынужденные колебания, но это ни в коем случае не означает, что переходный и установившийся процессы всегда по форме будут колебательными. Для получения переходной характеристики подают мгновенно скачком на вход звена некоторое постоянное значение вида:
и наблюдают переходный процесс (свободные колебания) на выходе звена. На коммутационном поле АВМ эта модель входного воздействия реализуется на масштабном операционном усилителе с изменяемым согласно варианта задания коэффициентом усиления:
Такое идеальное звено не обладает инерционностью и мгновенно дает на выходе величину:
(1.2)
Если на вход звена или системы подать сигнал синусоидальной формы с частотой ? вида:
(1.3)
то на выходе в установившемся режиме получится тоже синусоидальный сигнал с той же частотой ?, но с другими амплитудой и фазой (наблюдение вынужденных колебаний звена).
2 Экспериментальная часть
Составим таблицу значений 2.1
Построим график апериодического звена второго порядка, рисунок 2.1 и с помощью данного графика получим значение T2.
Рисунок 2.1 - график апериодического звена второго порядка
Вычислив А(?) и ?(?), построим годограф, рисунок 2.2.
Рисунок 2.2. - Годограф А(?)?(?)
Зная значение = 14 В, а = 15 В, можно рассчитать .
Исходя их графика для определения постоянных времени апериодического звена второго порядка, рисунок 2.3, найдём значение .
Рисунок 2.3 - График для определения постоянных времени апериодического звена второго порядка
Следует можем найти :
Воспользовавшись программой MatLab, построим графики характеристик: ФЧХ, АЧХ, ВЧХ, МЧХ, КЧХ, ЛАЧХ и ЛФЧХ.
В окна команд запишем:
>> m=[0.93333]
m = 0.9333
>> n=[1.3225 1.15 1]
n = 1.3225 1.1500 1.0000
>> tf (m, n)
Transfer function:
0.9333
1.323 s^2 + 1.15 s + 1
>> [h, w]=freqs (m, n, 600);
>> ampl=abs(h);
>> phi=angle(h);
>> phi=unwrap(phi);
>> plot (w, phi, 'k'); grid on
>> plot (w, ampl, 'k'); grid on
>> vchhar=ampl.*cos(phi);
>> plot (w, vchhar, 'k'); grid on
>> mchhar=ampl.*sin(phi);
>> plot (w, mchhar, 'k'); grid on
>> plot (vchhar, mchhar, 'k'); grid on
График ФЧХ представлен на рисунке 2.4.
Рисунок 2.4 - График фазочастотной характеристики
График АЧХ представлен на рисунке 2.5.
Рисунок 2.5 - График амплитудо-частотной характеристики
График ВЧХ представлен на рисунке 2.6.
Рисунок 2.6 - График вещественной частотной характеристики
График МЧХ представлен на рисунке 2.7.
Рисунок 2.7 - График мнимой частотной характеристики
График КЧХ представлен на рисунке 2.8.
Рисунок 2.8 - График комплексной частотной характеристики
Для построения ЛАЧХ и ЛФЧХ составим структурную схему представленную на рисунке 2.9.
Рисунок 2.9 - Структурная схема для построения ЛАЧХ и ЛФЧХ
Рисунок 2.9 - Графики ЛАЧХ и ЛФЧХ
Подобные документы
Построение амплитудно-частотных и фазово-частотных характеристик элементарных звеньев радиотехнических цепей, последовательно и параллельно соединенных. Рассмотрение переходных процессов в цепях, спектральных преобразований и электрических фильтров.
курсовая работа [1,4 M], добавлен 07.01.2011Входные и передаточные комплексные функции цепи, особенности их исследования и получения. Расчет частотных характеристик по выражениям амплитудно-частотных характеристик на основе карты нулей и полюсов. Использование автоматического метода анализа цепей.
курсовая работа [1,1 M], добавлен 21.10.2012Уравнения динамики разомкнутой системы автоматического регулирования в операторной форме. Построение динамических моделей типовых регуляторов оборотов ГТД. Оценка устойчивости разомкнутых и замкнутых систем. Алгебраические критерии Рауса и Гурвица.
контрольная работа [474,3 K], добавлен 13.11.2013Назначение и принцип действия систем автоматического регулирования. Анализ характеристик САР перепада давления топлива на дроссельном кране; построение структурной схемы и определение передаточных функций. Оценка устойчивости и качества регулирования САР.
курсовая работа [706,2 K], добавлен 18.09.2012Математическое описание системы автоматического регулирования. Передаточные функции отдельных звеньев. Преобразование структурной схемы. Оценка запасов устойчивости критерием Найквиста. Построение кривой переходного процесса методом разностных уравнений.
курсовая работа [722,1 K], добавлен 24.12.2012Исследование частотных и переходных характеристик линейной электрической цепи. Определение электрических параметров ее отдельных участков. Анализ комплексной передаточной функции по току, графики амплитудно-частотной и фазово-частотной характеристик.
курсовая работа [379,2 K], добавлен 16.10.2021Обзор существующих систем управления, исследование статических динамических и энергетических характеристик. Разработка и выбор нечеткого регулятора. Сравнительный анализ динамических, статических, энергетических характеристик ранее описанных систем.
курсовая работа [1,6 M], добавлен 27.06.2014Определение передаточных функций звеньев системы: шарико-винтовой передачи и редуктора. Суммарный фазовый сдвиг, соответствующий максимальному перемещению. Расчет передаточных функций системы автоматического управления. Синтез корректирующих звеньв.
курсовая работа [169,9 K], добавлен 15.01.2015Расчет мощности главного привода реверсивного стана, методика построения скоростных и нагрузочных диаграмм. Порядок вычисления параметров силовой схемы, контура тока, регулятора скорости, контура регулирования возбуждения, исследование их характеристик.
курсовая работа [449,9 K], добавлен 27.06.2014Система автоматического управления электроприводом. Управление процессами пуска, торможения и реверсирования. Защита от кратковременных и длительных перегрузок и перенапряжений. Способы воздействия на объект регулирования. Число контуров регулирования.
лекция [703,4 K], добавлен 19.02.2014