Расчет процентов по кредитам и вкладам

Определение процентов, при которой первоначальный капитал достигнет через 180 дней заданной суммы. Вычисление размеров долга для вариантов начисления процентов. Расчет суммы на счете клиента к концу срока вклада. Определение дисконтированной величины.

Рубрика Банковское, биржевое дело и страхование
Вид контрольная работа
Язык русский
Дата добавления 15.11.2010
Размер файла 35,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Определить простую ставку процентов, при которой первоначальный капитал в размере 10000 руб. достигнет через 180 дней суммы 13000

Решение.

13000=10000•(1+180•p/365), где p - искомая процентная ставка.

3000=1800000•p/365

p=3000•365/1800000

p=0.6083

Следовательно, искомая процентная ставка - 60.83% годовых.

2. Кредит в размере 45000 выдан с 26.03 по 18.10 под простые 48% годовых. Определить размеры долга для различных вариантов начисления процентов

Решение.

«Английская практика»

tф=6+30+31+30+31+31+30+18-1=206 дней.

FV=PV+I

I=PV•i•(t/T), где T - 365 дней.

I=45000•0.48•(206/365)=12190.68 руб.

FV=P+I=45000+12190.68=57190.68 руб.

«Французская практика»

tф=206 дней, T=360 дней.

I=45000•0.48•(206/360)=12360 руб.

FV=P+I=45000+12360=57360 руб.

«Германская практика»

tф=6+30+30+30+30+30+30+18-1=203 дней, T=360 дней.

I=45000•0.48•(203/360)=12180 руб.

FV=P+I=45000+12180=57180 руб.

3. Банк объявил следующие условия выдачи ссуды на год: за 1 квартал ссудный процент 48%, а в каждом последующем квартале процентная ставка по ссуде увеличивается на 3%. Определить сумму к возврату в банк, если ссуда выдана на год и составляет 45000 рублей (простые проценты)

Решение.

45000•(1+(90•0.48+91•0.51+92•0.54+ 92•0.57)/365) = 68637.95 руб.

4. Договор вклада заключен на 8 лет и предусматривает начисление и капитализацию процентов по полугодиям. Сумма вклада 45000 руб., годовая ставка 28%. Рассчитать сумму на счете клиента к концу срока

Решение.

После первого полугодия сумма составит:

45000•(1+0.14)=51300 руб.

Проведя аналогичное «начисление» 16 раз (по числу полугодий) мы получим сумму:

45000•(1+0.14)16 = 366176.22 руб.

5. Владелец векселя номинальной стоимости 13000 руб. и сроком обращения 1 год предъявил его банку-эмитенту для учета за 60 дней до платежа. Банк учел его по ставке 30% годовых. Определить дисконтированную величину, то есть сумму, полученную владельцем векселя и величину дисконта

Решение.

Дисконт.

D=13000•0.3•60/360 = 650 руб.

Дисконтированная величина.

13000-650=12350 руб.

6. Определить значение годовой учетной ставки банка, эквивалентной ставке простых процентов 48% годовых (n=1)

Решение.

7. На вклады ежеквартально начисляются проценты по номинальной годовой ставке 28%. Определить сумму вклада для накопления через 1,5 года суммы 13000

Решение.

Искомая сумма равна

= = 8862.45 руб.

8. Банк предлагает долгосрочные кредиты под 48% годовых с ежеквартальным начислением процентов, 50% годовых с полугодовым начислением процентов и 44% с ежемесячным начислением процентов. Определить наиболее выгодный для банка вариант кредитования

Решение.

Рассчитаем сумму процентов за год на 1000 рублей кредита по всем трем вариантам.

1. = = 573.52 руб.

2. = = 562.5 руб.

3. = 540.53 руб.

Из приведенных расчетов видно, что наиболее выгодным для банка будет первый вид кредитования.

9. Банк выдает кредит под 48% годовых. Полугодовой индекс инфляции составил 0.09. Определить реальную годовую ставку процентов с учетом инфляции

Решение.

Искомая реальная ставка равна

10. Какую ставку процентов по вкладам нужно назначить, чтобы реальная доходность вклада с учетом инфляции 0.09 была 10% годовых

Решение.

Воспользуемся формулой И. Фишера

i?=i+?+i?

Здесь i? - ставка с учетом инфляции

? - уровень инфляции

i - ставка процентов

Т. е. искомая ставка равна 0.1•0.09+0.1+0.09=0.199 = 19.9%

11. Рассчитать уровень инфляции за год при ежемесячном уровне инфляции 0.09

Возьмем индекс инфляции за год.

In=(1+?)n=(1+0.09)12=2.81

Отсюда получаем:

In=1+?г>?г=In-1

?г= 2.81-1=1.81 = 181%

12. Вклад 45000 положен в банк на полгода с ежемесячным начислением сложным начислением процентов по номинальной ставке 72% годовых. Определить реальный доход вкладчика если ожидаемый ежемесячный уровень инфляции составит 0.09

= 32193.26 руб.

Реальный доход вкладчика составит

32193.26-45000=-12806.74

13. Договор аренды имущества заключен на 5 лет. Аренда уплачивается суммами S1=13000 руб., S2=14000 руб., S3=15000 руб. в конце 1 го, 3 го и 5 го годов. По новому графику платежей вносятся две суммы S4=16000 руб. в конце 2 го года и S5 в конце 4 года. Ставка банковского процента 11%. Определить S5

Решение.

Соотношение платежей в первом и втором вариантах выглядит следующим образом

13000•1.114+14000•1.112+15000= 16•1.113+S5•1.11

19734.92+17249.4+15000=21882.1+S5•1.11

1.11•S5=30102.22

S5=27199.12 руб.

14. Определить размер ежегодных платежей по сложной ставке 11% годовых для создания через 6 лет фонда в размере 13000000 руб

Решение.

Обозначим искомую сумму N. Получим соотношение

N•(1+1.11+1.112+1.113+1.114+1.115) = 13000000

7.91286•N=13000000

N=1642895.24 руб.

15. Рассчитать величину фонда, который может быть сформирован за 2 года путем внесения в конце каждого года сумм 13000. Проценты на вклад начисляются по ставке 11%

Решение.

Искомая сумма = 13000•(1.11+1)=27430 руб.

16. Ежемесячная средняя плата за квартиру составляет 3000 руб. Срок платежа - начало месяца. Рассчитать величину равноценного платежа, взимаемого за год вперед. Ставка банковского депозита 48% годовых

Решение.

Искомая сумма = 3000•9.385•1.04 = 29281.2 руб.

17. Двухлетняя облигация номиналом 1000 руб. имеет 4 полугодовых купона доходностью 20% годовых каждый. Рассчитать цену ее первоначального размещения, приняв ставку сравнения 11%

Решение.

= = 100•3.50515 + 1000•0.807216 = 350.515+807.216 = 1157.73 руб.

18. Бескупонная облигация куплена по курсу 70 и продана по курсу 88 через 90 дней. Рассчитать доходность вложения по схеме сложных и простых процентов

Решение.

Для сложных процентов:

Для простых процентов:

19. Представить план амортизации пятилетнего займа в 4500000 руб., погашаемого 1) равными суммами; 2) равными срочными уплатами. Процентная ставка по займу 11%

Решение.

1) Обозначим сумму долга после К года Dк, проценты - Iк.

У - величина срочной уплаты

У=const+Iк

= 3.6 млн. руб. - долг после первого года.

I1=Dic=4.5•0.11=0,495 млн. руб. - проценты

У1= Dic+=0.495+0.9=1,395 млн. руб.

Второй год:

=2,7 млн. руб.

= 0.396 млн. руб.

У2=0,396+0.9=1,296

Третий год

=1,8 млн. руб.

= 0.297 млн. руб.

У3=0,297+0.9=1,197

Четвертый год

=0,0 млн. руб.

= 0.198 млн. руб.

У3=0,198+0.9=1,098

Пятый год

D5=0

= 0.099 млн. руб.

У5=0.099+0.9=0.999 млн. руб.

Сведем данные в таблицу:

Год

Уплата, млн.

Проценты, млн.

Долг, млн. руб.

0

4.5

1

1.395

0.495

3.6

2

1.296

0.396

2.7

3

1.197

0.297

1.8

4

1.098

0.198

0.9

5

0.999

0.099

0

2) Периодическая выплата постоянной суммы У при заданной процентной ставке ic в течении n лет является аннуитетом.

Величина срочной уплаты:

У=, где D - сумма долга, ai,n - коэффициент приведения ренты.

ai,n=== 3,7

Величина срочной уплаты:

У= = 1,2162 млн. руб.

Обозначим сумму платежа в конце k года через Pk, тогда:

= 0.7212 млн. руб.

I1=У-P1=1.2162-0.7212=0,495 млн. руб.

= 0.8005 млн. руб.

I2=У-P2=1.2162-0.8005=0,4157 млн. руб.

= 0.8886 млн. руб.

I2=У-P2=1.2162-0.8886=0,3276 млн. руб.

= 0.9863 млн. руб.

I2=У-P2=1.2162-0.9863=0,2229 млн. руб.

= 1.0948 млн. руб.

I2=У-P2=1.2162-1.0948=0,1214 млн. руб.

Сведем данные в таблицу:

Год

Величина срочной уплаты, млн. руб.

Сумма платежа

Проценты

1

1.2162

0.7212

0.495

2

1.2162

0.8005

0.4157

3

1.2162

0.8886

0.3276

4

1.2162

0.9863

0.2229

5

1.2162

1.0948

0.1214


Подобные документы

  • Условия открытия депозитного вклада. Определение будущей суммы денег, которую получит клиент банка по окончании срока договора вклада. Определение погашаемой суммы и суммы процентов за кредит по простой ставке процентов 12 и 15 процентов годовых.

    контрольная работа [10,8 K], добавлен 25.02.2014

  • Финансирование оборотного капитала предприятия. Определение суммы погашения кредита и суммы начисленных процентов. Начисление сложных процентов. Расчёт суммы выплат по депозиту и дохода по облигации. Коммерческий вексель с дисконтированной ставкой дохода.

    контрольная работа [27,5 K], добавлен 13.01.2014

  • Определение накопленной суммы денег и величины процентных денег по вкладам при английской, французской и германской практиках. Расчет ставки процентов по кредиту с учетом инфляции, погашенной суммы и суммы начисленных процентов. Расчет величины ренты.

    контрольная работа [27,9 K], добавлен 05.12.2011

  • Определение величины процентов, полученных кредитором, если за предоставление в долг на полгода некоторой суммы денег он получил от заемщика указанную в задаче сумму. Расчет первоначальной величины кредита. Расчет суммы, полученной предъявителем векселя.

    задача [28,0 K], добавлен 03.10.2010

  • Определение суммы начисленных процентов при английской и при германской практиках начисления. Сумма возврата банком по указанному депозиту. Сложная ставка процентов годовых ломбарда по вкладам. Сумма, которую получает вкладчик по окончании срока депозита.

    задача [18,8 K], добавлен 09.04.2009

  • Определение уровня процентной ставки при осуществлении финансовых операций, размера долга для различных вариантов начисления процентов по кредитам. Расчет суммы, полученной владельцем векселя и величины дисконта, эквивалентной годовой учетной ставки.

    контрольная работа [24,8 K], добавлен 15.10.2010

  • Определение срока в годах при начислении простых процентов. Расчет суммы начисленных процентов. План погашения кредита (погашение основного долга равными частями). Определение текущей стоимости денежного потока. Система и типы ипотечного кредитования.

    контрольная работа [35,0 K], добавлен 24.12.2013

  • Особенности определения суммы, причитающейся в качестве процентов по кредиту, суммы, причитающейся к возврату. Определение процентной ставки банка. Расчет множителя наращения процентов по капиталу за срок договора. Доходность операции для кредитора.

    контрольная работа [166,4 K], добавлен 19.02.2012

  • Начисление процентов при заданном размере вклада. Поиск величины платежа при сложной ставке, номинальной ставки при заданной месячной инфляции для получения эффективности от вклада. Использование формулы математического дисконтирования сложных процентов.

    контрольная работа [47,8 K], добавлен 28.09.2009

  • Особенности расчета процентной ставки при сложном и простом проценте. Сроки выплаты кредита, взятого под простую ставку. Определение величины взноса при начислении процентов ежеквартально по ставке сложных процентов годовых для накопления заданной суммы.

    контрольная работа [23,8 K], добавлен 29.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.