Управление банковскими ресурсами на основе теории нечетких множеств
Рассмотрение задач формализации функционирования банка как системы управления. Характеристика собственных и привлеченных средств коммерческого кредитного учреждения. Модели эффективного распределения банковских ресурсов согласно теориям нечетких множеств.
Рубрика | Банковское, биржевое дело и страхование |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 05.08.2010 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Этап 3 (Значимость).
Сопоставим каждому показателю Хi уровень его значимости для анализа ri. Чтобы оценить этот уровень, нужно расположить все показатели по порядку убывания значимости так, чтобы выполнялось правило
(1)
Если система показателей проранжирована в порядке убывания их значимости, то значимость i-го показателя ri следует определять по правилу Фишберна (4):
(2)
Правило Фишберна отражает тот факт, что об уровне значимости показателей неизвестно ничего кроме (1). Тогда оценка (2) отвечает максиму энтропии наличной информационной неопределенности об объекте исследования.
Если же все показатели обладают равной значимостью (равнопредпочтительны или системы предпочтений нет), тогда
ri = 1/N(3)
Этап 4 (Классификация степени риска).
Построим классификацию текущего значения g показателя степени риска как критерий разбиения этого множества на нечеткие подмножества (таблица 1):
Таблица 1
Интервал значений g |
Классификация уровня параметра |
Степень оценочной уверенности (функция принадлежности) |
|
0 g 0.15 |
G5 - "риск банкротства незначителен" |
1 |
|
0 .15 < g < 0.25 |
G5- "риск банкротства незначителен" |
5 = 10 (0.25 - g) |
|
G4 - "низкая степень риска банкротства" |
1- 5 = 4 |
||
0.25 g 0.35 |
G4- "низкая степень риска банкротства" |
1 |
|
0.35 < g < 0.45 |
G4- "низкая степень риска банкротства" |
4 = 10 (0.45 - g) |
|
G3 - "степень риска банкротства средняя" |
1- 4 = 3 |
||
0.45 g 0.55 |
G3- "степень риска банкротства средняя" |
1 |
|
0.55< g < 0.65 |
G3- "степень риска банкротства средняя" |
3 = 10 (0.65 - g) |
|
G2 - "степень риска банкротства высокая" |
1- 3 = 2 |
||
0.65 g 0.75 |
G2- "степень риска банкротства высокая" |
1 |
|
0.75 < g < 0.85 |
G2- "степень риска банкротства высокая" |
2 = 10 (0.85 - g) |
|
G1- "предельный риск банкротства" |
1- 2 = 1 |
||
0.85 g 1.0 |
G1- "предельный риск банкротства" |
1 |
Этап 5 (Классификация значений показателей).
Построим классификацию текущих значений x показателей Х как критерий разбиения полного множества их значений на нечеткие подмножества вида В (Таблица 2).
Таблица 2.
Наименование показателя |
Критерий разбиения по подмножествам |
|||||
Вi1 |
Вi2 |
Вi3 |
Вi4 |
Вi5 |
||
Х1 |
x1<b11 |
b11< x1<b12 |
b12< x1<b13 |
b13< x1<b14 |
b14< x1 |
|
… |
… |
… |
… |
… |
… |
|
Хi |
xi<bi1 |
bi1< xi<bi2 |
bi2< xi<bi3 |
bi3< xi<bi4 |
bi4< xi |
|
… |
… |
… |
… |
… |
… |
|
ХN |
xN<bN1 |
bN1< xN<bN2 |
bN2< xN<bN3 |
bN3< xN<bN4 |
bN4< xN |
Этап 6 (Оценка уровня показателей).
Произведем оценку текущего уровня показателей и сведем полученные результаты в Таблицу 3.
Таблица 3.
Наименование показателя |
Текущее значение |
|
Х1 |
х1 |
|
… |
… |
|
Хi |
хi |
|
… |
… |
|
ХN |
хN |
Этап 7 (Классификация уровня показателей).
Проведем классификацию текущих значений х по критерию таблицы вида 2. Результатом проведенной классификации является таблица 5, где ij - уровень принадлежности носителя хi нечеткому подмножеству Вj.
Таблица 4
Наименование показателя |
Результат классификации по подмножествам |
|||||
Вi1 |
Вi2 |
Вi3 |
Вi4 |
Вi5 |
||
Х1 |
11 |
12 |
13 |
14 |
15 |
|
… |
… |
… |
… |
… |
… |
|
Хi |
i1 |
i2 |
i3 |
i4 |
i5 |
|
… |
… |
… |
… |
… |
… |
|
ХN |
N1 |
N2 |
N3 |
N4 |
N5 |
где ij=1, если bi(j-1)< xi<bij , и ij=0 в противоположном случае (когда значение не попадает в выбранный диапазон классификации).
Этап 8 (Оценка степени риска).
Теперь выполним формальные арифметические действия по оценке степени риска банкротства g:
,(4)
где ,(5)
ij определяется по таблице 4, а ri - по формуле (2) или (3).
Существо формул (4) и (5) состоит в следующем. Первоначально мы оцениваем веса того или иного подмножества из B в оценке состояния предприятия Е и в оценке степени риска G (внутреннее суммирование в (4)). Эти веса в последующем участвуют во внешнем суммировании для определения среднего значения показателя g, где gj есть не что иное как средняя оценка g из соответствующего диапазона таблицы 1 этапа 4 метода.
Этап 9 (Лингвистическое распознавание).
Классифицируем полученное значение степени риска на базе данных таблицы 1. Результатом классификации являются лингвистическое описание степени риска банкротства и (дополнительно) степень уверенности эксперта в правильности его классификации. И тем самым наш вывод о степени риска предприятия приобретает не только лингвистическую форму, но и характеристику качества наших утверждений.
5.5 Анализ риска банкротства с использованием нечетких описаний на примере ОАО "Газпромбанк"
Постановка задачи.
Для расчетов рассмотрим реальные экономические результаты ОАО "Газпромбанк", представленные на официальном сайте банка (www.gazprombank.ru). По основным финансовым показателям Газпромбанк с 2003 года входит в тройку крупнейших российских банков. По итогам I квартала 2009 года Газпромбанк занимает по активам-нетто 3 место, по собственным средствам 4 место, по прибыли 1 место, по кредитной экономике 3 место, по средствам корпоративных клиентов 2 место. Газпромбанк занимает 112 место в мире по величине капитала по версии журнала The Banker и в ходит в тройку крупнейших банков стран Центральной и Восточной Европы. На протяжении всей совей деятельности Газпромбанк уделяет огромное внимание выполнению требований Банка России по соблюдению обязательных нормативов. Все значения на 01.04.2009 выполняются. Анализ риска банкротства проведем по нескольким периодам - на квартальные даты 2008 и 2009г., т.е. факты на 01.01.2008, 01.04.2008, 01.07.2008, 01.04.2009. [11]
Решение.
1. а) Полное множество состояний E:
E1 - нечеткое подмножество состояний "предельного неблагополучия";
E2 - нечеткое подмножество состояний "неблагополучия";
E3 - нечеткое подмножество состояний "среднего качества";
E4 - нечеткое подмножество состояний "относительного благополучия";
E5 - нечеткое подмножество состояний "предельного благополучия".
б) Соответствующая переменной E лингвистическая переменная G "Риск банкротства":
G1 - нечеткое подмножество "предельный риск банкротства",
G2 - нечеткое подмножество "степень риска банкротства высокая",
G3 - нечеткое подмножество " степень риска банкротства средняя",
G4 - нечеткое подмножество " низкая степень риска банкротства ",
G5 - нечеткое подмножество "риск банкротства незначителен".
в) Полное множество Bi значений показателя Xi:
Bi1 - подмножество "очень низкий уровень показателя Хi",
Bi2- подмножество "низкий уровень показателя Хi",
Bi3 - подмножество "средний уровень показателя Хi",
Bi4 - подмножество "высокий уровень показателя Хi",
Bi5- подмножество "очень высокий уровень показателя Хi".
2. Показатели.
В качестве набора отдельных показателей X={Xi} возьмем обязательные нормативы ЦБ РФ, установленные в Инструкции ЦБ РФ №1 "О порядке регулирования деятельности банков". Полный перечень, расчетные формулы, допустимые значения нормативов представлены в ПРИЛОЖЕНИИ Б "Обязательные экономические нормативы ЦБ РФ".
Обязательные нормативы ЦБ РФ:
Н1 - норматив достаточности капитала
Н2 - норматив мгновенной ликвидности
Н3 - норматив текущей ликвидности
Н4 - норматив долгосрочной ликвидности
Н5 - норматив общей ликвидности
Н6 - максимальный размер риска на первого заемщика или группу связных заемщиков
Н7 - максимальный размер крупных кредитных рисков
Н8 - максимальный размер риска на одного кредитора (вкладчика)
Н9 - максимальный размер риска на одного заемщика-акционера (участника)
Н10 - максимальный размер кредитов, займов, гарантий и поручительств
Н11 - максимальный размер привлеченных денежных вкладов (депозитов) населения
Н12 - норматив использования собственных средств (капитала) банка для приобретения долей (акций) других юридических лиц
Н13 - норматив риска собственных вексельных обязательств
Н14 - норматив ликвидности по операциям с драгоценными металлами
"Газпромбанк" предоставляет данные по следующим из перечисленных нормативам: Н1, Н2, Н3, Н4, Н6, Н7, Н9, Н10, Н12. Поэтому в расчетном примере ограничимся этими показателями.
X={Xi}, i=1,…,N, N=9.
X1 = Н1, X2 = Н2, X3 = Н3, X4 = Н4, X5 = Н6, X6 = Н7, X7 = Н9, X8 = Н10, X9 = Н12
3. Значимость.
Сопоставим каждому показателю Xi уровень его значимости ri. Разложим все показатели по порядку убывания значимости:
4. Классификация степени риска.
Интервал значений g |
Классификация уровня параметра |
Степень оценочной уверенности (функция принадлежности) |
|
0 g 0.15 |
G5 - "риск банкротства незначителен" |
1 |
|
0 .15 < g < 0.25 |
G5- "риск банкротства незначителен" |
5 = 10 (0.25 - g) |
|
G4 - "низкая степень риска банкротства" |
1- 5 = 4 |
||
0.25 g 0.35 |
G4- "низкая степень риска банкротства" |
1 |
|
0.35 < g < 0.45 |
G4- "низкая степень риска банкротства" |
4 = 10 (0.45 - g) |
|
G3 - "степень риска банкротства средняя" |
1- 4 = 3 |
||
0.45 g 0.55 |
G3- "степень риска банкротства средняя" |
1 |
|
0.55< g < 0.65 |
G3- "степень риска банкротства средняя" |
3 = 10 (0.65 - g) |
|
G2 - "степень риска банкротства высокая" |
1- 3 = 2 |
||
0.65 g 0.75 |
G2- "степень риска банкротства высокая" |
1 |
|
0.75 < g < 0.85 |
G2- "степень риска банкротства высокая" |
2 = 10 (0.85 - g) |
|
G1- "предельный риск банкротства" |
1- 2 = 1 |
||
0.85 g 1.0 |
G1- "предельный риск банкротства" |
1 |
5. Классификация значений показателей.
Наименование показателя |
Критерий разбиения по подмножествам |
|||||
Вi1 |
Вi2 |
Вi3 |
Вi4 |
Вi5 |
||
X1 |
x1<0.04 |
0.04<x1<0.06 |
0.06<x1<0.08 |
0.08<x1<0.1 |
x1>0.1 |
|
X2 |
x2<0.05 |
0.05<x2<0.15 |
0.15<x2<0.3 |
0.3<x2<0.45 |
x2>0.45 |
|
X3 |
x3<0.3 |
0.3<x3<0.5 |
0.5<x3<0.7 |
0.7<x3<0.9 |
x3>0.9 |
|
X4 |
x4>1.4 |
1.2<x4<1.4 |
1<x4<1.2 |
0.8<x4<1 |
x4<0.8 |
|
X5 |
x5>0.35 |
0.25< x5<0.35 |
0.15< x5<0.25 |
0.05< x5<0.15 |
x5 <0.05 |
|
X6 |
x6>10 |
8< x6<10 |
6< x6<8 |
4< x6<6 |
x6<4 |
|
X7 |
x7>0.55 |
0.5< x7<0.55 |
0.45< x7<0.5 |
0.4< x7<0.45 |
x7<0.4 |
|
X8 |
x8>0.04 |
0.03< x8<0.04 |
0.02< x8<0.03 |
0.01< x8<0.02 |
x8<0.01 |
|
X9 |
x9>0.35 |
0.25< x9<0.35 |
0.15< x9<0.25 |
0.05< x9<0.15 |
x9<0.05 |
6. Оценка уровня показателей.
Наименование показателя |
Значение на 01.01.2008 (I период) |
Значение на 01.04.2008 (II период) |
Значение на 01.07.2008 (III период) |
Значение на 01.04.2009 (IV период) |
|
Х1 |
0,114 |
0,1156 |
0,1209 |
0,1101 |
|
Х2 |
0,476 |
0,3352 |
0,3358 |
0,4794 |
|
Х3 |
0,812 |
0,8554 |
0,729 |
0,9735 |
|
Х4 |
0,691 |
0,6962 |
0,7298 |
1,1654 |
|
Х5 |
0,21 |
0,1908 |
0,216 |
0,229 |
|
Х6 |
4,807 |
5,0736 |
4,5765 |
5,8496 |
|
Х7 |
0,238 |
0,2461 |
0,1264 |
0,1081 |
|
Х8 |
0,006 |
0,0049 |
0,0038 |
0,0027 |
|
Х9 |
0,00 |
0,1141 |
0,1724 |
0,1623 |
7. Классификация уровня показателей.
Значение {} в период I |
||||||
1(xI,i) |
2(xI,i) |
3(xI,i) |
4(xI,i) |
5(xI,i) |
||
Х1 |
0 |
0 |
0 |
0 |
1 |
|
Х2 |
0 |
0 |
0 |
0 |
1 |
|
Х3 |
0 |
0 |
0 |
1 |
0 |
|
Х4 |
0 |
0 |
0 |
0 |
1 |
|
Х5 |
0 |
0 |
1 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
1 |
0 |
|
Х7 |
0 |
0 |
0 |
0 |
1 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
0 |
0 |
0 |
1 |
|
Х1 |
0 |
0 |
0 |
0 |
1 |
|
Х2 |
0 |
0 |
0 |
1 |
0 |
|
Х3 |
0 |
0 |
0 |
1 |
0 |
|
Х4 |
0 |
0 |
0 |
0 |
1 |
|
Х5 |
0 |
0 |
1 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
1 |
0 |
|
Х7 |
0 |
0 |
0 |
0 |
1 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
0 |
0 |
1 |
0 |
|
Х1 |
0 |
0 |
0 |
0 |
1 |
|
Х2 |
0 |
0 |
0 |
1 |
0 |
|
Х3 |
0 |
0 |
0 |
1 |
0 |
|
Х4 |
0 |
0 |
0 |
0 |
1 |
|
Х5 |
0 |
0 |
1 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
1 |
0 |
|
Х7 |
0 |
0 |
0 |
0 |
1 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
0 |
1 |
0 |
0 |
|
Х1 |
0 |
0 |
0 |
0 |
1 |
|
Х2 |
0 |
0 |
0 |
0 |
1 |
|
Х3 |
0 |
0 |
0 |
0 |
1 |
|
Х4 |
0 |
0 |
1 |
0 |
0 |
|
Х5 |
0 |
0 |
1 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
1 |
0 |
|
Х7 |
0 |
0 |
0 |
0 |
1 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
0 |
1 |
0 |
0 |
Анализ таблиц дает, что показатель норматива достаточности капитала (Н1), показатель максимального риска на одного заемщика-акционера (Н9) и показатель максимального размера кредитов, предоставленных банком своим инсайдерам (Н10) в течение всех 4 анализируемых периодов остаются на "очень высоком уровне". На "среднем" и "высоком уровне" стабильно держатся показатели мгновенной, текущей и долгосрочной ликвидности (Н2, Н3, Н4), показатели максимального размера риска на первого заемщика, крупных кредитных рисков (Н6, Н7), а также показатель норматива использования собственных средств банка для приобретения долей других юридических лиц (Н12). Таким образом, уже сейчас можно отметить, что все значения обязательных экономических нормативов, установленных Банком России, выполняются и имеют достаточный запас. Что говорит о высокой надежности и стабильности Газпромбанка. Важно отметить, что банком также выполняются все показатели системы страхования вкладов.
8. Оценка степени риска банкротства.
=
Оценка риска банкротства дала
Откуда заключаем, что при высоких и очень высоких уровнях показателей (низких уровней нет вообще) произошло улучшение состояния банка - риск банкротства уменьшился на 1.4% (0.297-0,283=0,014).
9. Лингвистическое распознавание значений g по данным таблицы 4 этапа определяется степень риска банкротства банка "Газпромбанк" (ОАО) как "низкая" для всех 4 периодов анализа. Таким образом, предварительные выводы при анализе классификации уровней показателей остаются в силе. Также стоит отметить, что за анализируемый период показатели мгновенной и текущей ликвидности Банка перешли на "очень высокий уровень" данных нормативов. Рассматривая финансовые показатели деятельности Газпромбанка в совокупности 4 периодов, отметим следующие результаты [11]:
1. увеличились активы Банка на 11% (с 1 775,5 млрд руб на начало 2009 года до 1 979,2 млрд руб по состоянию на 1 апреля 2009 года);
2. выросли собственные средства (капитал) Банка, рассчитанные в соответствии с Положением Банка России №215-П, на 15% до 158,4 млрд руб;
3. вырос объем ссудной и приравненной к ней задолженности на 24% до 1 507,1 млрд руб;
4. увеличились средства корпоративных клиентов банка на 9% и достигли 863,3 млрд руб;
5. балансовая прибыль Газпромбанка за I квартал 2009 года составила 16,7 млрд руб;
Данные опубликованы на официальном сайте ОАО "Газпромбанк" (www.gazprombank.ru). В работе они указаны в ПРИЛОЖЕНИИ В "Финансовые показатели деятельности Газпромбанка", ПРИЛОЖЕНИИ Г "Значения обязательных нормативов Газпромбанка", ПРИЛОЖЕНИИ Д "Бухгалтерский баланс и отчет об уровне достаточности капитала Газпромбанка на 1 октября 2008 года". [11]
Применим метод анализа риска банкротства для другого банка, надежность которого менее стабильна, проведем сравнительный анализ полученных результатов с "Газпромбанком". В условиях экономического кризиса положение многих коммерческих банков заметно ухудшилось. Экономический кризис, как "естественный отбор" в теории эволюции, в живых оставляет самых сильных и приспособленных. В России в первую очередь - это кризис ликвидности предприятий. Большинство банков свернули программы кредитования коммерческой недвижимости, более крупные - повысили ставки и увеличили сроки рассмотрения кредитных заявок с одновременным ужесточением требований к потенциальным заемщикам. Таким образом, в сложившейся ситуации задача определения риска банкротства весьма актуальна. Для рассмотрения возьмем данные (по аналогии с описанными выше по "Газпромбанку") одного из коммерческих банков Тулы (т.к. финансовые результаты анализируемого банка являются коммерческой тайной, название приводится не будет, для определенности введем обозначение Х).
Повторим алгоритм метода анализа риска банкротства для банка Х.
1. Этап 1 (лингвистические переменные и нечеткие подмножества) совпадает с этапом 1 для ОАО "Газпромбанк".
Е - лингвистическая переменная "Состояние предприятия", имеет 5 значений.
G - лингвистическая переменная "Риск банкротства", также имеет 5 значений.
Bi - лингвистическая переменная "Уровень показателя Xi", имеет 5 терм-множеств значений.
Все, что по умолчанию предполагалось в описании этапа 1 выше, предполагается и здесь.
2. Этап 2 (показатели).
В качестве показателей также возьмем обязательные экономические нормативы ЦБ РФ (см. ПРИЛОЖЕНИЕ Б).
Банк Х предоставил данные по нормативам Н1, Н2, Н3, Н4, Н6, Н7, Н9, Н10, Н12.
X={Xi}, i=1,…,N, N=9.
3. Этап 3 (значимость).
Аналогично этапу 3 для анализа "Газпромбанка".
4. Этап 4 (классификация степени риска).
Совпадает с описанным выше этапом 4 (см. таблицу).
5. Этап 5 (классификация значений показателей).
Совпадает с описанным выше этапом 5 (см. таблицу).
6. Этап 6 (оценка уровней показателей).
Наименование показателя |
Значение на 01.01.2008 (I период) |
Значение на 01.04.2008 (II период) |
Значение на 01.07.2008 (III период) |
Значение на 01.04.2009 (IV период) |
|
Х1 |
0.111 |
0.095 |
0.095 |
0.051 |
|
Х2 |
0.271 |
0.231 |
0.231 |
0.149 |
|
Х3 |
0.713 |
0.645 |
0.583 |
0.448 |
|
Х4 |
1.081 |
1.211 |
1.015 |
1.201 |
|
Х5 |
0.215 |
0.1905 |
0.1871 |
0.286 |
|
Х6 |
2.403 |
2.533 |
2.253 |
5.548 |
|
Х7 |
0.481 |
0.405 |
0.503 |
0.561 |
|
Х8 |
0.003 |
0.024 |
0.0054 |
0.035 |
|
Х9 |
0.271 |
0.283 |
0.145 |
0.036 |
7. Этап 7 (классификация уровней показателей).
Показатель Хi |
Значение {} в период I |
|||||
1(xI,i) |
2(xI,i) |
3(xI,i) |
4(xI,i) |
5(xI,i) |
||
Х1 |
0 |
0 |
0 |
0 |
1 |
|
Х2 |
0 |
0 |
0 |
0 |
1 |
|
Х3 |
0 |
0 |
0 |
1 |
0 |
|
Х4 |
0 |
0 |
1 |
0 |
0 |
|
Х5 |
0 |
1 |
0 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
0 |
1 |
|
Х7 |
0 |
0 |
1 |
0 |
0 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
1 |
0 |
0 |
0 |
|
Х1 |
0 |
0 |
0 |
1 |
0 |
|
Х2 |
0 |
0 |
1 |
0 |
0 |
|
Х3 |
0 |
0 |
1 |
0 |
0 |
|
Х4 |
0 |
0 |
1 |
0 |
0 |
|
Х5 |
0 |
0 |
1 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
0 |
1 |
|
Х7 |
0 |
0 |
0 |
1 |
0 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
1 |
0 |
0 |
0 |
|
Х1 |
0 |
0 |
0 |
1 |
0 |
|
Х2 |
0 |
0 |
1 |
0 |
0 |
|
Х3 |
0 |
0 |
1 |
0 |
0 |
|
Х4 |
0 |
0 |
1 |
0 |
0 |
|
Х5 |
0 |
0 |
1 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
0 |
1 |
|
Х7 |
0 |
1 |
0 |
0 |
0 |
|
Х8 |
0 |
0 |
0 |
0 |
1 |
|
Х9 |
0 |
0 |
0 |
1 |
0 |
|
Х1 |
0 |
1 |
0 |
0 |
0 |
|
Х2 |
0 |
1 |
0 |
0 |
0 |
|
Х3 |
0 |
1 |
0 |
0 |
0 |
|
Х4 |
0 |
1 |
0 |
0 |
0 |
|
Х5 |
0 |
1 |
0 |
0 |
0 |
|
Х6 |
0 |
0 |
0 |
1 |
0 |
|
Х7 |
1 |
0 |
0 |
0 |
0 |
|
Х8 |
0 |
1 |
0 |
0 |
0 |
|
Х9 |
1 |
0 |
0 |
0 |
0 |
8. Этап 8 (оценка степени риска банкротства).
Оценка риска банкротства дала
Риск банкротства возрос на (0.875 - 0.365)100% = 51%.
9. Лингвистическое распознавание значений g.
К анализируемому IV периоду состояние заметно ухудшилось. Значения параметров Xi на "низком" и "очень низком" уровнях. По таблице классификации степени риска определяем, что в I-III периоды степень риска банкротства банка Х была низкой и средней. Однако, в IV периоде степень риска резко возросла и стала принимать уровень "предельного риска банкротства".
Таким образом, проводя сравнение полученных результатов анализа двух банков можно сделать следующие выводы. Если показатели ОАО "Газпромбанк" (а именно нормативы ЦБ РФ) остаются в течение рассматриваемых периодов в большинстве своем на "высоком" и "очень высоком" уровне, то банк Х держится в лучшем случае на "среднем" и "высоком", но в условиях IV периода (финансовый кризис) показатели спустились до "низкого" и "очень низкого" уровней. Причин этому довольно много. Если "Газпромбанк" - стабильный, с весомой долей поддержки со стороны государства банк, то некрупный коммерческий банк областного уровня (банк Х) данными свойствами разумеется не отличается. Банк Х не имеет финансовых возможностей для развития, увеличения потенциала, т.к. даже обязательные нормативы ЦБ РФ выполняются им не в полной мере. Что и сказывается на резком скачке риска банкротства в условиях неопределенности и экономического кризиса. Таким образом, предложенный метод анализа риска банкротства весьма актуален и применим в современной ситуации для любого коммерческого банка, предоставляющего реальные финансовые результаты своей деятельности.
ЗАКЛЮЧЕНИЕ
Итак, подведем краткий итог работы. Во-первых, становится очевидным, что методы финансового анализа, основанные на теории нечетких множеств, обладают рядом неоспоримых преимуществ. К ним относятся:
- учет условий неопределенности и приближенных данных;
- применимость моделей к процессам, непосредственно связанных с практической управленческой деятельностью людей;
- способность обрабатывать разнородную по качеству и природе информацию, в целом повышая достоверность описания поведения объекта;
- возможность решать многокритериальные оптимизационные задачи с использованием нечетких расширений соответствующих детерминированных постановок этих задач. Во-вторых, предложенный метод комплексного финансового анализа риска банкротства является полезным инструментом для экспертов. Он способен гибко отразить варианты выборов эксперта, его предпочтения. Важно, что данный метод не требует сложных математических вычислений, и, следовательно, просто в реализации. Стоит отметить, что анализ риска банкротства, реализуемый в данной работе, применим не только к задачам распределения ресурсной базы коммерческих банков, но и к анализу деятельности отдельного предприятия, если брать для учета другие экономические факторы и показатели. И, наконец, акцентируем, что применение методов теории нечетких множеств в задачах поддержки принятия решений имеет безусловную перспективу, т.к. обеспечивает наиболее адекватное отображение многообразия форм существования данных, описывающих конкретный процесс. Не отвергая накопленный опыт "классического" моделирования экономических, социальных и технических систем, нечеткая логика может служить мощным средством повышения достоверности информации на входе таких моделей и способствовать объективной оценки их погрешности.
Подобные документы
Проведение анализа системы управления привлеченными ресурсами на примере ОАО "Сбербанк России". Структура привлеченных ресурсов коммерческого банка. Направления совершенствования ОАО "Сбербанк России" в отношении управления привлеченными ресурсами банка.
курсовая работа [516,2 K], добавлен 04.01.2016Организационно-экономическая характеристика и управление ликвидностью коммерческого банка. Структура его собственных и привлеченных средств. Мероприятия, способствующие росту ликвидности и платежеспособности банковского учреждения и их эффективность.
дипломная работа [258,3 K], добавлен 14.06.2013Назначение, порядок формирования, характеристика и структура кредитного потенциала коммерческого банка. Структура и особенности формирования собственных и привлеченных средств. Рекомендации по повышению эффективности использования кредитного потенциала.
дипломная работа [421,3 K], добавлен 16.08.2010Анализ состояния собственных и привлеченных средств коммерческого банка. Величина кредитных вложений банка в целом и по отдельным видам ссуд. Анализ выполнения экономических нормативов банка, структура депозитной базы. Оценка уровня банковских рисков.
методичка [265,9 K], добавлен 10.01.2012Понятие, структура и функции финансовых средств предприятия. Анализ ресурсной базы коммерческого банка ПАО "Запсибкомбанк". Операции по формированию собственных банковских ресурсов. Повышение эффективности использования привлеченных финансовых средств.
курсовая работа [39,6 K], добавлен 23.04.2017Деятельность коммерческих банков, как элементов кредитных отношений. Теоретические основы управления финансовыми ресурсами коммерческого банка. Характеристика финансовых ресурсов коммерческого банка. Анализ направления использования финансовых ресурсов.
дипломная работа [302,9 K], добавлен 03.11.2008Роль обязательств коммерческого банка в формировании пассива баланса, соотношение собственных и привлеченных средств. Состав и структура собственных средств и обязательств. Максимальный размер риска одного заемщика. Доходность отдельных операций банка.
контрольная работа [21,8 K], добавлен 24.07.2009Характеристика организационной структуры Сбербанка России. Информационное обеспечение экономического анализа деятельности коммерческой организации; описание методов и основных этапов его проведения. Оценка собственных и привлеченных средств учреждения.
курсовая работа [89,9 K], добавлен 02.02.2011Теоретические основы и характеристика основных операций коммерческого банка в условиях реформирования экономики. Современное состояние учета привлеченных и размещенных ресурсов коммерческого банка. Эффективность управления банковскими операциями.
дипломная работа [109,2 K], добавлен 04.07.2011Понятие банковских рисков и их виды. Управление рисками коммерческого банка в современных условиях. Инструменты снижения кредитного риска банка. Формирования резерва по категориям качества ссуд. Характеристика коммерческого банка, его кредитного портфеля.
курсовая работа [622,1 K], добавлен 01.05.2012