Метаболічні особливості фізіології та біохімії водоростей

Розгляд особливостей фізіології та властивостей зелених та синьо-зелених водоростей. Визначення їх ролі в балансі живої речовини та кисню, в очищенні оточуючого середовища і еволюції Землі. Опис участі водоростей в біохімічних процесах фотосинтезу.

Рубрика Биология и естествознание
Вид курсовая работа
Язык украинский
Дата добавления 21.09.2010
Размер файла 56,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

У даний час усвідомлено велике природно-історичне значення водоростей у розвитку рослинного світу, у виникненні еукаріотичної клітини, що поклала початок різноманітному і всюдисущому царству еукаріот. У зв'язку з цим зовсім недавно стало усвідомлюватися неминуще науково-методологічне значення водоростей як "живих копалин", осколків давно зниклих з обличчя Землі флор, "живих свідків" еволюції органічного світу в пізнанні шляхів і закономірностей його еволюції, у відтворенні наукової картини світу.

3.5 Охорона водоростей

Будучи невід'ємною частиною природних екосистем, водорості зіграли і продовжують грати важливу історичну роль у розвитку природи на нашій планеті. Як і інші її компоненти, вони мають потребу в ретельному вивченні й охороні. Численні факти свідчать про найсильніший тиск на них антропогенного фактора. Багаторічні спостереження за флорою водоростей і водяними екосистемами демонструють високі темпи сукцесійних процесів у водяному середовищі. Про це свідчить також висока чутливість багатьох стенотопних видів водоростей до впливу факторів зовнішнього середовища, на чому базується їхнє широке використання як біологічні індикатори і тест-об'єктів. З огляду на важливу роль водоростей у природі, їх неминуще історичне, науково-методологічне і практичне значення, розробка принципів і методів їхньої охорони є невідкладною задачею. Тим часом питанням охорони генофонду нижчих фотоаутотрофных рослин усе ще приділяється мало уваги.

У першу чергу мають потребу в охороні морські водоросли-макрофіти, що є об'єктом промислу або страждають у результаті морського нафтовидобутку. Принципи й методи їхньої охорони, очевидно, не будуть істотно відрізнятися від розроблених для вищих рослин. У деяких країнах вже існує законодавство, що обмежує траловий промисел водоростей, що викликав різке скорочення запасів риби, до відновлення підвідної рослинності.

Охорона мікроводоростей повинна базуватися на загальних заходах щодо охорони навколишнього середовища від забруднень, оптимізації ландшафтів, стабілізації існуючих екосистем. Індивідуальна охорона окремих видів мікроводоростей і їхніх місцеперебувань, очевидно, малоефективна. Тому великого значення набуває метод наукового прогнозування наслідків діяльності людини, наукової експертизи проектів, що змінюють природу. Актуальним також є створення державних колекцій культур мікроводоростей і банків їхніх генів. Необхідна розробка критеріїв і складання списків рідких і зникаючих видів водоростей, що можуть виявитися корисними при обґрунтуванні необхідності охорони якоїсь конкретної ділянки чи території акваторії. Оскільки охороні підлягають не окремі екземпляри водоростей, а їхньої популяції, необхідно спеціальне вивчення цих популяцій, їхніх вегетаційних циклів, географічного поширення, мінливості в залежності від конкретних факторів навколишнього середовища, у першу чергу антропогенних.

3.6 Водорості як продукт живлення

Водоростям призначають важливу роль у рішенні ряду глобальних проблем, що хвилюють усе людство, у тому числі продовольчої, енергетичний, охорони навколишнього середовища, освоєння космічного простору, надр Землі, багатств Світового океану, вишукування нових джерел промислової сировини, будівельних матеріалів, фармацевтичних препаратів, біологічно активних речовин, нових об'єктів біотехнології.

Одна з найбільш гострих проблем, що стоять у даний час перед людством, - недолік продовольчих товарів, .у першу чергу харчового і кормового білка. Згідно даним ФАО при ООН у країнах, що розвиваються, понад 700 млн чоловік (з них 30 % діти у віці до 10 років) ведуть напівголодний спосіб життя. Нормального харчування позбавлені більш 30 % людей у Латинській Америці, околв 60 % в Азії. Згідно з прогнозом, до 2000 р., коли населення Землі перевищить 6 млрд людей, а виробництво продуктів харчування подвоїться, ця проблема вирішена не буде, тому що приріст виробництва їжі на одну людину не перевищить 15 % при збільшенні її вартості принаймні в 2 рази. Тому проблема продовольства, забезпечення зростаючого населення планети повноцінним харчуванням стала важливим економічним, соціальним і політичним фактором у сучасному світі. У зв'язку з цим росте інтерес до нових нетрадиційних джерел білків, жирів, вуглеводів, вітамінів, ферментів і інших фізіологічно активних речовин.11 Водоросли. Справочник. - К.: наукова думка, 1984. - 605 с.

За своїми харчовими якостями водорості не тільки не поступаються відомим сільськогосподарським культурам, але в деяких відносинах навіть перевершують їх. Вони містять високий відсоток білка (до 70 % сухої маси), що включає всі амінокислоти, необхідні для нормального харчування людини, у тому числі незамінні. Завдяки цьому білки водоростей можуть доповнювати білки продуктів, що містять мало лізина і треонина. Вихід білка на одиницю площі за одиницю часу при вирощуванні водоростей на 1--3 порядки перевищує такий у порівнянні з іншими традиційними джерелами (бобові, злаки, велика рогата худоба й ін.).

З погляду на все зростаючий дефіцит білків у продуктах харчування (за даними Всесвітньої організації охорони здоров'я в 1980 р. він складав 3,5 млн т, а до 2000 р. збільшиться до 60 млн т) водорості як додаткове джерело білкових речовин становлять великий інтерес.

Водорості - найбагатше джерело вітамінів (тіаміну, рибофлавіну, фолиевой, нікотинової й аскорбінової кислот, Р-каротина), мікроелементів і інших фізіологічно активних речовин. Вміст вітамінів у 100 г зеленій водорості перевищує добову потребу в них людини. Тому рекомендують уводити водорості в раціон хворих серцево-судинними і шлунковими захворюваннями.

Великою перевагою водоростей є фізіолого-біохімічна розманітність і лабільність їхнього хімічного складу, що дозволяють здійснювати керований біосинтез коштовних хімічних природних сполук. Так, в одній і тій же культурі водоростей, у залежності від умов вирощування, можне одержати біомасу зі змістом білків 8 - 58 %, вуглеводів - 6 - 37 н жирів - 4 - 85 %. У залежності від умов вирощування в значній мірі змінюється також зміст вільних амінокислот, пігментів, вітамінів, мікроелементів. Водорості, особливо мікроскопічні, характеризуються найбільш високим КПД засвоєння світлової енергії в порівнянні з іншими фотосинтезуючими організмами. Багато видів здатні до ефективної утилізації світла низької інтенсивності. Це дозволяє знизити енергетичні витрати на одиницю одержуваної продукції. Продуктивність водоростей, особливо мікроскопічних, наближається до потенційно можливого. У закритих, цілком автоматизованих досвідчених установках (космічного призначення) при штучному висвітленні продуктивність хлореллы складає 100--140 г сухої речовини на 1 м2 за добу. Це відповідає 1000--1400 кг/га (у сухій масі) за добу чи 360--500 т/га на рік. Середня продуктивність мікроводоростей при їхньому масовому культивуванні в установках відкритого типу при природному висвітленні знаходиться в межах 14--35 г/м2 (у сухій масі) за добу, максимальна досягає 60 г/м2 у добу. Якщо виходити із середньої добової продуктивності 20 г/м2 і тривалості вегетаційного періоду 6 місяців, середньорічна продуктивність установок цього типу повинна скласти 72 т/га (у сухій масі) у рік. Практично така продуктивність (50 - 80 т/га в рік) досягнута в різних країнах у відкритих культиваторах різного типу. Культивування видів дозволяє одержувати 128 т білка на гектар за рік. Таким чином, продуктивність культури мікроводоростей на порядок вище в порівнянні з продуктивністю пшеничного поля. Продуктивність плантацій морських водоростей складає 60 - 120 т/га (у сирій масі) у рік.

Водорості не є конкурентами вищих рослин, оскільки їхнє вирощування може здійснюватися у водоймах і штучних установках на площах, не придатних для землеробства; їхня культура менш залежна від кліматичних умов у порівнянні ,з культурою наземних рослин. Не слід забувати також про величезні ресурси Світового океану для одержання їжі і кормів.

Макроскопічні морські і прісноводні водорості використовуються людиною в якості харчових і кормових продуктів ще з XIII ст. В даний час відомо близько 170 видів їстівних макроскопічних водоростей, з них 81 вид червоних, 54 бурих, 25 зелених, 8 синезеленых. Інтенсивне використання морських водорослей-макрофітів у господарських цілях вичерпало їхні природні запаси і привело до необхідності їхнього штучного вирощування. Тому в останні 30 років значний розвиток одержала аквакультура водоростей. Серед них найбільше харчове значення розраховують на роду Рогрhуга. Їх почали вирощувати в Японії ще в XVII ст., і в даний час по обсязі культивування вони займають перше місце у світі. У 1945 - 1951 р. врожай видів Рогрhуга складав 3 тис. т/рік, у 1969 - 1970 р. - близько 18 тис. т, у наступні - понад 100 тис. т. Тільки в Японії щорічна продукція водоростей у цілому зросла з 310 тис. т у 1960 р. до 690 тис. т у 1978 р. З 10 млн т морських продуктів, одержуваних у цій країні щорічно, I млн т надходить за рахунок аквакультури. Уже зараз у харчовому раціоні японців водорості складають майже 20 %.

Припускають, що в майбутньому частка водоростей у харчовому раціоні людини буде неухильно зростати", Отримані в Японії штами і японські технології аквакультуры широко використовують в інших країнах:

США, Канаді, Франції, Норвегії, Данії, Великобританії. У нашій країні морські водорості вирощують у далекосхідних морях, на Чорному, Білому і Баренцевому морях. Їх використовують як харчовий продукт як у свіжому, так і в консервованому виді, а також при виготовленні хлібобулочних і кондитерських виробів.

Доцільність використання морських водоростей у якості харчових і кормових продуктів, а також джерел промислової сировини в даний час не викликає сумнівів. Розроблено технології контрольованого одержання суперечка водоростей, використання штучних субстратів для їхнього вирощування, методи збереження і переробки біомаси, механізуються роботи зі збору врожаю, проводиться селекція продуктивних штамів, оптимизируется мінеральне харчування. Вирощування морських водоростей здобуває промисловий характер і стає усе більш рентабельною галуззю рослинництва, незважаючи на деяких економічних і екологічних труднощів. Зокрема, при освоєнні шельфу під водорослевые плантації виявляється побічний негативний ефект від застосування добрив, особливо в мілководних лагунах: порушується екологічна рівновага, зменшується зміст кисню у воді, розвиваються токсические види водоростей. Виникають проблеми боротьби з хворобами до адвентивними рослинами, що засмічують плантації промислово коштовних видів водоростей.11 Водоросли. Справочник. - К.: наукова думка, 1984. - 605 с.

Значно повільніше здобувають визнання мікроводорості як джерело продуктів харчування і кормів. Протягом порівняно короткого періоду (40 років) неодноразово змінювалися обсяг і напрямок науково-дослідних робіт, зв'язаних з вивченням можливостей використання мікроводоростей у господарській сфері. Так, після другої світової війни в США, ЧССР і деяких інших країнах мікроводорості посилено вивчали як додаткове джерело харчових і кормових продуктів. Однак, починаючи з 60-х років, увага до них як до об'єктів промислового культивування значно знизилося, і лише в Японії, КНР, Мексиці і Радянському Союзу дослідження в цьому напрямку продовжувалися і дали практичні результати. Тимчасове розчарування в перспективах використання культур мікроводоростей можна пояснити недостатністю наукового обґрунтування, відсутністю попередніх селекційно-генетичних досліджень, недосконалістю методів вирощування і переробки біомаси водоростей, високою собівартістю одержуваних продуктів. Не завжди позитивними були результати споживання нативной біомаси водоростей. Низька перевариваемость вэдоростей нерідко обумовлювалася наявністю в них міцної целюлозної оболонки, що бідує в попередній обробці і руйнуванні, чи токсичністю окремих об'єкті. У 70-і роки число робіт з масового культивування мікроводоростей збільшилося.

Як об'єкти культивування використовують різні штами видів, пологів. Але в цілому культивируемые види складають незначну частину світовий альгофлори, що нараховує близько 40 тис. видів.

В даний час мікроводорості культивують у значних масштабах у ряді країн. Так, на острові Тайвань масова культура Clorella нараховує вже більш 14 років, даючи щорічно 1,5 тис. т сухої біомаси; у Малайзії і на Філіппінах для харчових цілей щорічно використовують більш 500 т хлорели. У Мексиці за 9 років культивування Sрiгulinа у водах рисових полів отримане понад 3 тис. т біомаси; передбачається збільшити врожай до 2 тис. т у рік. У цій країні розроблена технологія одержання з Sрiгulinа безбарвного порошку, що у кількості 5--10 % додають до хлібобулочних виробів і інших харчових продуктів. За даними мексиканських дослідників, білки цих водоростей добре засвоюються людиною, не викликаючи побічних явищ. Деякий досвід використання хлореллы й інших мікроводоростей накопичений у Японії, Канаді, США, Франції, Новій Зеландії, Австралії, Кореї й іншим країнам.

Розділ 4. Участь водоростей в біохімічних процесах

4.1 Процес фотосинтезу

Незважаючи на дивне різноманіття життєвих форм рослин, переважна більшість з них поєднує унікальна особливість, що визначається способом їхнього харчування. На відміну від тваринних організмів і багатьох бактерій, що використовують для своєї життєдіяльності готові органічні сполуки, у рослин виробилася в ході еволюції здатність використовувати для харчування такі цілком окислені речовини, як вуглекислота і вода, і створювати на їхній основі органічні сполуки. Процес цей здійснюється в природі за рахунок енергії сонячного світла і супроводжується виділенням кисню. Використання світлової енергії для біологічних синтезів стало можливо завдяки появі в рослин комплексу поглинаючих світло пігментів, найголовнішим з який є хлорофіл. Процес світлового і вуглецевого харчування рослин одержав назву фотосинтезу й у загальному виді може бути записаний наступним сумарним рівнянням:

6 СО2 + 12 Н2О = С6Н12О6 + 6 Н2О + 6 О2 + 2815680 Дж

З рівняння видно, що на кожні 6 грам-молекул вуглекислоти і води синтезується грам-молекула глюкози, виділяється I грам-молекул кисню і накопичується 2815680 Дж енергії. Таким чином, функція фотосинтезу рослин є, власне кажучи, біохімічним процесом перетворення світлової енергії в хімічну.11 Жизнь растений. В 6-ти томах. - М.: Просвещение, 1977.

Водорості, уже найпростіші з них - синьо-зелені, є першими організмами, у яких з'явилася в процесі еволюції здатність здійснювати фотосинтез з використанням води як джерело (донора) водню і виділенням вільного кисню. тобто процес, властивий всім іншим водоростям, і за ними і вищими рослинами.

Здійснюється рослинами в грандіозних масштабах процес перетворення енергії світла в хімічну енергію продуктів фотосинтезу є практично єдиним руслом, через яке вливається у біологічно прийнятній формі енергія, необхідна для підтримки життя і круговороту речовин у біосфері нашої планети. Саме тому видатний росіянин натураліст К. А. Тімірязєв говорив про "космічну роль зелених рослин". Про розміри фотосинтетичної діяльності рослин у планетарному масштабі можно судити по тому, що весь кисень атмосфери Землі має, як зараз доведене, фотосинтетичне походження. Поклади кам'яного вугілля являють собою своєрідний "запас" перетвореної в результаті фотосинтезу рослин сонячної енергії, складовані у визначені геологічні епохи.

Другою особливістю харчування водоростей і інших фотосинтезуючих рослин, не менш важливої, хоча і не такий специфічний, як фотосинтез, є їхня здатність засвоювати азот, сірку, фосфор, калій і інші мінеральні елементи у виді іонів мінеральних солі і використовувати їх для синтезу таких найважливіших компонентів живої клітки, як амінокислоти, білки, нуклеиновые кислоти, макроергічні з'єднання, речовини вторинного обміну (алкалоїди, терпени, фенольні сполуки, різні вітаміни, фітогормони й ін.). Серед синьо-зелених водоростей існують форми, здатні здійснювати процес фіксації вільного азоту атмосфери і перетворювати його в органічні азотисті речовини свого тіла.

4.2 Походження фотосинтезу

Яким же чином виник процес фотосинтезу? Що йому передувало і до яких наслідків привело появу цього процесу на Землі?

Відповідно до загальновизнаного в даний час еволюційної теорії походження і розвитку життя, що більш 50 років тому була сформульована А. И. Опарін, первинні, здатні до самовідтворення живі утворення виникли в результаті абиіогенної хімічної еволюції. Будучи оточеними близькими по складу, але ще неживими органічними сполуками, ці первинні істоти могли здійснювати в бескислородной середовищу анаэробный гетеротрофний тип харчування за допомогою невеликого набору ферментоц. Поступове виснаження і деградація органічних речовин, синтезованих абіогенним шляхом, супроводжувалися нагромадженням усе більш окислених з'єднань, аж до появи найбільш бідною енергією з'єднання вуглецю - вуглекислоти. Це спричиняло необхідність усе більшого і більшого удосконалювання й ускладнення ферментативною апарата, необхідного для асиміляції усе більш окислених речовин. У цих умовах, що усе ще характеризувалися відсутністю у середовищі кисню, цілком ймовірне виникнення первинних автотрофних організмів, що здійснювали відновлення вуглекислоти за рахунок хімічної енергії, отриманої з мінеральних речовин. Такий тип харчування одержав назву хеморедукції. Серед сучасних організмів відома група сульфатредукуючих мікроорганізмів, що відновлюють сульфати до сірководню, використовуючи для цієї мети молекулярний водень.11 Жизнь растений. В 6-ти томах. - М.: Просвещение, 1977.

Поява в цей період, що характеризувався сильно відбудовними умовами середовища, светпоглощающих пигментов-фотосенсибілізаторів призвело, мабуть, до заміни хімічної енергії в процесах хеморедукції на світлову. Виник найпростіший тип фотоавтотрофного харчування, що одержав назву фоторедукції і бактеріальний фотосинтез. Такий тип харчування здійснюють сучасні фототрофні бактерії - пурпурні сіркобактерії і зелені сіркобактерії, у яких роль пигмента-фотосенсибілізатора виконує бактеріохлорофіл і які є анаеробами. Пурпурні і зелені сіркобактерії відновлюють вуглекислоту за рахунок енергії світла, використовуючи як Н-донора сірководень:

6 СО2 + 12 Н2S = С6Н12О6 + 6 Н2О + 12 S

Представлене підсумкове рівняння бактеріального фотосинтезу (фоторедукції) дуже нагадує, як ми бачимо, приведене вище сумарне рівняння фотосинтезу хлорофілоносних рослин. У результаті порівняльного аналізу Ван-Ниль показав, що обидва ці процесу можуть бути записані в загальному виді одним підсумковим рівнянням:

СО2 + 2 Н2А = ( СН2О )+ Н2О + 2А

де Н2А - донор водню, у якості якого фотосинтезуючі бактерії використовують сірководень, а інші рослини - воду. Вода є більш окисленим з'єднанням у порівнянні із сірководнем. Використання її як донора водню позв'язано з необхідністю додаткової витрати енергії і стало можливо завдяки подальшому удосконалюванню фотохімічного апарата, що складалося в появі в рослин (починаючи із синьо-зелених водоростей) хлорофілу (замість бактеріохлорофілу) і додаткової фотохімічної системи, так званої "фотосистеми П".

Використання води як донора водню привело до того, що в процесі фотосинтезу став виділятися кисень, що, у свою чергу, ознаменувало перехід від анаеробної до аеробного життя на нашій планеті.

На еволюційний зв'язок фоторедукції і фотосинтезу може вказувати здатність ряду синьо-зелених, зелених, червоних і бурих водоростей оборотно переходити до фоторедукції при перекладі їх в анаеробні умови в атмосферу водню.

Таким чином, фотоавтотрофний тип харчування і фотосинтез виникли в процесі еволюції як "надбудова" над первинним гетеротрофним типом харчування. Поява на Землі фотосинтезу була обумовлена всім ходом попередньої біологічної еволюції і послужило поворотним пунктом у переході від анаеробного до аеробного типу обміну речовин.

Розглянута схема дає представлення лише про загальні риси еволюції фотосинтезу і є в значній мірі гіпотетичною. Багато етапів еволюції фотосинтезу і тим більше її деталі залишаються незрозумілими, ряд моментів по-різному інтерпретується вченими.

Неясним, наприклад, залишається питання про походження хлоропластів вищих рослин. Існує точка зору про эндосимбиотиче-ском їхнє походження в результаті "захоплення" первинних фотосинтезуючих організмів, типу сучасних синьо-зелених водоростей, гетеротрофним організмом. На таку можливість указує визначена генетична автономність хлоропластів, а також подібність їх ДНК, ряду найважливіших ферментів, властивостей рибосом і ряду РНК такими у прокаріотичних організмів, зокрема синьо-зелених водоростей. Разом з тим існує і визначена генетична підпорядкованість хлоропласта ядерному геному, що може вказувати на "пряму" еволюцію фотосинтетичного апарату сучасних рослин від первинних фотосинтезуючих організмів. Усі ці питання вимагають подальшого детального вивчення механізмів, молекулярної організації, генетичного контролю і фізіологічних властивостей фотосинтезу і його апарата.

Висновок

Водорості - основні продуценти кисню і органічних речовин в водному середовищі, а також в наземних місцях, які мало придатні до життя вищих рослин.

Приймаючи участь в процесах кругообігу речовин в природі, водорості являються активними агентами самочищення водойм, первиннихгрунтоутворювальних процесів і відновлення грунтової родючості.

Водорості, зокрема синьо-зелені, були першими, найдавнішими киснепродукуючими організмами на нашій планеті. Водорості являються родоначальниками вищих рослин. В теперішній час водоростям належить важлива роль у вирішенні ряду глобальних проблем, які хвилюють все людство: продовольчої, енергетичної, охорони оточуючого середовища, освоєння космічного простору. Харчові властивості водоростей не поступаються вищим рослинам. Біомаса їх відрізняється високим вмістом повноцінних білків, вітамінів та інших біологічно активних речовин.

На думку деяких вчених водорості являються однією із можливостей подолання енергетичної кризи - біоконсервація сонячної енергії, тому що цей шлях не загрожує змінам екологічної ситуації в біосфері.

Дуже велика роль водоростей в біохімічних процесах. На відміну від тваринних організмів і багатьох бактерій, що використовують для своєї життєдіяльності готові органічні сполуки, у рослин виробилася в ході еволюції здатність використовувати для харчування такі цілком окислені речовини, як вуглекислота і вода, і створювати на їхній основі органічні сполуки. Процес цей здійснюється в природі за рахунок енергії сонячного світла і супроводжується виділенням кисню. Використання світлової енергії для біологічних синтезів стало можливо завдяки появі в рослин комплексу поглинаючих світло пігментів, найголовнішим з який є хлорофіл.

Література

Водоросли, лишайники и мохообразные СССР. - М.: Изд-во Мысль. - 1978. - 560 с.

Водоросли. Справочник. - К.: наукова думка, 1984. - 605 с.

Вопросы физиологии, биохимии, цитологии и флоры Украины.- М., 1974. - 540 с.

Гудвин Т., Мерсер Э. Введение в биохимию растений: В 2-х томах. - М.: Мир, 1986. - 312 с.

Жизнь растений. В 6-ти томах. - М.: Просвещение, 1977.

Жуковский П.М. Ботаника: Учебник. - М.: Высшая школа, 1964. - 666с.

Кретович В.Л. Биохимия растений. Учебник для биол. спец. Ун-тов. - М.: Высшая школа, 1986. - 503 с.

Малый практикум по низшим растениям. Учебное пособие. - М.: Высшая школа, 1979. - 216 с.

Методы биохимического исследования растений. / Под ред. Л.И. Ермакова. - М.: Просвещение, 1972.

Наумов Н.А. Методы микобиологических исследований. - М., 1973.

Рубин Б.А., Арциховская Е.В. Биохимия и физиология иммунитета растений. - М., 1977.

Хржановский П.М. Курс батаники. Учебное пособие. - М., 1984.


Подобные документы

  • Життєві форми синьозелених водоростей. Характеристика середовища та екології. Класифікація токсинів. Гепатотоксичні циклічні пептиди, нейротоксичні, цитотоксичні та дерматоксичні алкалоїди. Визначення токсинів синьозелених водоростей. Методи детоксикації.

    дипломная работа [1,4 M], добавлен 07.03.2012

  • Поняття водоростей як збірної групи нижчих рослин, життя якої пов'язане головним чином з водним середовищем. Основні відділи рослин: евгленові, синьо-зелені, жовто-зелені, золотисті, діатомові, пірофітові та червоні. Роль водоростей у житті людини.

    реферат [13,8 K], добавлен 11.04.2012

  • Таксономічний склад планктонних водоростей кар’єрів Слобідський і Селецький. Флористичне зведення планктонних водоростей кар’єрів. Еколого-географічна характеристика водоростевих угруповань. Оцінка якості води кар’єрів за видами – показниками сапробності.

    дипломная работа [1016,2 K], добавлен 22.01.2015

  • Фізико-географічна характеристика Антарктиди. Перші дослідження Coleochlamys-подібних водоростей, їх морфологічний і молекулярно-філогенетичний аналіз. Водорості наземних біотопів району дослідження, їх загальний опис та оцінка екологічного значення.

    курсовая работа [1,8 M], добавлен 21.06.2014

  • Бактерії як велика група одноклітинних мікроорганізмів, які характеризуються відсутністю оточеного оболонкою клітинного ядра. Основні шляхи переносу ДНК у бактерій. Види зелених водоростей та їх екологічне значення. Основні екологічні функції бактерій.

    реферат [35,5 K], добавлен 13.01.2010

  • Вивчення середовища для виробництва білкових концентратів із водоростей, бактерій, рослин, дріжджів та грибів. Огляд ферментаторів для стерильного культивування мікроорганізмів. Аналіз флотації, сепарування, випарювання й сушіння для одержання протеїнів.

    дипломная работа [126,7 K], добавлен 07.05.2011

  • Дослідження рослин як продуцентів атмосферного кисню. Біологічний кругообіг кисню, вуглекислого газу, азоту та інших елементів, які беруть участь у процесах життєдіяльності живих організмів. Характеристика суті, значення та стадій процесу фотосинтезу.

    курсовая работа [472,7 K], добавлен 31.01.2015

  • Поняття та відмінні особливості біосфери, чисельність різних груп організмів в ній. Структура і розподіл життя у біосфері, три групи життєзабезпечуючих факторів. Геохімічна робота живої речовини та її властивості. Функції живої речовини в біосфері.

    реферат [452,7 K], добавлен 22.11.2010

  • Особливості протікання процесів живлення рослин вуглецем. Суть та значення фотосинтезу, загальне рівняння фотосинтезу та походження кисню. Листок як орган фотосинтезу, фотосинтетичні пігменти листка. Енергетика процесів фотосинтезу та його Z-схема.

    курсовая работа [2,9 M], добавлен 21.09.2010

  • Класифікація газонів. Джерела забруднення та забруднюючі речовини міського середовища. Газонні трави в озелененні промислових територій. Правила утримання зелених насаджень сучасних міст. Функціонування систем життєдіяльності газонних видів рослин.

    курсовая работа [154,1 K], добавлен 28.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.