Основные классы неорганических соединений

Определение молярной массы эквивалентов цинка. Определение концентрации раствора кислоты. Окислительно-восстановительные реакции. Химические свойства металлов. Реакции в растворах электролитов. Количественное определение железа в растворе его соли.

Рубрика Химия
Вид методичка
Язык русский
Дата добавления 13.02.2014
Размер файла 659,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(Ответ: 0,023 н.; 1,127•10?3 г/мл).

7.19. Смешали 10 мл 10 %-го раствора HNO3 (с = 1,056 г/мл) и 100 мл 30 %-го раствора HNO3 (с = 1,184 г/мл). Вычислить массовую долю HNO3 в полученном растворе. (Ответ: 28,36 %).

7.20. Вычислить массовую долю (%) нитрата серебра в 1,4 М растворе, плотность которого 1,18 г/мл. (Ответ: 20,2 %).

Лабораторная работа 8. Реакции в растворах электролитов

Цель работы: изучить понятия «электролиты», «электролитическая диссоциация», рассмотреть кислоты, основания, амфотерные электролиты, соли с точки зрения теории электролитической диссоциации, отличать сильные и слабые электролиты, научиться составлять ионно-молекулярные уравнения.

Задание: провести реакции обмена в растворах электролитов, выполнить требования к результатам опытов и оформить отчет, решить задачу.

Теоретическое введение

Электролитами называют вещества (кислоты, основания, соли), которые в растворах диссоциируют на ионы и проводят электрический ток.

Электролитическая диссоциация - распад молекул растворенного вещества на ионы под действием полярных молекул растворителя.

Кислоты - электролиты, диссоциирующие в растворах с образованием ионов водорода:

HNО2 H+ + NО2?.

Основания - электролиты, диссоциирующие в растворах с образованием гидроксид-ионов:

NH4OH NH4+ + OH?.

Существуют электролиты, которые могут диссоциировать как кислоты и как основания. Такие электролиты называются амфотерными. К ним относятся Be(OH)2, Zn(OH)2, Pb(OH)2, Sn(OH)2, Al(OH)3, Ga(OH)3, Cr(OH)3.

Диссоциацию растворимой части амфотерного электролита можно представить следующей схемой:

2H+ + BeO22? Be(OH)2 Be2+ + 2OH?.

Соли - электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов:

Al2(SO4)3 > 2Al3+ + 3SO42?;

средняя соль

NaHCO3 > Na+ + HCO3?;

кислая соль

CuOHCl CuOH+ + Cl?.

основная соль

Все электролиты делят на сильные и слабые. Сильные электролиты - это вещества, которые в водных растворах практически полностью диссоциируют на ионы. Сильными электролитами являются: все хорошо растворимые соли, кислоты (H2SO4, HNO3, HCl, HBr, HI, HClO4), щелочи (LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)2, Sr(OH)2, Ba(OH)2).

Слабые электролиты - это вещества, которые в водных растворах не полностью диссоциируют на ионы. К слабым электролитам относятся: H2O, NH4OH; некоторые соли; кислоты CH3COOH, HF, HNO2, HCN, HClO, H2SO3, H2CO3, H2S, H3PO4; все нерастворимые в воде основания, например Mg(OH)2, Fe(OH)3, Cu(OH)2.

Реакции в растворах электролитов протекают между ионами. Обычно такие реакции изображаются при помощи ионно-молекулярных уравнений, порядок составления которых следующий:

а) записывают молекулярное уравнение реакции и в обеих частях уравнения подчеркивают вещества, которые не будут полностью диссоциировать на ионы (нерастворимые вещества, слабые электролиты, газы):

AgNO3 + KCl = AgClv + KNO3;

б) составляют полное ионное уравнение реакции. Осадки, газы и слабые электролиты полностью на ионы не диссоциируют, поэтому в ионных уравнениях записываются в молекулярном виде:

Ag+ + NO3? + K+ + Cl? = AgClv + K+ + NO3?;

в) составляют краткое ионное уравнение, сокращая одинаковые ионы с обеих сторон:

Ag+ + Cl? = AgClv.

Реакции обмена в растворах сильных электролитов протекают до конца

или практически необратимо, когда ионы, соединяясь друг с другом, образуют вещества:

· нерастворимые (v):

3CaCl2 + 2Na3PO4 = Ca3(PO4)2v + 6NaCl

3Ca2+ + 6Cl? + 6Na+ + 2PO43- = Ca3(PO4)2v + 6Na+ + 6Cl?

3Ca2+ + 2PO43- = Ca3(PO4)2v;

· газообразные (^):

2HCl + Na2S = H2S^ + 2NaCl

2H+ + 2Cl? + 2Na+ + S2- = H2S^ + 2Na+ +2Cl?

2H+ + S2- = H2S^;

· малодиссоциирующие (слабые электролиты):

H2SO4 + 2KNO2 = 2HNO2 + K2SO4

2H+ + SO42? + 2К+ + 2NO2? = 2HNO2 + 2K+ + SO42?

H+ + NO2? = HNO2.

В тех случаях, когда нет ионов, которые могут связываться между собой с образованием осадка, газа, слабого электролита, реакции обмена не протекают.

Нередко встречаются процессы, в уравнениях которых с одной стороны равенства имеется малорастворимое соединение, а с другой - слабый электролит. Такие реакции протекают обратимо, причем равновесие смещается в сторону наименее диссоциировааных веществ. Так, равновесие в системе

Mg(OH)2v + 2HCl MgCl2 + 2H2O

Mg(OH)2v + 2H+ + 2Cl? Mg2+ + 2Cl? + 2H2O

Mg(OH)2v + 2H+ Mg2+ + 2H2O

смещено вправо, в сторону малодиссоциированных молекул воды.

Выполнение работы

Опыт 1. Сравнение химической активности кислот

В одну пробирку налить 1-2 мл раствора уксусной кислоты (CH3COOH), в другую - столько же раствора соляной кислоты (HCl). Взять два приблизительно одинаковых по величине кусочка мрамора и бросить по одному в каждую пробирку. Наблюдать выделение газа и отметить, в какой пробирке процесс идет более энергично.

Требования к результатам опыта

1. Написать молекулярные и ионные уравнения реакций взаимодействия мрамора (СаСО3) с уксусной и соляной кислотой.

2. Сделать вывод, от концентрации каких ионов зависит скорость выделения газа. В растворе какой кислоты концентрация этих ионов больше?

3. Учитывая, что для опыта взяты растворы соляной и уксусной кислот одинаковой концентрации, сделать вывод об относительной силе исследованных кислот.

Опыт 2. Реакции, идущие с образованием осадка

Налить в три пробирки по 1-2 мл сульфата магния, хлорида железа (III), сульфата меди (II) и прибавить в каждую по такому же количеству щелочи. Наблюдать образование осадков, отметить цвет. Осадки сохранить для следующего опыта.

Требование к результатам опыта

Составить молекулярные и ионные уравнения реакций образования осадков гидроксидов магния, железа (III) и меди (II).

Опыт 3. Реакции, идущие с образованием слабого электролита

К полученным в предыдущем опыте осадкам гидроксидов магния, железа, и меди прилить раствор соляной кислоты до полного их растворения.

Требования к результатам опыта

1. Составить молекулярные и ионные уравнения реакций растворения осадков гидроксидов магния, железа (III) и меди (II).

2. Объяснить растворение осадков в кислоте.

Опыт 4. Реакции, идущие с образованием газа

Налить в пробирку 1-2 мл раствора карбоната натрия, прилить в нее раствор соляной кислоты. Наблюдать выделение газа.

Требование к результатам опыта

Составить молекулярное и ионные уравнения реакции взаимодействия Na2CO3 с HCl.

Опыт 5. Амфотерные электролиты

В одну пробирку налить 2-3 мл раствора хлорида цинка, другую - столько же сульфата хрома (III). Затем в каждую пробирку добавить разбавленный раствор щелочи до выпадения осадков гидроксидов. В каждом случае осадки разделить на две пробирки. В одну из пробирок прилить раствор соляной кислоты, а в другую - раствор щелочи до растворения осадков.

Требования к результатам опыта

1. Составить молекулярные и ионные уравнения реакций образования осадков Zn(OH)2 и Cr(OH)3.

2. Составить молекулярные и ионные уравнения реакций растворения осадков гидроксидов цинка и хрома (III) в кислоте и щелочи.

3. Записать уравнения диссоциации полученных гидроксидов по типу кислот и по типу оснований.

Примеры решения задач

Пример 8.1. Составить молекулярные уравнения реакций, которым соответствуют следующие ионно-молекулярные уравнения:

Fe(OH)3 + 3H+ = Fe3+ + 3H2O;

H3PO4 + 3OH? = PO43? + 3H2O;

HCO3? + OH? = CO32? + H2O.

Решение. В левой части данных ионно-молекулярных уравнений указаны ионы, которые образуются при диссоциации сильных электролитов, следовательно, при составлении молекулярных уравнений следует исходить из соответствующих растворимых сильных электролитов. Например:

Fe(OH)3 + 3HCl = FeCl3 + 3H2O;

H3PO4 + 3NaOH = Na3PO4 + 3H2O;

KHCO3 + KOH = K2CO3 + H2O.

При выполнении подобных заданий следует пользоваться табл. Б.3.

Пример 8.2. Составить молекулярные и ионно-молекулярные уравнения реакций, подтверждающие амфотерный характер гидроксида свинца.

Решение. Амфотерные электролиты могут диссоциировать по типу кислоты и основания, поэтому Pb(OH)2 может растворяться как в кислоте, проявляя свойство основания, так и в щелочи, проявляя свойства кислоты.

Как основание: Pb(OH)2 + 2HNO3 = Pb(NO3)2 + 2H2O

Pb(OH)2 + 2H+ = Pb2+ + 2H2O.

Как кислота: Pb(OH)2 + 2NaOH = Na2[Pb(OH)4]

Pb(OH)2 + 2OH? = [Pb(OH)4]2?.

Схема диссоциации Pb(OH)2:

2H+ + [Pb(OH)4]2? Pb(OH)2 + 2H2O [Pb(H2O)2]2+ +2OH?.

Задачи и упражнения для самостоятельного решения

8.1. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) K2S и CuSO4; б) AgNO3 и NH4Cl;

в) Na2SiO3 и H2SO4; г) CaCO3 и HNO3.

8.2. Составить по два молекулярных уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Fe3+ + 3OH- = Fe(OH)3; б) H+ + OH? = H2O; в) Cu2+ + S2? = CuS.

8.3. Можно ли приготовить раствор, содержащий одновременно следующие пары веществ: а) KOH и Ba(NO3)2; б) NiSO4 и (NH4)2S; в) Pb(NO3)2 и KCl;

г) CuCl2 и Na2S? Представить возможные реакции в молекулярном и ионно-молекулярном виде.

8.4. Смешивают попарно растворы: а) KOH и Mg (NO3)2; б) Li2СO3 и HCl;

в) Fe(NO3)3 и KOH; г) NH4Cl и NaOH. В каких случаях реакции практически пойдут до конца? Представить их в молекулярном и ионно-молекулярном виде.

8.5. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) BaCO3 и HNO3; б) Fe2(SO4)3 и KOH;

в) HCl и K2S; г) CH3COOK и HCl.

8.6. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Mg(OH)2 и CH3COOH; б) NH4NO3 и KOH; в) Ca(NO3)2 и K2CrO4; г) AlCl3 и Ba(OH)2.

8.7. Смешивают попарно растворы: а) K2SO3 и HCl; б) Na2SO4 и KCl;

в) CH3COONa и HNO3; г) Al2(SO4)3 и избыток KOH. В каких из приведенных случаев реакции практически пойдут до конца? Составить для этих уравнений молекулярные и ионно-молекулярные реакций.

8.8. Какие из веществ будут взаимодействовать с гидроксидом калия:

а) Ba(OH)2; б) Sn(OH)2; в) NiSO4; г) H3PO4? Выразить эти реакции молекулярными и ионно-молекулярными уравнениями.

8.9. Составить по два молекулярных уравнения, которые выражаются ионно-молекулярными уравнениями: а) OH? + HS? = H2O + S2?;

б) CO32? + 2H+ = H2O + CO2; в) OH? + NH4+ = NH4OH.

8.10. Составить молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Na2SO3 и H2SO4; б) CH3COOH и KOH;

в) Na2HPO4 и NaOH; г) Be(OH)2 и KOH.

8.11. Смешивают попарно растворы: а) Cu(NO3)2 и Na2SO4; б) BaCl2 и K2SO4; в) NaHCO3 и NaOH; г) Cd(OH)2 и HCl. В каких из приведенных случаев реакции практически пойдут до конца? Составить для этих реакций молекулярные и ионно-молекулярные уравнения.

8.12. Составить молекулярные и ионно- молекулярные уравнения реакций взаимодействия в растворах между: а) K2S и HCl; б) KHCO3 и H2SO4; в) MgSO4 и BaCl2; г) Ba(OH)2 и H2SO4.

8.13. Написать молекулярные и ионно-молекулярные уравнения реакций, соответствующие следующим превращениям:

а) CO32? > CaCO3 > Ca2+- > CaSO4 ; б) S2? > FeS > Fe2+.

8.14. Написать молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Hg(NO3)2 и Na2S; б) Li2SO3 и HCl; в) Ca(HCO3)2 и Ca(OH)2.

8.15. Составить по два молекулярных уравнения, которые соответствуют следующим сокращенным ионно-молекулярным уравнениям:

а) CH3COO? + H+- = CH3COOH; б) Ba2+ + CrO42? = BaCrO4; в) Ag+ + I? = AgI.

8.16. Составить молекулярные и ионно-молекулярные уравнения реакций, протекающих в растворах между: а) диоксидом углерода и гидроксидом бария; б) силикатом натрия и хлороводородной кислотой; в) сульфидом железа (II) и серной кислотой; г) иодидом калия и нитратом свинца.

8.17. Закончить молекулярные и составить ионно-молекулярные уравнения следующих реакций:

а) Fe2(SO4)3 + K3PO4 = …; б) Ba(NO3)2 + Na2CO3 = …; в) Cu(NO3)2 + K2S = ….

8.18. Закончить молекулярные и составить ионно-молекулярные уравнения следующих реакций:

а) Pb(NO3)2 + H2SO4 = …; б) CaCl2 + AgNO3 = …;

в) SnCl2 + NaOH = …; г) KOH + HNO3 = ….

8.19. Исходя из сокращенной ионно-молекулярной формы уравнения, составить по два молекулярных уравнения: а) CaCO3 + 2H+ = Ca2+ + H2O + CO2;

б) Ba2+ + SO42? = BaSO4; в) Cu(OH)2 + 2H+ = Cu2+ + 2H2O.

8.20. Написать молекулярные и ионно-молеулярные уравнения реакций взаимодействия в растворах между: а) Hg(NO3)2 и Nal; б) MgCO3 и HCl;

в) CuSO4 и H2S.

Лабораторная работа 9. Гидролиз солей

Цель работы: изучить понятие «гидролиз», рассмотреть типы гидролиза солей, научиться составлять молекулярные и ионные уравнения гидролиза солей.

Задание: определить рН среды в растворах различных солей, выявить влияние концентрации растворов и температуры на смещение равновесия гидролиза. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Гидролизом соли называется взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и изменению рН среды.

Гидролизу подвергаются соли, в состав которых входят катионы слабых оснований, или анионы слабых кислоты, или те и другие одновременно. Эти ионы связываются с ионами H+ или OH? из воды с образованием слабого электролита, в результате чего нарушается равновесие электролитической диссоциации воды H2O - H+ + OH?. В растворе накапливаются ионы H+ или ОН?, сообщая ему кислую или щелочную реакцию. Соли, образованные сильным основанием и сильной кислотой (NaCl, NaNO3, K2SO4, BaCl2, LiNO3), гидролизу не подвергаются. В этом случае ни катион, ни анион соли не будут связывать ионы воды в малодиссоциированные продукты, поэтому равновесие диссоциации воды не нарушается. Реакция среды в растворах таких солей нейтральная, pH~7

Можно выделить три типа гидролиза:

1. Г и д р о л и з п о а н и о н у происходит в растворах солей, состоящих из анионов слабых кислот и катионов сильных оснований (CH3COOK, KNО2, Na2CO3, Cs3PO4). В этом случае анион слабой кислоты связывается с иоными Н+ из воды с образованием слабого электролита.

В качестве примера рассмотрим гидролиз нитрита калия KNО2. Эта соль образована сильным основанием KOH и слабой кислотой HNО2. При растворении в воде KNО2 полностью диссоциирует на ионы K+ и NО2?. Катионы K+ не могут связывать ионы ОH? воды, так как KOH - сильный электролит. Анионы же NО2? связывают ионы H+ воды, в результате чего в растворе появляются молекулы слабой кислоты HNО2 и гидроксид-ионы OH?.

Порядок составление уравнений гидролиза следующий:

а) записывают уравнение диссоциации соли и подчеркивают ион, который может образовать с ионами воды (Н+ или ОН?) слабый электролит:

KNO2 = K+ + NO2?;

б) составляют краткое ионное уравнение и указывают рН среды:

NO2? + НОН HNO2 + OH? pH > 7;

в) составляют полное ионное уравнение реакции. Для этого прибавляют к левой и правой частям краткого ионного уравнения ионы, не претерпевающие в результате гидролиза никаких изменений. В рассматриваемом примере - это катионы калия:

K+ + NО2? + H2O HNО2 + K+ + OH?;

г) составляют молекулярное уравнение гидролиза. Для этого ионы из полного ионного уравнения соединяют в молекулы:

KNО2 + H2O HNО2 + KOH.

Продукты гидролиза - слабая кислота HNО2 и гидроксид калия КОН.

Соли, образованные сильным основанием и слабой многоосновной кислотой, гидролизуются ступенчато. Гидролиз протекает в значительно большей мере по первой ступени, что приводит к образованию кислых солей:

Na2S = 2Na+ + S2?

S2? + НOН HS? + OH? pH > 7

2Na+ + S2- + H2O Na+ + HS? + Na+ + OH?

Na2S + H2O NaHS + NaOH.

Продуктами гидролиза является кислая соль NaHS и гидроксид натрия NaOH.

2. Г и д р о л и з п о к а т и о н у происходит в растворах солей, состоящих из катионов слабых оснований и анионов сильных кислот (NH4Cl, CuSO4, FeCl3, AlCl3, Pb(NO3)2, ZnSO4). В этом случае катион слабого основания связывается с ионами ОН? из воды с образованием слабого электролита. Так, гидролиз суьфата цинка может быть представлен уравнениями:

ZnSO4 = Zn2+ + SO42?

Zn2+ + HOН ZnOH+ + H+ рН < 7

2Zn2+ + 2SO42? + 2H2O 2ZnOH+ + SO42? + 2H+ + SO42?

2ZnSO4 + 2H2O (ZnOH)2SO4 + H2SO4.

Продуктами гидролиза являются основная соль (ZnOH)2SO4 и серная кислота H2SO4.

3. Г и д р о л и з п о а н и о н у и к а т и о н у одновременно происходит в растворах солей, образованных слабыми основаниями и слабыми кислотами (NH4NO2, Al2S3, Fe(CH3COO)3, NH4CH3COO, NH4CN). В этом случае с водой взаимодействует как катион слабого основания, так и анион слабой кислоты, например:

NH4CH3COO = NH4+ + CH3COO?

NH4+ + HOН NH4OH + H+

CH3COO? + HOН CH3COOH + ОН?

NH4+ + CH3COO? + H2O NH4OH + CH3COOH

NH4CH3COO + H2O NH4OH + CH3COOH.

Продуктами гидролиза являются слабая кислота CH3COOH и слабое основание NH4OH. Среда после гидролиза близка к нейтральной, pH ~ 7.

Как правило, гидролиз - обратимый процесс. В первых двух случаях равновесие сильно смещено влево - в сторону малодиссоциированных молекул воды, в третьем - вправо, в сторону образования продуктов гидролиза - двух слабых электролитов.

Практически необратимо гидролизуются только те соли, продукты гидролиза которых уходят из раствора в виде нерастворимых или газообразных соединений. Необратимо гидролизующиеся соли невозможно получить в результате реакции обмена в водных растворах. Например, вместо ожидаемого Cr2S3 при смешивании растворов CrCl3 и Na2S образуется осадок Cr(OH)3 и выделяется газообразный H2S:

2CrCl3 + 3Na2S + 6H2O = 6NaCl + 2Cr(OH)3v + 3H2S^.

На равновесие гидролиза влияют температура и концентрация. Смещение равновесия гидролиза происходит в соответствии с принципом Ле Шателье. Гидролиз - это реакция, обратная нейтрализации, а нейтрализация - экзотермический процесс, следовательно, гидролиз - эндотермический. Поэтому увеличение температуры усиливает гидролиз (т.е. смещает равновесие вправо). При постоянной температуре равновесие гидролиза можно сместить вправо (усилить гидролиз), разбавляя раствор водой и удаляя продукты гидролиза. Гидролиз подавляется (равновесие смещается влево), если увеличить концентрацию продуктов гидролиза.

Выполнение работы

Опыт 1. Реакция среды в растворах различных солей

На полоски универсальной индикаторной бумаги нанести по капле раствора хлорида натрия NaCl, сульфата меди CuSO4, нитрата свинца Pb(NO3)2, карбоната натрия Na2CO3, ацетата калия CH3COOK и ацетата аммония CH3COONH4. По изменению окраски индикаторной бумаги сделать вывод о реакции среды в растворе каждой соли.

Требования к результатам опыта

1. Составить сокращенные, полные ионные и молекулярные уравнения реакций гидролиза солей, указать рН среды. В случае ступенчатого гидролиза написать уравнения реакций только для первой ступени.

2. Сделать вывод, какие типы солей подвергаются гидролизу.

Опыт 2. Смещение равновесия гидролиза при разбавлении раствора

Налить в пробирку 1-2 мл раствора нитрата висмута Bi(NO3)3 и постепенно разбавлять водой до выпадения осадка. Прибавить в пробирку с осадком несколько капель концентрированной азотной кислоты. Наблюдать растворение осадка.

Требования к результатам опыта

1. Составить сокращенные, полные ионные и молекулярные уравнения реакции гидролиза нитрата висмута по первой и второй ступени.

2. Сделать вывод о смещении равновесия при разбавлении раствора и добавлении кислоты.

Опыт 3. Смещение равновесия гидролиза при изменении температуры

В пробирку налить 5-6 мл раствора ацетата натрия CH3COONa и добавить 1-2 капли фенолфталеина. Содержимое пробирки разделить на 2 части, одну из них оставьте для сравнения, другую - нагреть до кипения. Сравнить окраску индикатора в обеих пробирках. Дать пробирке охладиться и снова сравнить окраску индикатора в обеих пробирках.

Требования к результатам опыта

1. Составить сокращенное, полное ионное и молекулярное уравнение реакции гидролиза CH3COONa.

2. Сделать вывод о смещении равновесия при изменении температуры.

Опыт 4. Реакции обмена, сопровождаемые гидролизом

В одну пробирку налить 2-3 мл раствора сульфата меди (II), в другую - столько же хлорида железа (III). Затем в каждую пробирку добавить по 2-3 мл раствора карбоната натрия. Отметить выделение углекислого газа в обеих пробирках и выпадение осадков. В первой пробирке в осадок выпадает карбонат гидроксомеди (II), во второй - гидроксид железа (III).

Требования к результатам опыта

1. Закончить уравнения реакций в молекулярном и ионном виде:

CuSO4 + Na2CO3 + H2O = … ;

FeCl3 + Na2CO3 + H2O = … .

2. Объяснить, почему не получились карбонаты меди и железа.

Примеры решения задач

Пример 9.1. Какие продукты получатся при смешивании растворов AlCl3 и Na2S? Составить ионно-молекулярные и молекулярное уравнение реакции.

Решение. Соль AlCl3 гидролизуется по катиону, а Na2S - по аниону:

Al3+ + H2O - AlOH2+ + H+,

S2? + H2O - HS? + OH?.

Гидролиз приведенных солей обычно ограничиваются первой ступенью. При смешивании растворов этих солей ионы H+ и OH? связываются в молекулы слабого электролита H2O, сдвигая гидролитическое равновесие вправо. Это приводит к тому, что усиливается гидролиз каждой из солей до образования Al(OH)3 и H2S. Ионно-молекулярные и молекулярное уравнения имеют следующий вид:

Al3+ + 3S2? + 6H2O = 2Al(OH)3v + 3H2S^

2Al3+ + 6Cl? + 6Na+ +3S2? + 6H2O = 2Al(OH)3v + 3H2S^ + 6Na+ + 6Cl?

2AlCl3 + 3Na2S + 6H2O = 2Al(OH)3v + 3H2S^ + 6NaCl.

Таким образом, продуктами гидролиза являются Al(OH)3 и H2S.

Пример 9.2. К раствору Na2CO3 добавили следующие вещества: а) HCl;

б) NaOH; в) Cu(NO3)2; г) K2S. В каких случаях гидролиз карбоната натрия усилится? Почему? Составить ионно-молекулярные уравнения гидролиза соответствующих солей.

Решение. Карбонат натрия Na2CO3 - соль слабой кислоты и сильного основания гидролизуется по аниону: СО32? + Н2О НСО3? + ОН? (1)

Чтобы усилить гидролиз соли, нужно удалить ионы ОН? и таким образом сместить равновесие (1) вправо. Этого можно достигнуть добавлением в раствор Na2CO3 веществ, растворы которых содержат ионы Н+. Ионы Н+ свяжут ионы ОН? из (1) в молекулы слабого электролита Н2О, в результате чего равновесие (1) смесится вправо и гидролиз усилится. В нашей задаче такими веществами являются кислота HCl (HCl > Н+ + Cl?) и соль Cu(NO3)2, содержащая ионы Н+ вследствие ее гидролиза по катиону Cu2+ + H2O CuOH+ + H+.

Задачи и упражнения для самостоятельного решения

9.1. Какие из перечисленных ниже солей подвергаются гидролизу: NaCN, KNO3, CuCl2, ZnSO4? Cоставить ионно-молекулярные и молекулярные уравнения реакций, указать рН среды.

9.2. К раствору Cr2(SO4)3 добавили раствор K2S. Объяснить причину образования осадка и выделения газа. Составить молеклярное и ионно-молекулярные уравнения реакции.

9.3. Какие из солей: Na2SO4, К2SO3, NH4CN, LiCl, Fe2(SO4)3 подвергаются гидролизу? Составить ионно-молекулярные и молекулярные уравнения гидролиза этих солей. Какое значение pH (> 7 <) имеют растворы этих солей?

9.4. Составить молекулярные и ионно-молекулярные уравнения совместного гидролиза, происходящего при сливании растворов: а) Fe(NO3)3 и Na2CO3;

б) CuCl2 и K2CO3.

9.5. Подобрать по два уравнения в молекулярном виде к каждому из трех ионно-молекулярных уравнений: а) Al3+ +H2O AlOH2+ + H+;

б) S2? + H2O HS? + OH?; в) CН3СОО? + H2O СН3СООН +OH?.

9.6. Подобрать по два уравнения в молекулярном виде к каждому из трех ионно-молекулярных уравнений: а) Fe3+ + 2H2O Fe(OH)2+ + 2H+;

б) CO32- + H2O HCO3? + OH?; в) NH4++ H2O NH4OH + H+.

9.7. Составить ионно-молекулярные и молекулярные уравнения реакций для солей, подвергающихся гидролизу, указать реакцию среды: K2SO3, Cr(NO3)3, NaNO2, NiSO4.

9.8. В какой цвет будет окрашен лакмус в водных растворах: K2S, (NH4)2SO4, Na2CO3, Li2SO4? Ответ обосновать ионно-молекулярными и молекулярными уравнениями реакций гидролиза солей.

9.9. Составить ионно-молекулярные и молекулярные уравнения реакций для солей, подвергающихся гидролизу, указать реакцию среды: KI, Cu(NO3)2, K2SiO3, ZnSO4.

9.10. Какие из приведенных солей подвергаются гидролизу по катиону, по аниону, по катиону и аниону: BaS, Mn(NO3)2, AlCl3, Cr2S3? Указать pH среды для водных растворов солей. Составить ионно-молекулярные и молекулярные уравнения гидролиза.

9.11. Какие из солей NaI, CrCl3, NH4NO3, NH4NO2 подвергаются гидролизу? Составить ионно-молекулярные и молекулярные уравнения гидролиза этих солей, указать реакцию среды.

9.12. К раствору Al2(SO4)3 добавили следующие вещества: а) H2SO4; б) KOH;

в) Na2SO3; г) ZnSO4. В каких случаях гидролиз сульфата алюминия усилится? Почему? Составить ионно-молекулярные уравнения гидролиза соответствующих солей.

9.13. Какие из веществ: Na2CO3, Li2SO3, CuCl2, MgSO4, BaS создадут избыток гидроксид-ионов в растворе своей соли? Почему? Составить ионно-молекулярные и молекулярные уравнения гидролиза этих солей.

9.14. При сливании растворов солей CrCl3 и Na2CO3 образуется осадок Cr(OH)3 и выделяется газ СО2. Объяснить причину и написать молекулярное и ионно-молекулярные уравнения реакции.

9.15. Написать уравнения реакций гидролиза в ионно-молекулярном и молекулярном виде: ацетата лития CH3COOLi, хлорида алюминия NH4Cl, цианида аммония NH4CN, сульфида бария BaS.

9.16. Объяснить, почему водные растворы NaNO2, Li2CO3, Na3PO4 имеют щелочную реакцию. Ответ подтвердить уравнениями реакций в ионно-молекулярном и молекулярном виде.

9.17. К раствору FeCl3 добавили следующие вещества: а) HCl; б) KOH; в) CuCl2; г) Na2CO3. В каких случаях гидролиз хлорида железа усилится? Почему? Составить ионно-молекулярные уравнения гидролиза соответствующих солей.

9.18. При смешивании растворов Fe2(SO4)3 и K2S образуется осадок и выделяется газ. Написать молекулярное и ионно-молекулярные уравнения совместного гидролиза солей.

9.19. Составить ионно-молекулярные и молекулярные уравнения гидролиза cолей: NH4CH3COO, Ca(NO2)2, К3PO4, MnCl2.

9.20. Почему при добавлении горячей воды к водному раствору хлорида железа (III) выпадает осадок? Подтвердить это уравнениями реакций в ионно-молекулярном и молекулярном виде.

Лабораторная работа 10. Коллоидные растворы

Цель работы: изучить основные понятия коллоидной химии «дисперсность, коллоидный раствор, дисперсная фаза, дисперсионная среда, коллоидная частица, мицелла, коагуляция, седиментация, пептизация»; получение коллоидных растворов; научиться составлять схемы мицелл.

Задание: получить коллоидные растворы гидроксида железа (III) методоми конденсации и диспергирования осадка Fe(OH)3. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Системы, в которых одно вещество распределено в мелкораздробленном состоянии в среде другого, называются дисперсными. Раздробленное (распределенное вещество) называется дисперсной фазой, а среда, в которой распределена дисперсная фаза - дисперсионной средой. Дисперсные системы с размером частиц дисперсной фазы от 1 до 100 нм называются коллоидными растворами или золями.

Дисперсная фаза в коллоидном растворе (или золе) представлена коллоидными частицами, в состав которых входят ядро, зарядообразующие ионы и противоионы. Зарядообразующие ионы могут быть положительно или отрицательно заряженными, поэтому и коллоидные частицы имеют либо положительный, либо отрицательный заряд. Заряженные коллоидные частицы притягивают к себе молекулы Н2О из дисперсионной среды; так создается гидратная оболочка, окружающая коллоидную частицу.

Примерный состав коллоидных частиц золей Sb2S3 и Fe(OH)3 можно выразить следующими формулами:

[(mSb2S3)?nHS??(n-x)H+?yH2O]x- ;

[(mFe(OH)3?nFe3+?3(n-x)Cl??yH2O]3x+.

Противоионы Н+ или Cl-, которые входят в состав коллоидных частиц, называют связанными. Свободные противоионы остаются в дисперсионной среде.

Коллоидную частицу и эквивалентную ей часть дисперсионной среды (гидратированных свободных противоионов) называют мицеллой. Мицеллу считают структурной единицей коллоидного раствора. Формулы

{[(mSb2S3)?nHS-?(n-x)H+?yH2O]x?+ xH+?zH2O},

{[(mFe(OH)3?nFe3+?3(n-x)Cl??yH2O]3x+ + 3xCl??zH2O}0

выражают примерный состав мицелл золей сульфида сурьмы и гидроксида железа.

Коллоидная дисперсность вещества является промежуточной между группой дисперсности, характерной для взвеси и молекулярной, характерной для истинных растворов. Поэтому коллоидные растворы получают либо из истинных растворов путем укрупнения частиц молекулярной дисперсности до определенного предела (максимум до 100 нм), либо из взвеси путем дробления грубодисперсных частиц также до определенного предела (минимум до 1 нм). В этой связи различают конденсационные методы (укрупнение частиц) и метод диспергирования (дробление частиц).

Конденсация частиц молекулярной дисперсности может происходить в процессе гидролиза солей некоторых поливалентных металлов, например, FeCl3. Гидролиз иона Fe3+ протекает по ступеням:

Fe3+ + H2O = FeOH2+ + H+

FeOH2+ + H2O = Fe(OH)2+ + H+

Fe(OH)2+ + H2O = Fe(OH)3 + H+.

Гидроксид железа Fe(OH)3 не выпадает в осадок, т.к. степень гидролиза FeCl3 по третьей ступени мала.

Зарядообразующими ионами в процессе образования золя могут быть Fe3+, FeOH2+ , Fe(OH)2+ , а противоионами ? Cl? .

Примером получения золей методом диспергирования может служить получение коллоидного раствора Fe(OH)3 путем химического дробления осадка гидроксида железа (III), называемого пептизацией. Пептизатором может быть электролит с одноименным ионом, входящим в состав осадка, например, FeCl3.

Добавление пептизатора к небольшому количеству осадка в водной среде приводит к тому, что ионы Fe3+ проникают в глубь осадка и разрыхляют его, постепенно дробя до коллоидной дисперсности. Дробление называют химическим потому, что ионы непросто проникают в осадок, а, взаимодействуя с его частицами, образуют дисперсную фазу положительного заряда. Ионы Fe3+ являются зарядообразующими в составе коллоидных частиц получающегося золя, а ионы Cl? противоионами.

Коллоидные растворы обладают специфическими оптическими, кинетическими и электрическими свойствами (специфика связана с размерами и зарядом коллоидных частиц) и характеризуются высокой кинетической и агрегативной устойчивостью.

Устойчивость коллоидного раствора можно нарушить. Потеря агрегативной устойчивости золя приводит к укрупнению частиц дисперсной фазы, их слипанию. Этот процесс называют коагуляцией. Коагуляция вызывает нарушение кинетической устойчивости системы, которая приводит к образованию осадка (коагулята). Этот процесс называют седиментацией.

Примерный состав коагулята золей сульфида сурьмы и гидроксида железа выражают формулами:

[(mSb2S3)?nHS??nH+]0;

[(mFe(OH)3?nFe3+?3nCl?]0.

Выполнение работы

Опыт 1. Получение золя гидроксида железа (III) методом конденсации

Пробирку заполнить водой (примерно до половины ее объема) и поставить в горячую водяную баню. Через 5-7 минут внести в пробирку 2-3 капли концентрированного раствора FeCl3. Наблюдать образование краснооранжевого золя Fe(OH)3. Раствор сохранить для опыта 3.

Требование к результатам опыта

Указать состав ядра коллоидной частицы полученного золя, состав коллоидной частицы, состав мицеллы.

Опыт 2. Получение золя гидроксида железа (III) методом диспергирования осадка Fe(OH)3

В стакан объемом 50 мл налить 25 мл воды и добавить 10 капель 20 %-го раствора хлорида железа FeCl3. Перемешать содержимое стакана и после этого добавить по каплям раствор гидроксида аммония NH4OH до полного осаждения гидроксида Fe(OH)3.

После того как осадок уплотнится на дне стакана, осторожно слить с него избыток раствора. Осадок промыть 2-3 раза, добавляя к нему небольшие порции воды и сливая эту воду после того, как между ними и осадком четко обозначится граница раздела.

К осадку гидроксида железа (III) прилить 25 мл H2O и 3 капли 20 %-го раствора FeCl3. Смесь хорошо перемешать. Для ускорения процесса пептизации нагреть раствор на водяной бане. Прекратить нагревание, когда раствор приобретет устойчивую краснооранжевую окраску.

Требование к результатам опыта

Составить схему строения мицеллы золя гидроксида железа (III) в растворе хлорида железа FeCl3.

Опыт 3. Коагуляция золя гидроксида железа электролитами

Разлить в три пробирки золь гидроксида железа, полученный в опыте 1. По каплям прибавить в первую пробирку NaCl , во вторую - Na2SO4 , в третью - Na2HPO4. Считать число капель до изменения вида раствора (появления мути и осадка).

Требования к результатам опыта

1. Написать формулу мицеллы золя гидроксида железа.

2. Объяснить влияние заряда коагулирующего иона на время, проходящее до начала коагуляции.

Примеры решения задач

Пример 10.1. Золь иодида серебра получен при добавлении к раствору AgNO3 избытка KI. Определить заряд частиц полученного золя и написать формулу его мицеллы.

Решение. При смешивании растворов AgNO3 и KI протекает реакция

AgNO3 + KI (изб.) = AgI + KNO3.

Ядро коллоидной частицы золя иодида серебра состоит из агрегата молекул (mAgI) и зарядообразующих ионов I?, которые находятся в растворе в избытке и обеспечивают коллоидным частицам отрицательный заряд. Противоионами являются гидратированные ионы калия. Формула мицеллы иодида серебра имеет вид {[(mAgI)·nI?·(n-x)К+·yH2O]x? + xК+•zH2O}0.

Пример 10.2. Золь кремневой кислоты был получен при взаимодействии растворов K2SiO3 и HCl. Написать формулу мицеллы золя и определить, какой из электролитов был взят в избытке, если противоионы в электрическом поле движутся к катоду.

Решение. Образование золя кремневой кислоты происходит по реакции

K2SiO3 + 2HCl = H2SiO3 + 2KCl.

Чтобы двигаться к катоду (отрицательному электроду) противоионы должны иметь положительный заряд, а коллоидные частицы золя должны быть заряжены отрицательно. На электронейтральном агрегате частиц (mH2SiO3) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы HSiO3?, которые образуются в результате гидролиза соли K2SiO3:

K2SiO3 + H2O KHSiO3 + KOH или в ионной форме

SiO32? + H2O HSiO3? + OH?.

Ионы HSiO3?, адсорбируясь на поверхности частиц золя кремниевой кислоты, сообщают им отрицательный заряд. Противоионами являются гидратированные ионы водорода H+. Формула мицеллы золя кремневой кислоты

{[(mH2SiO3) ·nHSiO3?·(n-x)H+•yH2O]x? + xH+•zH2O}.

Так как коллоидные частицы золя кремневой кислоты заряжены отрицательно за счет ионов HSiO3?, то, следовательно, в избытке был взят K2SiO3.

Пример 10.3. Какого из веществ, K2SO4 или KCl, потребуется меньше, чтобы вызвать коагуляцию коллоидного раствора гидроксида железа (II), полученного по реакции FeCl2 + 2NaOH = Fe(OH)2 + 2NaCl?

Решение. Из формулы коллоидной частицы золя гидроксида железа (II) [(mFe(OH)2·nFe2+ 2(n-x)Cl?•yH2O]2x+ видно, что частицы золя имеют положительный заряд. Коагуляцию золя вызывает тот из ионов прибавленного электролита, заряд которого противоположен заряду коллоидной частицы. В данной задаче - это ионы SO42? и Cl?. Коагулирующая способность иона определяется его зарядом - чем больше заряд иона, тем больше его коагулирующая способность. Заряд иона SO42? больше заряда иона Cl?, поэтому, чтобы вызвать коагуляцию коллоидного раствора гидроксида железа (II), раствора K2SO4 потребуется меньше, чем раствора KCl.

Пример 10.4. Составить схему строения мицеллы золя гидроксида меди (II) в растворе хлорида меди.

Решение. В состав мицеллы гидроксида меди входят: агрегат молекул (mCu(OH)2), адсорбированный слой, состоящий из зарядообразующих ионов меди Cu2+ и гидратированных противоионов хлора, и диффузный слой гидратированных противоионов хлора. Схема строения мицеллы гидроксида меди

{[(mCu(OH)2·nCu2+ 2(n-x)Cl?•yH2O]2x+ + 2xCl?•zH2O}.

Задачи и упражнения для самостоятельного решения

10.1. Составить схему строения мицеллы золя сульфида мышьяка As2S3 в растворе сульфида натрия.

10.2. Какой из солей: Ca(NO3)2, NaNO3 или Al(NO3)3 потребуется меньше для коагуляции золя хлорида серебра?

10.3. Составить схему строения мицеллы золя сульфата бария в растворе сульфата натрия.

10.4. Образование золя сульфата бария происходит по реакции

3BaCl2 + Al2(SO4)3 = 3BaSO4 + 2AlCl3.

Написать формулу мицеллы золя BaSO4 и определить, какой из электролитов был в избытке, если противоионы в электрическом поле движутся к аноду.

10.5. Составить схему строения мицеллы золя кремниевой кислоты в растворе силиката натрия.

10.6. При пропускании избытка сероводорода в раствор AsCl3 получили золь сульфида мышьяка As2S3. Определить знак заряда частиц золя и написать формулу мицеллы золя сульфида мышьяка.

10.7. Золь иодида свинца был получен по реакции

Pb(NO3)2 + 2KI = PbI2 + 2KNO3.

Составить формулу мицеллы золя иодида свинца и определить, какой из электролитов был взят в избытке, если при электрофорезе противоионы двигались к аноду (положительному электроду).

10.8. Составить схему строения мицеллы золя кремниевой кислоты в растворе соляной кислоты.

10.9. Какого электролита, FeCl3 или AgNO3, нужно взять в избытке, чтобы частицы золя хлорида серебра в электрическом поле двигались к аноду? Написать формулу мицеллы золя.

10.10. Составить схему строения мицеллы гидроксида железа (III) в растворе соляной кислоты.

10.11. Составить схему строения мицеллы оловянной кислоты H2SnO3 в растворе станната калия K2SnO3.

10.12. Какой из солей, NaCl, Na2SO4 или Na3PO4, потребуется больше для коагуляции золя гидроксида железа (III), частицы золя которого заряжены положительно?

10.13. Золь бромида серебра был получен по реакции

AgNO3 + NaBr = AgBr + NaNO3.

Составить формулу мицеллы золя и определить, какой из электролитов был взят в избытке, если при электрофорезе частицы золя двигались к катоду.

10.14. Составить схему строения мицеллы гидроксида железа (III) в растворе хлорида железа (III).

10.15. Какого из веществ, хлорида алюминия AlCl3, нитрата бария Ba(NO3)2 или сульфата калия K2SO4, потребуется меньше для коагуляции золя кремниевой кислоты, частицы которого заряжены отрицательно?

10.16. Составить схему строения мицеллы сульфида сурьмы (III) в растворе сульфата калия.

10.17. Золь сульфида кадмия был получен по реакции

Cd(NO3)2 + Na2S = CdS + Na2S.

Составить формулу мицеллы золя сульфида кадмия и определить, какой из электролитов был взят в избытке, если при электрофорезе противоионы двигались к аноду.

10.18. Золь хлорида свинца был получен по реакции

Pb(NO3)2 + 2NaCl = PbCl2+ 2NaNO3.

Составить формулу мицеллы золя и определить, какой из электролитов был взят в избытке, если при электрофорезе частицы золя двигались к катоду (отрицательному электроду).

10.19. При пропускании избытка сероводорода в раствор SbCl3 получили золь сульфида сурьмы Sb2S3. Определить знак заряда частиц золя и написать формулу мицеллы золя сульфида сурьмы.

10.20. Представить строение мицеллы оксида олова (IV) в растворе K2SnO3.

Лабораторная работа 11. Окислительно-восстановительные реакции

Цель работы: изучить понятия «степень окисления», «окислительно-восстановительные реакции (ОВР)», «окислитель», «восстановитель», «процессы окисления и восстановления», научиться составлять уравнения ОВР с помощью метода электронного баланса, определять тип ОВР.

Задание: провести опыты и выявить влияние реакции среды на ОВР с участием перманганата калия; опытным путем определить окислительно-восстановительные функции нитрита калия; проделать внутримолекулярную реакцию и реакцию диспропорционирования. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Окислительно-восстановительными называются реакции, сопровождающиеся изменением степени окисления элементов.

Окисление - процесс отдачи электронов атомом, молекулой или ионом, сопровождающийся повышением степени окисления элемента. Восстановление - процесс присоединения электронов, сопровождающийся понижением степени окисления элемента.

Окисление и восстановление - взаимосвязанные процессы, протекающие одновременно.

Окислителями называются вещества (атомы, ионы или молекулы), которые в процессе реакции присоединяют электроны, восстановителями - вещества, отдающие электроны. Окислителями могут быть атомы галогенов и кислород, положительно заряженные ионы металлов (Fe3+, Au3+, Hg2+, Cu2+, Ag+), сложные ионы и молекулы, содержащие атомы металла в высшей степени окисления (KMnO4, K2Cr2O7, NaBiO3 и др.), атомы неметаллов в положительной степени окисления (HNO3, концентрированная H2SO4, HClO, HClO3, KClO3, NaBrO и др.).

Типичными восстановителями являются почти все металлы и некоторые неметаллы (углерод, водород) в свободном состоянии, отрицательно заряженные ионы неметаллов (S2?, I?, Br?, Cl? и др.), положительно заряженные ионы металлов в низшей степени окисления (Sn2+, Fe2+, Cr2+, Mn2+, Cu+ и др.).

Соединения, содержащие элементы в максимальной или минимальной степенях окисления, могут быть соответственно или только окислителями (KMnO4, K2Cr2O7, HNO3, H2SO4, PbO2), или только восстановителями (KI, Na2S, NH3). Если же вещество содержит элемент в промежуточной степени окисления, то в зависимости от условий проведения реакции, оно может быть либо окислителем, либо восстановителем. Например, нитрит калия KNO2, содержащий азот в степени окисления +3, пероксид водорода H2O2, содержащий кислород в степени окисления -1, в присутствии сильных окислителей проявляют восстановительные свойства, а при взаимодействии с активными восстановителями являются окислителями.

При составлении уравнений окислительно-восстановительных реакций рекомендуется придерживаться следующего порядка:

а) написать формулы исходных веществ. Определить степень окисления элементов, которые могут ее изменить, найти окислитель и восстановитель. Написать продукты реакции;

б) составить уравнения процессов окисления и восстановления. Подобрать множители (основные коэффициенты) так, чтобы число электронов, отдаваемых при окислении, было равно числу электронов, принимаемых при восстановлении;

в) расставить коэффициенты в уравнении реакции

K2Cr2+6O7 + 3H2S-2 + 4H2SO4 = Cr2+3(SO4)3 + 3S0 + K2SO4 + 7H2O

ок-ль восст-ль среда

S-2 - 2з > S0 3 ? окисление

2Cr+6 + 6з > 2Cr+3 1 ? восстановление

Характер многих окислительно-восстановительных реакций зависит от среды, в которой они протекают. Для создания кислой среды чаще всего используют разбавленную серную кислоту, для создания щелочной - растворы гидроксидов натрия или калия.

Различают три типа ОВР: межмолекулярные, внутримолекулярные, диспропорционирования. Межмолекулярные окислительно-восстановительные реакции - это реакции, в которых окислитель и восстановитель находятся в составе разных веществ. Рассмотренная выше реакция относится к этому типу. К внутримолекулярным относятся реакции, в которых атомы окислителя и восстановителя находятся в одном и том же веществе.

2KCl+5O3?2 = 2KCl?1 + 3O20

ок-ль в-ль

Сl+5 + 6з > Cl? 2 ? восстановление

2O?2 - 4з > O20 3 ? окисление

В реакциях диспропорционирования (самоокисления-самовосстановления) молекулы одного и того же вещества реагируют друг с другом как окислитель и как восстановитель.

3K2Mn+6O4 + 2H2O = 2KMn+7O4 + Mn+4O2 + 4KOH

ок-ль

в-ль

Mn+6 - з > Mn+7 2 ?окисление

Mn+6 + 2з > Mn+4 1 ?восстановление

Выполнение работы

Опыт 1. Влияние среды на окислительно-восстановительные реакции

В три пробирки налить по 2-3 мл раствора перманганата калия KMnO4. В первую пробирку прилить 1-2 мл разбавленной серной кислоты, во вторую 1-2 мл воды, в третью - 1-2 мл концентрированного раствора щелочи.

В каждую пробирку добавить по 2-3 мл свежеприготовленного раствора сульфита натрия Na2SO3. Отметить наблюдения, учитывая, что фиолетовая окраска характерна для ионов MnO4?, бесцветная или слабо-розовая ? для ионов Mn2+, зеленая - для ионов MnO42?, бурый цвет имеет осадок MnO2.

Требования к результатам опыта:

1. Написать уравнения реакций. В каждой реакции указать окислитель, восстановитель, среду, процессы окисления и восстановления. Расставить коэффициенты.

2. Сделать вывод о характерной степени окисления марганца в кислой, щелочной и нейтральной среде.

Опыт 2. Окислительно-восстановительная двойственность нитрита калия

В две пробирки налить по 2-3 мл раствора нитрита калия KNO2. Добавить в каждую из них по 1-2 мл разбавленной серной кислоты. Затем в одну из них прилить раствор дихромата калия K2Cr2O7, в другую - раствор иодида калия KI. Что наблюдается?

Требования к результатам опыта

1. Составить уравнения реакций. Указать в каждой реакции окислитель, восстановитель, среду, процессы окисления и восстановления. Расставить коэффициенты.

2. Сделать вывод об окислительно-восстановительных функциях KNO2 в проведенных реакциях.

3. Сделать общий вывод, какие вещества могут проявлять окислительно- восстановительную двойственность.

Опыт 3. Реакция диспропорционирования

Поместить в пробирку 1-2 кристалла йода I2, 3-5 капель концентрированного раствора щелочи NaOH (или KOH). Наблюдать появление желтой окраски раствора, характерной для свободного иода.

Требования к результатам опыта

1. Написать уравнение реакции, учитывая, что продуктом окисления йода в щелочной среде является йодат натрия NaIO3 (или KIO3).

2. Сделать общий вывод, какие вещества могут участвовать в реакциях диспропорционирования.

Опыт 4. Внутримолекулярная реакция (групповой)

В форфоровую чашку насыпать горкой небольшое количество дихромата аммония (NH4)2Cr2O7 и горящей спичкой нагреть его сверху. Наблюдать бурное разложение соли. Отметить цвет исходного вещества и продукта реакции.

Требование к результату опыта

Написать уравнение реакции разложения дихромата аммония, указать окислитель, восстановитель, процессы окисления и восстановления. Расставить коэффициенты.

Примеры решения задач

Пример 11.1. Определить степень окисления хрома в молекуле К2Cr2O7 и ионе (СrО2)?.

Под степенью окисления (с.о.) понимают заряд элемента в соединении, вычисленный, исходя из предположения, что соединение состоит из ионов.

Степень окисления элемента в простом веществе, например, в Zn, Сa, H2, Br2, S, O2, равна нулю.

Определение степени окисления элемента в соединении проводят, используя следующие положения:

1. Cтепень окисления кислорода в соединениях обычно равна -2. Исключения составляют пероксиды H2+1O2-1, Na2+1O2-1 и фторид кислорода О+2F2.

2. Степень окисления водорода в большинстве соединений равна +1, за исключением солеобразных гидридов, например, Na+1H-1.

3. Постоянную степень окисления имеют металлы IА группы (щелочные металлы) (+1); IIА группы (бериллий, магний и щелочноземельные металлы) (+2); фтор (-1).

4. Алгебраическая сумма степеней окисления элементов в нейтральной молекуле равна нулю, в сложном ионе - заряду иона.

Решение. Чтобы рассчитать степень окисления элемента в молекуле, следует:

1) поставить степень окисления над теми элементами, для которых она известна, а искомую степень окисления обозначить через х. В нашем примере известна степень окисления калия (+1) и кислорода (-2):

К2+1Сr2хO7-2;

2) умножить индексы при элементах на их степени окисления и составить алгебраическое уравнение, приравняв правую часть к нулю:

К2+1Сr2х O7-2; 2(+1)+ 2x + 7 (-2) = 0; x = + 6.

Степень окисления элемента в ионе определяют также, только правую часть уравнения приравнивают к заряду иона:

(СrхО2?2)?; x + 2 (-2) = -1; x = + 3.

Пример 11.2. Исходя из степени окисления азота в соединениях NH3, KNO2, KNO3, определить, какое из них может быть только восстановителем, только окислителем и какое из них может проявлять и окислительные, и восстановительные свойства.

Решение. Возможные степени окисления азота: -3, -2, -1, 0, +1, +2, +3, +4, +5. В указанных соединениях степени окисления азота равны: -3 (низшая), +3 (промежуточная), +5 (высшая). Следовательно, N-3H3 - только восстановитель, KN+3O2 - и окислитель и восстановитель, KN+5O3 - только окислитель.

Пример 11.3. Могут ли происходить окислительно-восстановительные реакции между веществами: а) HBr и H2S; б) MnO2 и HCl; в) MnO2 и NaBiO3?

Решение. а) в HBr с.о. (Br) = -1 (низшая), в H2S с.о. (S) = -2 (низшая). Так как бром и сера находятся в низшей степени окисления, то могут проявлять только восстановительные свойства, и реакция между ними невозможна; б) в MnO2 с.о. (Mn) = +4 (промежуточная), в HCl с.о. (Cl) = -1 (низшая). Следовательно, взаимодействие этих веществ возможно, причем MnO2 является окислителем;

в) в MnO2 с.о. (Mn) = +4 (промежуточная), в NaBiO3 с.о. (Bi) = +5 (высшая). Взятые вещества могут взаимодействовать. MnO2 в этом случае будет восстановителем.

Пример 11.4. Составить уравнение окислительно-восстановительной реакции, идущей по схеме

KMnO4 + KNO2 + H2SO4 MnSO4 + KNO3 + K2SO4 + H2O.

Определить окислитель и восстановитель. На основании электронных уравнений расставить коэффициенты.

Решение. Определяем степени окисления тех элементов, которые ее изменяют:

KMn+7O4+ KN+3O2+H2SO4 Mn+2SO4+ KN+5O3 +K2SO4+H2O.

ок-ль восст-ль среда

Составляем электронные уравнения процессов окисления и восстановления, определяем окислитель и восстановитель:

N+3 - 2з > N+5 5 окисление

10

Mn+7 + 5з > Mn+2 2 восстановление

Уравниваем реакцию методом электронного баланса, суть которого заключается в том, что общее число электронов, отданных восстановителем, равно числу электронов, принятых окислителем. Находим общее наименьшее кратное для отданных и принятых электронов. В приведенной реакции оно равно 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Коэффициенты перед веществами, атомы которых не меняют свои степени окисления, находим подбором.

Уравнение реакции будет иметь следующий вид:

2KMnO4 + 5KNO2 + 3H2SO4 = 2MnSO4 + 5KNO3 + K2SO4 + 3H2O.

Пример 11.5. Составить уравнения окислительно-восстановительных реакций, идущих по схемам: а) Mg + HNO3 (разб.) Mg(NO3)2 + NH4NO3 + H2O;

б) KClO3 KCl + O2; в) К2MnO4 + H2О КMnO4 + MnO2 + KOH.

В каждой реакции определить окислитель и восстановитель, расставить коэффициенты, указать тип каждой реакции.

Решение. Составляем уравнения реакций:

4Mg0 + 10HN+5O3 = 4Mg+2(NO3)2 +N?3H4NO3 +3H2O (1)

в-ль ок-ль, среда

Mg0 - 2з > Mg+2 4 окисление

8

N+5 + 8з > N-3 1 восстановление;

2KCl+5O3-2 = 2KCl-1 + 3O20 (2)

ок-ль в-ль

2O-2 - 4з > O20 3 окисление

12

Cl+5 + 6з > Cl-1 2 восстановление;

3K2Mn+6O4 + 2H2O = 2KMn+7O4 + Mn+4O2 + 4КОН (3)

в-ль,

ок-ль

Mn+6 -1з >Mn+7 2 окисление

2

Mn+6 + 2з > Mn+4 1 восстановление.


Подобные документы

  • Определение свойств химических элементов и их электронных формул по положению в периодической системе. Ионно-молекулярные, окислительно-восстановительные реакции: скорость, химическое равновесие. Способы выражения концентрации и свойства растворов.

    контрольная работа [58,6 K], добавлен 30.07.2012

  • Протекание химической реакции в газовой среде. Значение термодинамической константы равновесия. Расчет теплового эффекта; ЭДС гальванического элемента. Определение массы йода; состава равновесных фаз. Адсорбция растворенного органического вещества.

    контрольная работа [747,3 K], добавлен 10.09.2013

  • Определение константы равновесия реакции. Вычисление энергии активации реакции. Осмотическое давление раствора. Схема гальванического элемента. Вычисление молярной концентрации эквивалента вещества. Определение энергии активации химической реакции.

    контрольная работа [21,8 K], добавлен 25.02.2014

  • Реакции, протекающие между ионами в растворах. Порядок составления ионных уравнений реакций. Формулы в ионных уравнениях. Обратимые и необратимые реакции обмена в водных растворах электролитов. Реакции с образованием малодиссоциирующих веществ.

    презентация [1,6 M], добавлен 28.02.2012

  • Составление формул соединений кальция с водородом, фтором и азотом. Определение степени окисления атома углерода и его валентности. Термохимические уравнения реакций, теплота образования. Вычисление молярной концентрации эквивалента раствора кислоты.

    контрольная работа [46,9 K], добавлен 01.11.2009

  • Понятие окисления и восстановления. Типичные восстановители и окислители. Методы электронного и электронно-ионного баланса. Восстановление металлов из оксидов. Химические источники тока. Окислительно-восстановительные и стандартные электродные потенциалы.

    лекция [589,6 K], добавлен 18.10.2013

  • Окислительно-восстановительные реакции. Колебательные химические реакции, история их открытия. Исследования концентрационных колебаний до открытия реакции Б.П. Белоусова. Математическая модель А.Лоткой. Изучение механизма колебательных реакций.

    курсовая работа [35,4 K], добавлен 01.02.2008

  • Классификация и закономерности протекания химических реакций. Переходы между классами неорганических веществ. Основные классы бинарных соединений. Оксиды, их классификация и химические свойства. Соли, их классификация, номенклатура и химические свойства.

    лекция [316,0 K], добавлен 18.10.2013

  • Положения теории окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Кислородсодержащие соли элементов. Гидриды металлов. Метод электронного баланса. Особенности метода полуреакций. Частное уравнение восстановления ионов.

    презентация [219,3 K], добавлен 20.11.2013

  • Определение водородного и гидроксильного показателей. Составление окислительно-восстановительных реакций и электронного баланса. Изменение степени окисления атомов реагирующих веществ. Качественные реакции на катионы различных аналитических групп.

    практическая работа [88,2 K], добавлен 05.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.