Общая и неорганическая химия

Основные классы неорганических соединений. Распространенность химических элементов. Общие закономерности химии s-элементов I, II и III групп периодической системы Д.И. Менделеева: физические, химические свойства, способы получения, биологическая роль.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 03.02.2011
Размер файла 3,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

р = с · R · T,

где с - молярная концентрация.

Так как с = n / v, где n - количество вещества (моль), v - объем раствора (л), то

р = n / v · R · T,

Зависимость осмотического давления от понижения давления пара растворителя над раствором выражается уравнением:

где М0 - молярная масса растворителя. Уравнение Вант-Гоффа распространяется только на разбавленные растворы. При изучении свойств растворов электролитов (кислоты, щелочи, соли) было обнаружено, что этим растворам присущи все основные свойства растворов неэлектролитов, такие, как понижение давления насыщенного пара над раствором, понижение температуры замерзания, повышение температуры кипения и осмотическое давление. Однако эти величины для растворов электролитов оказались иными, чем следовало ожидать, исходя из их молярных концентраций.

Вант-Гофф, чтобы применить законы растворов неэлектролитов к электролитам, ввел поправочный множитель, названный изотоническим коэффициентом i. Этот коэффициент показывал, во сколько раз наблюдаемое осмотическое давление (рtз., рtк.) больше вычисленного, т.е.

р = i · с · R · T

Дtз = i · К · m

и т.д.

Для растворов неэлектролитов i = 1, для электролитов - i > 1.

В 1887 году С. Аррениус выдвинул гипотезу, согласно которой в растворах электролитов молекулы распадаются на ионы - катионы и анионы. Очень скоро эта гипотеза превратилась в теорию электролитической диссоциации (ЭДС). Основные положения ее таковы:

Вещества, распадающиеся на ионы в растворах или расплавах, и потому проводящие электрический ток, называются электролитами.

Электролиты при растворении в воде распадаются на ионы: положительные - катионы и отрицательные - анионы.

Диссоциация - процесс для большинства электролитов обратимый: наряду с распадом протекает процесс соединения ионов (ассоциация).

Водные растворы электролитов условно делятся на три группы: сильные, средние и слабые. Всвязи с чем введена величина степень диссоциации б = nдис. / nобщ., где nдис. - число молекул электролита, распавшихся на ионы, nобщ. - общее число молекул электролита в растворе.

Если б > 30% - это сильные электролиты, б = 5-30% имеют средние электролиты, б < 5% - слабые электролиты.

24.Растворы электролитов. Изотонический коэффициент. Теория электролитической диссоциации. Степень электролитической диссоциации. Понятие об активности

Электролитическая диссоциация, полный или частичный распад молекул растворенного вещества на катионы и анионы. Электролитической диссоциацией называют также распад на катионы и анионы ионных кристаллов при растворении или расплавлении. Электролитическая диссоциация, как правило, происходит в полярных растворителях.

При электролитической диссоциации разрываются обычно лишь наиболее полярные связи молекул, например карбоновые кислоты RCOOH диссоциируют на и Н+, электролитической диссоциации могут подвергаться молекулы некоторых растворителей, например воды.

Основными причинами электролитической диссоциации являются, с одной стороны, взаимодействие растворенного вещества с растворителем, которое приводит к сольватации ионов, а с другой стороны - значительное ослабление электростатических взаимодействий между сольватированными ионами в среде, обусловленное ее электростатическим полем (диэлектрической проницаемостью растворителя). При этом работа, необходимая для разрушения молекул (кристаллической решетки), обеспечивается за счет энергии сольватации. Электролитическая диссоциация лежит в основе деления растворов на два класса - растворы неэлектролитов и растворы электролитов. Наблюдаемое различие в коллигативных свойствах разбавленных растворов электролитов и неэлектролитов объясняется тем, что из-за электролитической диссоциации увеличивается общее число частиц в растворе. Это, в частности, приводит к увеличению осмотического давления раствора сравнительнос растворами неэлектролитов, понижению давления пара растворителя над раствором, увеличениюизменения температуры кипения и замерзания раствора относительно чистого растворителя. Электролитической диссоциацией объясняется также ионная электропроводность электролитов.

Мерой электролитической диссоциации является степень диссоциации альфа- отношение кол-ва диссоциированных на ионы молекул электролита к их исходному количеству в растворе. Согласно этому определению альфа- изменяется от 0 (отсутствие диссоциации) до 1 (полная диссоциация) и зависит от природы растворенного вещества и растворителя, а также от концентрации раствора и температуры. Как правило, с увеличением диэлектрической проницаемости растворителя его увеличивается, хотя заметная диссоциация наблюдается в некоторых растворителях с низкой . Способность данного вещества MX к электролитическая диссоциация в определенном р-рителе по схеме MX M+ + Х- характеризуется константой электролитической диссоциации KD, связанной, согласно закону действующих масс, со степенью диссоциации альфа соотношением:

где х: - молярная концентрация электролита- средний ионный коэффициент активности; коэффициент активности недиссоциированной части электролита. Как и значение константы KD зависит от свойств растворенного вещества, в частности от прочности связи между фрагментами молекул электролита, образующими катион и анион, от диэлектрических свойств растворителя, его способности сольватировать ионы, а также от температуры и давления; в отличие от альфа не зависит от концентрации раствора. Константа KD может быть определена экспериментально, например, по зависимости электропроводности раствора от концентрации электролита или путем прямого измерения содержания свободных ионов в растворе, например, спектрофотометрическим методом.

Соответственно понятиям полной и неполной электролитической диссоциации электролиты классифицируют на сильные и слабые (см. Электролиты), полностью диссоциируют в растворе многие соли неорганических кислот, некоторые кислоты и основания. Неполная электролитическая диссоциация наблюдается для солей, катионы которых склонны к образованию ковалентных связей с анионами, например соли Ag, Cd, Zn. Некоторые многоосновные кислоты, например H2SO4, полностью диссоциируют лишь в отношении отщепления одного иона Н+, а дальнейшая диссоциация затруднена. Разбавленные растворы слабых электролитов по своим свойствам близки к идеальным растворам, для них в формуле (1) коэффициент активности можно считать равными 1. Тогда формула (1) переходит в закон разведения Оствальда:

в котором а можно заменить отношением где и -соответственно эквивалентная электропроводность раствора при данной концентрации и при бесконечном разведении. В соответствии с законом Оствальда с уменьшением концентрации раствора степень диссоциации а и эквивалентная электропроводность возрастают, причем при бесконечном разведении и Растворы сильных электролитов не являются идеальными и для их описания необходим учет межионного взаимодействия даже в области предельного разведения. При определенных условиях, например в растворителях с малой диэлектрической проницаемостью, при низких температурах или при образовании многовалентных ионов, благодаря сильному электростатическому притяжению противоположно заряженных ионов могут образовываться ионные ассоциаты, простейшими из которых являются ионные пары.

Равновесие между сольватированными ионами и ионными парами характеризуется константой диссоциации, аналогично исходному распаду молекул, или обратной ей величиной - константой ассоциации. В приближении электростатического взаимодействия между ионами константа диссоциации контактных ионных пар, образованных двумя ионами с радиусами r+ и r. и зарядовыми числами z+ и z-, может быть рассчитана по формуле:

где е - элементарный электрический заряд; k - постоянная Больцмана; электрическая постоянная (диэлектрическая проницаемость вакуума) ; - диэлектрическая проницаемость растворителя; Т - абс. температура.

Понятие электролитической диссоциации было введено С. Аррениусом в 1887. Электролитическая диссоциация играет важную роль во многих природных и производств, процессах, определяя как свойства растворов электролитов, так и особенности происходящих в них процессов.

Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.

Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить по их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы. Электролитическая диссоциация. Кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов -- катионов и анионов. Процесс диссоциации во всех случаях является обратимым, поэтому при написании уравнений реакции диссоциации необходимо применять знак обратимости «. Различные электролиты, согласно теории Аррениуса, диссоциируют на ионы в различной степени. Полнота распада зависит от природы электролита, его концентрации, природы растворителя, температуры.Степень диссоциации. Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.Степенью диссоциации а называется отношение числа молекул, распавшихся на ионы (n'), к общему числу растворенных молекул (п).

Из этого выражения очевидно, что а может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.Сильные и слабые электролиты. В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% -- средними, менее 3% -- слабыми электролитами.К сильным электролитам относятся почти все соли, некоторые кислоты (НСl, HBr, HI, НNО3, НсlO4, Н2SO4(разб.)) и некоторые основания (LiОН, NaOH, КОН, Са(ОН)2, Sr(OH)2, Ва(ОН)2). К слабым электролитам относится большинство кислот (особенно органических) и оснований.Степень диссоциации как сильных, так и слабых электролитов зависит от концентрации раствора (степень диссоциации тем выше, чем более разбавлен раствор). Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:A K « A- + K+.

Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как

где К -- константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.

Диапазон констант равновесия для разных реакций очень большой -- от 10-16 до 1015. Например, высокое значение К для реакции

означает, что если в раствор, содержащий ионы серебра Ag+, внести металлическую медь, то в момент достижения равновесия концентрация ионов меди [Cu2+] намного больше, чем квадрат концентрации ионов серебра [Ag+]2. Напротив, низкое значение К в реакции

говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.

Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К1). Так, для реакции меди с серебром неправильным будет выражение

Правильной будет следующая форма записи:

Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI.

Разбавленные растворы электролитов - солей, оснований, кислот в воде - показывают систематические отклонения от свойств идеальных растворов. Эти отклонения связаны с тем, что молекулы электролита в водном растворе распадаются на ионы, и в единице объёма раствора будет содержаться большее число частиц, чем в исходной загрузке соли, кислоты, основания. Для расчета свойств разбавленных растворов электролитов необходимо уравнения законов идеальных растворов исправить, введя в них коэффициент, учитывающий изменение числа частиц в растворе вследствие диссоциации или ассоциации растворенного вещества. Этот коэффициент обозначают i и называют изотоническим коэффициентом. Он показывает отношение числа частиц, образующихся в растворе, к числу частиц в исходной порции вещества. Для электролитов:

АВ = А+ + В-

N(1-б) Nб Nб

б=N1/N

N1 - число образовавшихся ионов или распавшихся молекул

N(1-б) - число нераспавшихся молекул

У Ni = N - Nб +Nб +Nб i= У Ni/N = 1+б

если исходные молекулы распадаются на н новых частиц, то

У Ni = N[1+б(н-1)] i= У Ni/N = 1+б(н-1)

если б=0, то i=1, если б=1, то 1<= i <= н

Для раствора, в котором молекулы растворенных веществ ассоциируют друг с другом:

nA = An

N(1-б) Nб/n

Nб/n - число ассоциированных молекул

N(1-б) - число исходных молекул

У Ni = N - Nб +Nб/n i= У Ni/N = 1+б(1/n -1)

1/n <= i <= 1

С учетом этой поправки законы разбавленных растворов электролитов запишутся:

р = i cRT

?p/po = i n2/(n1 + i n2), ?p/po = i n2/n1

i = роп/ррасч = (?p/p)оп/(?p/p)расч = ?T3 оп /?T3 расч = ?Tк оп /?Tк расч

Между активностью a2 сильного электролита в растворе (если формально не учитывать его диссоциацию на ионы) и средней активностью ионов электролита

Рассмотрим несколько способов определения среднего коэффициента активности электролита y± по равновесным свойствам раствора электролитов.

25. Сильные и слабые электролиты. Константа диссоциации. Закон разбавления Оствальда. Слабые электролиты. Константа диссоциации

Процесс диссоциации слабых электролитов является обратимым и в системе существует динамическое равновесие, которое может быть описано константой равновесия, выраженной через концентрации образующихся ионов и непродиссоциировавших молекул, называемой константой диссоциации. Для некоторого электролита, распадающегося в растворе на ионы в соответствии с уравнением:

АaВb <--> aАx- + bВy+

константа диссоциации выразится следующим соотношением:

(III.21)

Для бинарного (распадающегося на два иона) электролита выражение (III.21) можно переписать в виде (III.21a):

(III.21a)

Поскольку концентрация каждого иона для бинарного электролита равна произведению степени диссоциации б на общую концентрацию электролита С, выражение (III.21a) в этом случае можно переписать следующим образом:

(III.22)

Для разбавленных растворов можно считать, что (1 - б) = 1. Тогда получаем:

(III.23) (III.24)

Т.о., степень диссоциации слабого электролита обратно пропорциональна концентрации и прямо пропорциональна разбавлению раствора; выражение (III.24) называют законом разбавления Оствальда. Степень диссоциации слабого электролита можно связать с изотоническим коэффициентом. Будем считать, что из N молекул электролита продиссоциировало n молекул, образовав нn ионов (н - число ионов, на которое диссоциирует молекула). Поскольку изотонический коэффициент показывает, во сколько раз общее число молекул и ионов в растворе больше числа молекул до диссоциации, получаем:

(III.25)

(III.26)

Соотношение (III.26) дает возможность, экспериментально определив изотонический коэффициент раствора, рассчитать степень диссоциации слабого электролита.

Сильные электролиты

Предположение Аррениуса о том, что в растворе сильного электролита также существует динамическое равновесие между молекулами и ионами, как и у слабых электролитов, оказалось ошибочным. Экспериментальные исследования показали, что, во-первых, величина константы диссоциации сильного электролита зависит от концентрации (т.е. к растворам сильных электролитов неприменим закон действующих масс) и, во-вторых, никакими методами не удалось обнаружить в растворах сильных электролитов непродиссоциировавшие молекулы. Это позволило сделать вывод, что сильные электролиты в растворах любых концентраций полностью диссоциируют на ионы и, следовательно, закономерности, полученные для слабых электролитов, не могут применяться к сильным электролитам без соответствующих поправок.

Качественная теория сильных электролитов была разработана П. Дебаем и Г. Хюккелем (1923). Для сильных электролитов, полностью диссоциирующих на ионы, даже при малых концентрациях растворов энергия электростатического взаимодействия между ионами достаточно велика, и пренебречь этим взаимодействием нельзя. Взаимодействие противоположно и одноименно заряженных ионов (соответственно притяжение и отталкивание) приводит к тому, что вблизи каждого иона находятся преимущественно ионы с противоположным зарядом, образующие т.н. ионную атмосферу. Радиус ионной атмосферы сравнительно велик, поэтому ионные атмосферы соседних ионов пересекаются; кроме того, каждый ион окружен дипольными молекулами растворителя - сольватной оболочкой. Т.о., в растворе сильного электролита возникает подобие пространственной структуры, что ограничивает свободу перемещения ионов и приводит к изменению свойств раствора в том же направлении, как действовало бы уменьшение степени диссоциации. Поэтому, определяя степень диссоциации раствора сильного электролита, получают т.н. кажущуюся степень диссоциации, т.е. величину б с поправкой на межионное взаимодействие. Чем выше концентрация раствора, тем сильнее взаимодействие ионов, тем меньше и кажущаяся степень диссоциации сильного электролита.

Количественные расчеты характеристик растворов сильных электролитов осуществляют с помощью понятий активности электролита аэ и активностей катионов и анионов а+ и а- соответственно, которые равны произведению коэффициента активности на концентрацию:

; ; (III.27)

Для бинарного электролита средняя активность электролита связана с активностями ионов соотношением (III.28); подобным же образом связан средний коэффициент активности с ионными:

(III.28)

(III.29)

Дебаем и Хюккелем был разработан метод расчета среднего коэффициента активности сильного электролита. Для бинарного электролита уравнение имеет следующий вид:

(III.30)

Здесь z - заряд иона, для которого рассчитывается коэффициент активности, I - т.н. ионная сила раствора: некоторый параметр, который одновременно учитывает молярную концентрацию и заряд всех имеющихся в растворе ионов. Ионная сила раствора равна полусумме концентраций всех ионов, умноженных на квадрат их заряда:

(III.31)

Теория Дебая - Хюккеля применима только при концентрациях, не превышающих 0.05 моль/л. Для более концентрированных растворов сильных электролитов количественной теории не существует. Оствальда закон разбавления, соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь К -- константа диссоциации электролита, с -- концентрация, l и lҐ -- значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием действующих масс закона и равенства l/lҐ = a, где a -- степень диссоциации. Оствальда закон разбавления выведен В. Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности Оствальда закона разбавления имело большое значение для обоснования теории электролитической диссоциации.

26 Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель среды. Понятие об индикаторах

Иомнное произведемние водым -- произведение концентраций ионов водорода Н+ и ионов гидроксида OH? в воде или в водных растворах, константа автопротолиза воды. Вывод значения ионного произведения воды

Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

H2O + H2O - H3O+ + OH?илиH2O - H+ + OH?

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

где:

[H+] -- концентрация ионов гидроксония (протонов);

[OH?] -- концентрация гидроксид-ионов;

[H2O] -- концентрация воды (в молекулярной форме) в воде;

Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

При 25 °C константа диссоциации воды равна 1,8Ч10?16моль/л. Уравнение (1) можно переписать как: Обозначим произведение K·[H2O] = Kв = 1,8Ч10?16 моль/л·55,56 моль/л = 10?14мольІ/лІ = [H+]·[OH?] (при 25 °C).

Константа Kв, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды. Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и Kв, при понижении температуры -- наоборот. Практическое значение ионного произведения воды

Практическое значение ионного произведения воды велико, так как оно позволяет при известной кислотности (щёлочности) любого раствора (то есть при известной концентрации [H+] или [OH?]) найти соответственно концентрации [OH?] или [H+]. Хотя в большинстве случаев для удобства представления пользуются не абсолютными значениями концентраций, а взятыми с обратными знаком их десятичными логарифмами -- соответственно, водородным показателем (pH) и гидроксильным показателем (pOH).

Так как Kв -- константа, при добавлении к раствору кислоты (ионов H+), концентрация гидроксид-ионов OH? будет падать и наоборот. В нейтральной среде [H+] = [OH?] = моль/л. При концентрации [H+] > 10?7 моль/л (соответственно, концентрации [OH?] < 10?7 моль/л) среда будет кислой; При концентрации [OH?] > 10?7 моль/л (соответственно, концентрации [H+] < 10?7 моль/л) -- щелочной.

Электролитическая диссоциация воды. Водородный показатель рН

Вода представляет собой слабый амфотерный электролит:

Н2О Н+ + ОН-или, более точно:2Н2О Н3О+ + ОН-

Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л = 55,55 моль/л). Тогда

Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW:

Диссоциация воды - процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13.

В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой:

[H+] = [OH-] = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если [H+] = 10-3 моль/л, то [OH-] = KW/[H+] = 10-14/10-3 = 10-11 моль/л, или, если [OH-] = 10-2 моль/л, то [H+] = KW/[OH-] = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды.

На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями.Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода:

рН = - lg[H+]

Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила:

рОН = - lg[OH-]

Легко показать, прологарифмировав ионное произведение воды, что

рН + рОН = 14

Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 - среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила. Чистая вода очень плохо проводит электрический ток, но всё же обладает измеримой электропроводностью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы. По величине электропроводности чистой воды можно определить концентрацию ионов водорода и гидроксид-ионов в воде.

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул в воде практически равна общей концентрации воды, поэтому из выражения для константы диссоциации воды получакм, что для воды и разбавленных водных растворов при неизменной температуре произведение концентраций ионов водорода и гидроксид-ионов есть величина постоянная. Эта постоянная величина называется ионным произведением воды.

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными. В кисдых растворах больше ионов водорода, в щелочных - гидроксид-ионов. Но произведение их концентраций всегда постоянно. Это означает, что если известна концентрация ионов водорода в водном растворе, то тем самым и определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щёлочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щёлочность раствора можно выразить более удобным способом: вместо концентрации ионов водорода указывают её десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается рН:. Отсюда ясно, что в нейтральном растворе pH=7; в кислых растворах рН<7 и тем меньше, чем кислее раствор; в щелочных растворах рН>7, и тем больше, чем больше щёлочность раствора.

Для измерения рН существуют различные методы. Приближённо реакцию раствора можно определить с помощью специальных реакторов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространены метиловый оранжевый, метиловый красный, фенолфталеин и лакмус.

27. Гидролиз солей. Обратимый и необратимый (полный) гидролиз. Роль процессов гидролиза при эксплуатации котельных установок.ъ

В общем случае под гидролизом понимают реакцию разложения вещества водой (от греч. «гидро» - вода, «лизис» - разложение). Гидролизу могут подвергаться белки, жиры, углеводы, эфиры и другие вещества. В неорганической химии чаще всего встречаются с гидролизом солей.

Гидролизом соли называется взаимодействие ионов соли с ионами воды, которое приводит к образованию слабых электролитов. В результате гидролиза солей их водные растворы показывают кислую, щелочную или нейтральную реакцию среды. Как известно, реакция среды зависит от концентрации ионов водорода Н+ или гидроксид-ионов ОН-.

Вода является слабым электролитом и диссоциирует по уравнению

Н2О = Н+ + ОН-.

Появление избытка ионов Н+ или ОН- в растворе объясняется тем, что ионы соли реагируют с ионами воды. Равновесие диссоциации воды смещается вправо, так как при гидролизе солей образуются слабые электролиты:

NH4C1 -> NH4+ + С1- CH3COONa -> СН3СОО~ + Na+

NH4+ + H2O = NH4OH + H+ СН3СОО~ + H2O = CH3COOH + OH-

В зависимости от природы соли в растворе накапливаются либо ионы Н+, либо ОН-, которые и определяют реакцию среды.

Гидролиз соли - это реакция, обратная реакции нейтрализации. Поэтому каждую соль можно представить себе как соединение, образованное основанием и кислотой. Кислоты и основания бывают сильными или слабыми электролитами. В зависимости от силы исходной кислоты и исходного основания различают четыре типа солей :

* образованные сильным основанием и слабой кислотой;

* образованные слабым основанием и сильной кислотой;

* образованные слабым основанием и слабой кислотой;

* образованные сильным основанием и сильной кислотой.

Соли, образованные сильным основанием и слабой кислотой

В водном растворе цианида калия соль полностью распадается на ионы калия К+ и цианид-ионы CN-. Ионы калия К+ и гидроксид-ионы ОН- могут находиться в растворе одновременно в значительных количествах. Ионы водорода Н+ и цианид-ионы CN- взаимодействуют между собой с образованием циановодородной кислоты. Этот процесс схематически может быть представлен следующим образом:

KCN -> К+ + CN-

Н2О + CN- = ОН- + НCN

В результате гидролиза такой соли в растворе находятся полностью продиссоциированная щелочь и слабо диссоциированная кислота. Эта кислота частично диссоциирует на ионы и возвращает в раствор часть ионов Н+ и CN-. Возникает обратная реакция и устанавливается динамическое химическое равновесие:

К+ + CN- + Н2О = К+ + ОН- + HCN.

Следовательно, реакция между цианидом калия и водой является обратимой и проходит не полностью. Такое явление называется обратимым гидролизом.

В результате того, что в растворе образуется сильный электролит гидроксид калия, концентрация гидроксид-ионов ОН- будет значительно больше концентрации ионов водорода Н+. В растворе соли возникает щелочная среда, т.е. рН > 7. Действительно, эксперимент показывает, что 0,1 М раствор этой соли имеет рН 11,1. Гидролиз цианида калия в сокращенной ионной форме можно представить уравнением

CN- + Н2О = ОН- + HCN.

Подобно раствору KCN, раствор ацетата натрия также имеет щелочную среду, что видно из молекулярного и сокращенного ионного уравнений гидролиза :

CHgCOONa + Н2О = СН3СООН + NaOH; СН3СОО- + Н2О = СН3СООН + ОН-.

Сокращенное ионное уравнение показывает, что гидролиз соли, образованной сильным основанием и слабой кислотой, идет по аниону слабой кислоты и реакция среды становится щелочной.

Соли, образованные слабым основанием и сильной кислотой.

Примером такой соли является йодид аммония NH4I. При растворении этой соли в воде катион аммония связывает гидроксид-ион ОН- воды, а ионы водорода накапливаются в растворе:

NH4I + Н2О = NH4OH + HI; NH4+ + Н2О = NH4OH + H+.

В результате гидролиза данной соли в растворе, образуются слабое основание NH4OH и сильная кислота HI. Йодоводородная кислота является сильным электролитом и в водном растворе полностью распадается на ионы. Концентрация ионов водорода становится значительно больше, чем концентрация гидроксид-ионов, и раствор соли имеет кислую среду, т.е рН 7.

Такой же процесс происходит и в случае растворения хлорида аммония NH4C1 в воде:

NH4C1 + Н2О = NH4OH + HC1 или NH4+ + Н2О = NH4OH + H+.

Таким образом, гидролиз соли, образованной слабым основанием и сильной кислотой, идет по катиону слабого основания и реакция среды становится кислой.

Соли, образованные слабым основанием и слабой кислотой

В случае гидролиза солей, образованных слабым основанием и слабой кислотой, оба иона ОН- и Н+ воды связываются. Образуются слабая кислота и слабое основание. CH3COONH4 -> СН3СОО- + NH4+

СН3СОО- + NH4+ +H2O = CH3COOH + СН3СОО- + NH4+

Гидролиз соли идет одновременно и по катиону, и по аниону. В зависимости от константы диссоциации продуктов гидролиза (кислоты и основания) реакция среды растворов таких солей может быть слабокислой, слабощелочной или нейтральной. Например, реакция среды в случае гидролиза ацетата аммония CH3COONH4 -- нейтральная, поскольку константы диссоциации СН3СООН и NH4OH равны. В случае же гидролиза соли цианида аммония NH4CN реакция среды слабощелочная.

Таким образом, гидролиз соли, образованной слабым основанием и слабой кислотой, идет одновременно и по катиону, и по аниону. Реакция среды зависит от констант диссоциации продуктов гидролиза.

Соли, образованные сильным основанием и сильной кислотой

Соли этого типа гидролизу не подвергаются, потому что катионы и анионы этих солей не связываются с ионами Н+ и ОН- воды и в растворе не образуются молекулы слабых электролитов. Поскольку связывания ионов воды не происходит, реакция среды растворов этих солей остается нейтральной. Рассмотрим это на примере раствора хлорида натрия. Взаимодействие этой соли с водой можно представить уравнениями

NaCl + Н2О = NaOH + HC1 или Na++ С1- + Н2О = Na+ + ОН- + Н+ + С1-.

Производя сокращения в ионном уравнении, получаем Н2О = Н+ + ОН. Отсюда видно, что ионы соли не участвуют в реакций и среда остается нейтральной.

Следовательно, соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются, а реакция среды остается нейтральной.

Ранее мы рассмотрели гидролиз солей, образованных одноосновными кислотами и однокислотными основаниями. Продуктами гидролиза таких солей являются кислоты и основания.

Если соль образована слабой многоосновной кислотой или слабым многокислотным основанием, то гидролиз данной соли может протекать ступенчато. Число ступеней гидролиза зависит от основности слабой кислоты и кислотности слабого основания.

Рассмотрим гидролиз соли, образованной слабой многоосновной кислотой и сильным основанием. В водном растворе этих солей на первой ступени гидролиза образуется кислая соль вместо кислоты и сильное основание. Ступенчато гидролизуются соли K2Si03, Na2SO3, Na2S, Na3PO4 и др. Например, гидролиз Na2CO3 может быть изображен в виде уравнений.

Первая ступень: Na2CO3 + Н2О = NaHCO3 + NaOH; С032- + Н20 = HCO3- + ОН-

Продуктами первой ступени гидролиза является кислая соль гидрокарбонат натрия NaHCO3 и гидроксид натрия NaOH.

Вторая ступень:

NaHCO3 + Н2О = Н2СО3 + NaOH;

HCO3- + Н2О = Н2СО3 + ОН-.

Продуктами второй ступени гидролиза карбоната натрия Na2CO3 являются гидроксид натрия и слабая угольная кислота Н2СО3. Гидролиз по второй ступени протекает в значительно меньшей степени, чем по первой ступени. Среда раствора соли карбоната натрия Na2CO3 - щелочная (рН > 7), так как в растворе увеличивается концентрация гидроксид-ионов ОН-.

Гидролиз солей трехосновных слабых кислот протекает по трем ступеням. В качестве примера приведем уравнения гидролиза фосфата натрия.

Первая ступень:

Na3PO4 + Н2О = Na2HPO4 + NaOH;

PO43- +Н2О = HPO42- +NaOH.

Вторая ступень:

Na2HPO4 + H2O = NaH2PO4 + NaOH;

НРО42- +Н20 = Н2РО4- + ОН-.

Третья ступень:

NaH2PO4 + Н20 = Н3РО4 + NaOH;

H2PO4- + H2O = Na3PO4 + ОН-.

Гидролиз по первой ступени происходит в значительно большей степени, чем по второй. По третьей ступени гидролиз фосфата натрия практически не идет.

Рассмотрим гидролиз соли, образованной слабым многокислотным основанием и сильной кислотой. В водных растворах таких солей на первой ступени образуется основная соль вместо основания и сильная кислота. Ступенчатому гидролизу подвергаются соли : MgSO4, FeCl3, FeCl2, ZnCl2 и др. Например, гидролиз хлорида цинка ZnCl2 протекает по двум ступеням.

Первая ступень: ZnCl2+ H2O = ZnOHCl + НС1;

Вторая ступень: ZnOHCl+ H2O = Zn(OH)2 + HC1;

Гидролиз соли идет по катиону, так как соль образована слабым основанием Zn(OH)2 и сильной кислотой НС1. Катионы цинка Zn2+ связывают гидроксид-ионы ОН- воды. На первой ступени образуется основная соль ZnOHCl и сильная кислота НС1. На второй ступени образуется слабое основание Zn(OH)2 и тоже сильная хлороводородная кислота. Гидролиз по первой ступени протекает значительно больше, чем по второй. В растворе увеличивается концентрация ионов водорода Н+ и реакция среды будет кислая (рН <7).

Степень гидролиза. Смещение равновесия гидролиза.

Для большинства солей процесс гидролиза обратим. В состоянии равновесия только часть растворенной соли гидролизуется. Количественно гидролиз характеризуется степенью гидролиза h, которую выражают в долях единицы или в процентах.

Степень гидролиза (п) измеряется отношением количества гидролизованного вещества к общему количеству растворенного вещества: h = nr\no

где пr - количество гидролизованной соли, моль; п0 - общее количество растворенной соли, моль.

Например, если из каждых 3 моль соли, растворенной в воде, 0,015 моль подвергается гидролизу, то степень гидролиза равна 0,015/3 = 0,005, или 0,005 * 100°/о=0,5%.Степень гидролиза соли зависит от природы соли, концентрации раствора соли и температуры.

Для солей, образованных катионом сильного основания и анионом слабой кислоты, степень гидролиза зависит от аниона кислоты, который входит в состав этой соли. Например, цианид натрия NaCN и ацетат натрия CH3COONa - это соли, образованные слабой кислотой и сильным основанием. Обе соли подвергаются гидролизу в разной степени, причем гидролиз в растворе NaCN происходит полнее, чем в растворе CH3COONa. Это объясняется тем, что константа диссоциации циановодородной кислоты HCN меньше, чем константа диссоциации уксусной кислоты СН3СООН. Вследствие этого процесс связывания ионов водорода в молекулу HCN идет полнее. Значит, чем слабее кислота, тем сильнее подвергаются гидролизу ее соли. Для соли, образованной сильной кислотой и слабым основанием, степень гидролиза зависит от катиона основания: чем слабее основание, тем сильнее гидролизуется соль.

Особенно глубоко протекает гидролиз солей, образованных слабой кислотой и слабым основанием. Примером этому может служить гидролиз ацетата алюминия, протекающий до основных солей - ацетатов гидроксо- и дигид-роксоалюминия:

А1(СН3СОО)3+ Н2О = А1(ОН)(СН3СОО)2+ СН3СООН;

А1(ОН)СН3СОО)2+ Н2О = А1(0Н)2 (СН3СОО) + СН3СООН.

Рассмотрим для данного случая отдельно гидролиз по катиону и по аниону. Эти процессы выражаются уравнениями

А13+ + Н2О = А1(0Н)2+ + Н+; СН3СОО- + Н2О = СН3СООН + ОН-.

При гидролизе по катиону образуются ионы Н+, а при гидролизе по аниону - ионы ОН-. Эти ионы соединяются в молекулы воды и не могут сосуществовать в значительных концентрациях. Поэтому гидролиз по катиону и гидролиз по аниону в данном случае усиливают друг друга, что приводит к смещению обоих равновесий вправо.

При гидролизе солей устанавливается динамическое химическое равновесие. Это означает, что ни прямая, ни обратная реакции в состоянии равновесия не прекращаются, а идут с одинаковыми скоростями. Изменяя концентрацию одного из реагирующих веществ, можно смещать равновесие влево или вправо. При разбавлении раствора гидролиз соли увеличивается, так как при добавлении воды, согласно принципу смещения равновесия, последнее смещается вправо. Для того чтобы установилось новое равновесие, некоторое количество соли должно гидролизоваться. Например, при разведении водой при 25 °С 1 0,1М раствора карбоната натрия до 0,01М раствора степень гидролиза соли увеличивается от 2,9 % до 11,3 %. Смещать равновесие гидролиза соли можно путем непосредственного изменения концентрации продуктов гидролиза. Если продуктом гидролиза является кислота, то до­бавление в раствор соли кислоты сдвигает равновесие влево, т.е. в сторону увеличения концентрации негидролизованной соли. В этом случае гидролиз уменьшается. Если же из раствора гидролизованной соли удалять образовавшуюся кислоту, то степень гидролиза увеличивается. Таким образом можно регулировать гидролиз раствора соли ; хлорида железа (III), который сопровождается образованием осадка основных солей :

FeCl3 + Н2О = Fe(OH)Cl2+HC1;

Fe3+ + Н2О = Fe(OH)2+ + H+.

С целью подавления гидролиза раствор подкисляют небольшим количеством сильной кислоты НС1 и равновесие смещается в сторону исходной соли. Этот метод подавления гидролиза используется в лабораторной практике при приготовлении растворов легко гидролизующихся солей.

В некоторых случаях гидролиз надо увеличить, например, обнаружение ионов висмута Bi3+ осуществляют, используя реакцию гидролиза, при которой образуется белый осадок хлорида висмутила ВiOС1:

BiCl3 + 2Н2О = Bi(OH)2Cl + 2НС1;

Bi(OH)2Cl = BiOCl + H2O.

Повышение температуры раствора усиливает гидролиз соли. Это объясняется тем, что при повышении температуры диссоциация воды возрастает, в то время как степень диссоциации кислоты или основания мало изменяется. Так, при разбавлении водой и нагревании раствора ацетата железа (III) происходит гидролиз данной соли. Это используется для качественного обнаружения ацетат-ионов:

Fe (СН3СОО)3 + 2Н2О = Fe(OH)2 СН3СОО + 2СН3СООН.

Таким образом, влияние различных факторов на смещение равновесия гидролиза используется в аналитической химии для обнаружения отдельных ионов, регулирования кислотности и щелочности анализируемых растворов, разделения ионов при систематическом качественном анализе. Процесс гидролиза солей оказывает влияние на проведение количественного анализа, что используется при определении слабых кислот с помощью сильных оснований.

Необратимый, или полный, гидролиз

Гидролиз солей, в результате которого образуются малорастворимые или газообразные продукты, удаляющиеся из сферы реакции, является необратимым. Например, при гидролизе сульфида алюминия A12S3 выделяется газ H2S и образуется осадок А1(ОН)3. В результате соль A12S3 в водных растворах существовать не может:

A12S3 + 6Н2О = 2А1(ОН)3 + 3H2S

Такое явление наблюдается в результате обмерной реакции между водными растворами некоторых солей, когда одна из двух получающихся солей сразу подвергается необратимому гидролизу с образованием соответствующего нерастворимого основания и слабой летучей кислоты:

2СгС13 + 3Na2S = Cr2S3 + 6NaCl;

Cr2S3 + 6Н2О = 2Cr(OH)3 + 3H2.

Суммируя jith два уравнения, получаем

2CrCl3 + 3Na2S + 6H2O = 2Cr(OH)3 + 6NaCl+ 3H2S;

2Cr3+ + 3S2- + 6H2O = 2Cr(OH)3+ 3H2S.

В водных растворах не могут существовать карбонаты хрома и железа, силикат аммония, так как сразу образуются продукты их гидролиза :

2FeCl3 + 3Na2CO3 + 3H2O = 2Fe(OH)3+ 3CO2+ 6NaCl;

Процесс гидролиза применяют для получения ценных веществ из древесины, жиров, эфиров. Особенно важную роль гидролиз играет в жизнедеятельности организмов. При гидролизе аденозинтрифосфата (АТФ) высвобождается энергия, необходимая для жизнедеятельности организмов.

Без ферментативного гидролиза не могли бы усваиваться белки, жиры, полисахариды, так как всасываться в кишечнике способны относительно небольшие молекулы. Например, усвоение дисахаридов и полисахаридов становится возможным лишь после их полного гидролиза ферментами до моносахаридов.

28. Растворимость веществ. Произведение растворимости. Механизм накипеообразования

Растворимость вещества -- способность образовывать с другим веществом однородную, термодинамически устойчивую систему переменного состава, состоящую из двух или большего числа компонентов. Такие системы возникают при взаимодействии газов с жидкостями, жидкостей с жидкостями и т.д. (см. Растворы).Соотношение компонентов может быть либо произвольным, либо ограниченным некоторыми пределами. В последнем случае Р. называют ограниченной. Мерой Р. вещества при данных условиях служит концентрация его насыщенного раствора. Р. различных веществ в определённом растворителе зависит от внешних условий, прежде всего -- от температуры и давления. Давление наиболее сильно сказывается на Р. газов. Изменение внешних условий влияет на Р. в соответствии с принципом смещения равновесий (см. Ле Шателье -- Брауна принцип).Для наиболее важных растворителей составлены таблицы Р. различных веществ в зависимости от внешних условий или только для стандартных условий.

Произведение растворимости -- произведение концентраций ионов в насыщенном растворе малорастворимого сильного электролита. Показатели степени для концентраций, входящих в П. р., равны коэффициенту при соответствующем ионе в уравнении диссоциации электролита. Для неидеальных растворов концентрации должны быть заменены на активности и полученное произведение называется произведением активностей. При данной температуре и в данном растворителе П. р. для каждого электролита есть характерная постоянная величина.

Постоянство П. р. выводится из действующих масс закона и представляет собой частную форму этого закона в приложении к равновесию твёрдый электролит Ы его насыщенный раствор. При этом предполагается, что в растворе электролит находится в полностью диссоциированной форме. П. р. наиболее точно измеряется методом эдс. Часто для измерения П. р. используют также определение растворимости по электропроводности насыщенных растворов. Для многих соединений П. р. установлено с достаточной для практических целей точностью. В таблицах П. р. обычно приводятся при температуре 25 °С (иногда при 18 °С).Из правила постоянства П. р. следует, что если произведение концентраций ионов в растворе превышает величину П. р., то выпадает осадок; в противном случае осадок не образуется. Это следствие позволяет регулировать содержание ионов в растворе при использовании процессов осаждения, растворения, а также высаливания, имеющих большое значение в аналитической химии и химической технологии. Так, при увеличении концентрации одного из ионов путём введения в раствор нового электролита с одноимённым катионом или анионом концентрация др. иона понижается за счёт выпадения части труднорастворимого электролита в осадок. Понижение растворимости происходит обычно лишь до некоторого минимального значения, после чего может наблюдаться вновь повышение растворимости из-за образования комплексных ионов или увеличения ионной силы раствора. Повышения растворимости можно достигнуть, связывая один из ионов в растворе, так что образуется др. ион, который не даёт малорастворимого соединения. Например, для перевода в раствор осадка СаСО3 ион связывают с помощью иона Н+ в слабо диссоциированный ион : ; концентрация ионов при этом уменьшается и осадок растворяется до тех пор, пока не будет достигнуто П. р.

Сероводородный метод анализа, метод химического качественного анализа смеси ионов металлов (главным образом катионов) в водных растворах. Метод основан на неодинаковой растворимости хлоридов, гидроокисей, карбонатов и сульфидов металлов.

С. м. а. предполагает классификацию ионов металлов, представленную в таблице. Существуют и другие классификации ионов металлов. Применяя т. н. групповые реагенты -- осадители (HCl, H2S, (NH4)2S, (NH4)2CO3), последовательно разделяют сложную по составу смесь ионов металлов на пять аналитических групп.Ход систематического анализа следующий: добавлением HCl выделяют ионы V группы. Из фильтрата (pH около 3) осаждают катионы IV группы пропусканием H2S. Затем действием избытка (NH4)2S переводят в осадок катионы III группы. Оставшуюся в растворе смесь катионов II и I групп разделяют прибавлением раствора (NH4)2CO3. После этого каждую группу катионов разделяют на подгруппы и обнаруживают ионы химическими реакциями.С. м. а. применяется для предварительной идентификации неизвестного по составу вещества с целью выбора наиболее рационального пути его количественного анализа. Количественный С. м. а. иногда используется при анализе сложных по составу материалов.

Накипеобразование на поверхностях нагрева. В процессе работы котла в котловой воде протекают различные физико-химические процессы, обусловливающие разрушение одних соединений и образование других. Это приводит к возникновению веществ с различной степенью растворимости. Труднорастворимые вещества выделяются из воды в виде осадка, образующего при определенных условиях накипь или шлам.

Накипью называют плотные отложения, возникающие на поверхности нагрева. К шламу относятся выпадающие вещества в виде подвижного осадка, которые могут также образовывать вторичную накипь, прикипая к поверхности труб.

Образование осадка в виде накипи или шлама происходит при наличии пересыщенного раствора, т. е. высокой концентрации солей. Испарение котловой воды, подача питательной и добавочной воды с более высокой минерализацией создают благоприятные условия для этого процесса. Произведение концентраций находящихся в растворе ионов труднорастворимого вещества называется произведением растворимости, т.е.

ПР = СКТСАН где СКТ,САН-- концентрация соответственно катиона и аниона труднорастворимого соединения. Произведение концентраций при данной температуре является постоянной величиной и, если СКТСАН > ПР, происходит выпадение осадка (твердой фазы). Образующиеся в толще воды кристаллические частицы осаждаются на поверхности нагрева в виде слоя накипи или остаются во взвешенном состоянии как подвижный шлам. Накипь может появиться в результате увеличения концентрации одного из ионов, образующих труднорастворимые соединения, что является следствием химических процессов.Таким образом, низкое содержание Са в воде еще не означает, что не будет кальциевых отложений.Наибольшее влияние на процесс накипеобразования оказывают катионы Са2+ и Mg2+ и анионы С2-3, ОН-, SO2-4, SiO2-3. Определенные сочетания этих катионов и анионов в виде солей представляют собой труднорастворимые вещества. Накипеобразующими соединениями, например, являются: карбонат кальция и магния (СаСО3, MgCO3), гидрат магния (Mg(OH)2), сульфат кальция (CaSO4), силикаты кальция и магния СаSiO3, MgSiO3).

Карбонат кальция образуется в результате нагрева из бикарбоната:

Са(НСО3)2>СаСО3 +H2O+СО2.

Повышение концентрации в воде углекислоты СО2 может смещать равновесие реакции влево, т. е. ведет к образованию бикарбоната. Однако для котловой воды, где идет процесс кипения и СО2 удаляется, наиболее характерен переход Са(НСО3)2 в карбонат СаСО3.

Аналогичная реакция идет и с бикарбонатом магния при нагревании: Mg(HCO3)2 > MgCO3 + Н2О + СО2.

При нагревании воды с высокой щелочностью происходит гидролиз карбоната магния с образованием труднорастворимого соединения гидроокиси магния: MgCO3 + 2Н2О > Mg(OH)2 + H2CO3.


Подобные документы

  • Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

    реферат [36,7 K], добавлен 21.09.2019

  • История открытия и место в периодической системе химических элементов Д.И. Менделеева галогенов: фтора, хлора, брома, йода и астата. Химические и физические свойства элементов, их применение. Распространённость элементов и получение простых веществ.

    презентация [656,9 K], добавлен 13.03.2014

  • Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.

    курс лекций [333,8 K], добавлен 24.06.2015

  • Медь - химический элемент I группы периодической системы Менделеева. Общая характеристика меди. Физические и химические свойства. Нахождение в природе. Получение, применение, биологическая роль. Использование соединений меди.

    реферат [13,4 K], добавлен 24.03.2007

  • Общая характеристика, отличительные признаки химических d-элементов. Кислотно-основные свойства оксидов и гидроксидов. D-элементы как хорошие комплексообразователи. Руды и способы их получения. Ряд напряжения металлов, их основные химические свойства.

    презентация [672,8 K], добавлен 22.04.2013

  • Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.

    презентация [1,8 M], добавлен 23.04.2014

  • Общая характеристика р-элементов III группы, их основные физические и химические свойства. Описание самых распространенных элементов: бора, алюминия, подгруппы галлия. Их биологическая роль, применение и распространенность. Причины парникового эффекта.

    дипломная работа [221,3 K], добавлен 08.08.2015

  • Определение свойств химических элементов и их электронных формул по положению в периодической системе. Ионно-молекулярные, окислительно-восстановительные реакции: скорость, химическое равновесие. Способы выражения концентрации и свойства растворов.

    контрольная работа [58,6 K], добавлен 30.07.2012

  • Свойства молибдена и его соединений. История открытия элемента. Электронная структура атома, его расположение в периодической системе химических элементов Д.И. Менделеева. Химические и физические свойства молибдена, его оксидов и гидроксидов.

    курсовая работа [2,3 M], добавлен 24.06.2008

  • Электронные структуры d-элементов и их валентные возможности. Кислотно-основные свойства гидроксидов. Характеристика элементов подгрупп меди, цинка, титана, ванадия, хрома, марганца, их биологическая роль и применение. Металлы семейств железа и платины.

    курс лекций [294,4 K], добавлен 08.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.