Анализ дефектов кристаллической решетки

Металлы как поликристаллические тела, состоящие из большого числа мелких, различно ориентированных по отношению друг другу кристаллов, знакомство со свойствами. Рассмотрение дефектов кристаллической решетки. Характеристика модели винтовой дислокации.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 18.01.2014
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Общая характеристика и структурные методы исследования металлов

металл поликристаллический дефект решетка

Все металлы и металлические сплавы - тела кристаллические, атомы (ионы) расположены в металлах закономерно в отличии от аморфных те в котором атомы расположены хаотично.

Металлы (если их получают обычным способом) представляют собой поликристаллические тела, состоящие из большого числа мелких (10-1-10-5см), различно ориентированных по отношению друг другу кристаллов. В процессе кристаллизации они приобретают неправильную форму и называются кристаллитами, или зернами.

Металлы в твердом и отчасти в жидком состоянии обладают рядом характерных свойств

- высокими теплопроводностью и электрической проводимостью;

- положительным температурным коэффициентом электрического сопротивления; с повышением температуры электрическое сопротивление чистых металлов возрастает; большое число металлов обладает сверх -проводимостью;

- термоэлектронной эмиссией, т.е. способность испускать электроны при нагреве;

- хорошей отражательной способностью: металлы не прозрачны и обладают металлическим блеском;

- повышенной способностью к пластической деформации.

Наличие этих свойств и характеризует так называемое металлическое состояние веществ. Наиболее широкое применение имеют сплавы. Сплавы получают сплавлением или спеканием порошков двух или более металлов или металлов с неметаллами. Они обладают характерными свойствами, присуще металлическому состоянию. Химические элементы, образующие сплав, называют компонентами. Сплав может состоять из двух и большего числа компонентов.

В металловедение широко используют понятие «система», «фаза», «структура».

Совокупность фаз, находящихся в состоянии равновесия, называют системой.

Фазой называют однородные (гомогенные) составные части системы, имеющие одинаковый состав, кристаллическое строение и свойства, одно и то же агрегатное состояние и отделенные от составных частей поверхностями раздела.

Под структурой понимают форму, размеры и характер взаимного расположения соответствующих фаз в металлах и сплавах.

Структурными составляющими сплава называют обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.

Различают макроструктуру (строение металла или сплава, видимое невооруженным глазом или при небольшом увеличении в 30-40 раз). При этом на специально изготовленных шлифах можно различить форму и расположение зерен в литом металле, дефекты, нарушающие сплошность металла, химическую неоднородность сплава. И микроструктуру (строение металла или сплава, наблюдаемое с помощью микроскопа при больших увеличениях). При этом на специально изготовленных микрошлифах различают размер и форму зерен, взаимное расположение фаз, их размер и форму. Микроструктуру металлов наблюдают в микроскопе - оптическом или электронном.

Разрешающая способность оптического микроскопа, т.е. минимальная величина объекта (детали структуры), которая различима с его помощью, не превышает 0,2 мкм (200нм). Полезное увеличение в оптическом микроскопе достигает примерно 2000 раз.

Разрешающая способность электронных микроскопов значительно выше оптических. Использование электронных лучей, обладающих очень малой длиной волн ((0,04-0,12) 10-1 нм), дает возможность различать детали изучаемого объекта размером до 0,2-0,5 нм.

Наибольшее распространение нашли просвечивающие электронные микроскопы ПЭМ, в которых поток электронов проходит через излучаемый объект, представляющий собой тонкую фольгу. Получаемое изображение является результатом неодинакового рассеяния электронов на объекте. Очень большое применение получили растровые электронные микроскопы (РЭМ), в которой изображение создается благодаря вторичной эмиссии электронов, получаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов.

В последние годы для оценки металлургического качества металла, закономерностей процесса разрушения, влияние структурных, технологических и других факторов на разрушение широко применяют метод фрактографии, микрофрактографии - область знания о строении излома. Под изломом понимают поверхность, образующуюся в результате разрушения металла.

Вид излома определяется условиями нагружения, кристаллографическим строением и микроструктурой металла, формируемой технологии ее выплавки, обработки давлением, термической обработки, температурой и средой, в которой работает конструкция. Для изучения атомно-кристаллического строения применяют рентгеноструктурный анализ. Он основан на дифракции рентгеновских лучей с очень малой длиной волны (0,02-0,2 нм) рядами атомов в кристаллическом теле.

В металловедении все шире применяют метод рентгеноспектрального микроанализа (РСМА), для изучения распределения примесей и специально введенных элементов в сплавах. Метод РСМА определяет химический состав микрообластей на металлографическом шлифе, при этом достигает разрешение порядка микрометров.

Для изучения металлов и сплавов нередко используют физические методы исследования (тепловые, объемные, электрические, магнитные). В основу этих исследований положены взаимосвязи между изменениями физических свойств и процессами, происходящими в металлах и сплавах при их обработке или в результате тех или иных воздействий (термических, механических и других). Наиболее часто применяют дифференциальный термический анализ (построение кривых охлаждения в координатах температура - время) и дилатометрический метод, основанный на изменении объема при фазовых превращениях. Для ферромагнитных материалов применяется магнитный анализ.

Рис.1.1. Подразделение металлов в технике

Для металлов характерна металлическая кристаллическая решетка. В ней имеется металлическая связь между атомами. В металлических кристаллах ядра атомов расположены таким образом, чтобы их упаковка была как можно более плотной. Связь в таких кристаллах является нелокализованной и распространяется на весь кристалл.

Металлические кристаллы обладают высокой электрической проводимостью и теплопроводностью, металлическим блеском и непрозрачностью, легкой деформируемостью.

2.Атомно-кристаллическая структура металлов

Под атомно-кристаллической структурой понимают взаимное расположение атомов (ионов), существующее в реальном кристалле. Между ионами и коллективизированными электронами проводимости возникают электростатические силы притяжения, которые стягивают ионы.

Такая связь называется металлической. Силы связи в металлах определяются силами отталкивания и силами притяжения между ионами и электронами. Атомы располагаются на таком расстоянии один от другого, при котором энергия взаимодействия минимальна. Как видно из рисунка 2.1, этому положению соответствует равновесное расстояние а0. Сближение атомов на расстояние меньшее а0 или удаление их на расстояние большее а0, осуществимо лишь при совершении определенной работы против сил отталкивания и притяжения. Поэтому в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов.

Рис.

Наименьший объем кристалла, дающий представление об атомной структуре металла в любом объеме, получил название элементарной кристаллической ячейки.

Расстояние a, b, c между центрами ближайших атомов в элементарной ячейке называются периодами решетки. Периоды решетки для большинства металлов находятся в пределах 0,1 - 0,7 нм (1 нм = 10-9 см.).

Плотность кристаллической решетки - объема, занятого атомами, которые можно условно рассматривать, как жесткие шары характеризуются координационным числом, под которым понимают число атомов, находящихся на равном и наименьшем расстоянии от данного атома. Чем выше координационное число, чем больше плотность упаковки атомов.

В элементарной ячейке ОЦК наименьшее расстояние между атомами соответствует d = 0,5 а. На этом расстояние от данного атома находятся 8 соседей, следовательно, координационное число для ОЦК решетки соответствует 8 и обозначается К8. Коэффициент компактности ячейки, определяемый как отношение объема, занятого атомами, к объему ячейки составляет для ОЦК решетки 68 %.

Аналогично для ГЦК координационное число равно К12, где расстояние между атомами d = 0,5 а . ГПУ решетка, для которой с/а = 1,633, имеет координационное число 12 (Г12), что также соответствует наиболее плотной упаковке. Если отношение с/а отличается от 1,633 то координационное число буде равняться 6.

ГЦК ГПУ решетки более компактные; в них коэффициент компактности равен 74 %.

При уменьшении координационного числа в ГПУ решетке с 12 до 6 коэффициент компактности составляет 50 %, а при координационном числе 4 - всего 25 %.

Половину наименьшего расстояния между атомами в их кристаллической решетке называют атомным радиусом. Атомный радиус возрастает при уменьшении координационного числа, так при этом увеличивается пространство между атомами. Поэтому атомные радиусы разных металлов обычно приводятся к К12.

Анизотропия свойств металлов. Нетрудно видеть, что плотность расположения атомов по различным плоскостям неодинакова. Вследствие неодинаковой плотности атомов в различных плоскостях и направлениях решетки свойства (химические, физические, механические) каждого монокристалла зависят от направления вырезки образца по отношению к направлениям в решетке. Подобная неодинаковость свойств монокристалла в разных кристаллографических направлениях называют анизотропией. Кристалл - тело анизотропное в отличии от аморфных тел, свойства которых не зависят от направления.

Классификация кристаллических решеток отвечает предельным случаям. Большинство кристаллов неорганических веществ, принадлежит к промежуточным типам - ковалентно-ионным, молекулярно-ковалентным и т.д. Например, в кристалле графита внутри каждого слоя связи ковалентно-металлические, а между слоями - межмолекулярные.

За редким исключением, металлы в твёрдом состоянии представляют собой тела, состоящие из огромного количества мелких, различимых только в микроскоп зёрен кристалликов. В свою очередь эти зёрна состоят из атомов упорядоченно расположенных относительно друг друга в пространстве. Располагаясь в пространстве, ближайшие друг к другу атомы образуют контур какого-нибудь геометрического тела. Таким образом, каждое зерно металла состоит из множества таких одинаково ориентированных геометрических тел, называемых элементарными ячейками.

В соседних зёрнах металла эти ячейки ориентированы по-другому.

Находясь в узлах кристаллической решётки, атомы колеблются относительно своего среднего.

Положения с частотой около 10 в 13 степени Гц, не покидая (за исключением некоторых особых случаев) своих мест.

Известно, что атом любого метала, состоит из положительно заряженного ядра и окружающих его, несущих отрицательный заряд нескольких электронных оболочек. Каждая оболочка заполнена строго определённым количеством сильно связанных с ядром электронов, и только на последней оболочке находятся несколько электронов, слабо связанных с ядром. Их число равно валентности металла. С помощью этих электронов, называемых валентными, атомы металлов устанавливают связи, взаимодействуют с атомами других элементов, в том числе и металлов, а также друг с другом.

По современным научным воззрением, расположенные в узлах кристаллической решётки атомы металла связываются со своими ближайшими соседями при помощи валентных электронов, находящихся на их внешней оболочке. Связь такого вида называется металлической.

Тип кристаллической решётки металла определяется формой того геометрического тела, которое составляет основу его элементарной ячейки.

Рис.

Наиболее распространенными типами кристаллических решёток металлов являются:

А - Кубическая объёмно центрированная. (О.Ц.К.)

Б - кубическая гранецентрированная (Г.Ц.К.)

В - гексагональная плотноупакованная. ( Г.П.У.)

О.Ц.К. - решётку имеет железо при обычных температурных условиях, хром, вольфрам, ванадий, молибден, калий, натрий и другие.

О.Ц.К. - решётку имеет никель, медь, алюминий, свинец, серебро, железо при температуре 911 - 1392 градуса Цельсии и другие металлы.

Г.П.У. - решётку имеет цинк, а так же кобальт, цирконий и метан при комнатной температуре.

Как видно из перечислений, некоторые металлы в зависимости от температурных условий существуют при разных способах расположение атомов в пространстве относительно друг друга.

Например, железо при температуре до 911 градусов Цельсии имеет О.Ц.К - решётку, далее до 1392 градусов Цельсии существует в аллотропической форме Г.Ц.К, а затем вплоть до температуры плавление снова принимает форму О.Ц.К.

Способность метала изменять тип своей кристаллической решётки в зависимости от температуры называется аллотропией (полиморфизмом). Полиморфные превращение свойственны так же титану, цирконию, олову и другим металлом.

Аллотропические превращение имеют важное значение в технике, благодаря им, например, оказываются возможным производить термическую обработку стали и других сплавов, имеющую целью изменять их структуру и свойство.

Если в отдельных ячейках кристаллической решётки между её узлами по каким - либо причинам оказывается как бы «лишние атомы» данного им другого элемента, то образующие при этом дефекты называются внедрёнными атомами. Внедрённые атомы так же искажают кристаллическую решётку и создают внутреннее напряжение. При внедрении в междоузлие решётки атомов других элементов эти напряжение оказываются тем больше, чем значение разницы между размерами атомов внутренние и данного метала. Линейные несовершенства кристаллической решётки называется дислокациями.

Дислокации можно представить таким образом: если надрезать идеальный кристалл и сместить края надреза на величину, кратную периоду решётки, то внутри кристалла у края надреза возникает некоторое искажение, которое и является дислокацией. Если края надреза сдвинуть параллельно надрезу, то образующая дислокация называется винтовой. Если же края надреза раздвинуть и внутрь образовавшийся щели вставить (или удалить из неё) лишнюю атомную плоскость того же материала (экспро плоскость), это приведёт к образованию дислокации другого типа - «краевой».

Ознакомившись с вакансиями, внедрёнными атомами и дислокациями, очень важно для понимание прочности металлов уяснить, что все эти дефекты приносят в зёрна металла, в их кристаллическую решётку искажение.

3. Дефекты кристаллической решетки

В любом реальном кристалле всегда имеются дефекты строения. Дефекты кристаллического строение подразделяют по геометрическим признакам на точечные (нуль мерные), линейные (одномерные) и поверхностные (двумерные).

Точечные дефекты:

Вакансии чаще образуются в результате перехода атомов из узла решетки на поверхность или полного испарения с поверхности кристалла, реже их перехода в межузелье.

В кристалле всегда найдутся атомы, кинетическая энергия которых выше средней, свойственной заданной температуре нагрева. Такие атомы, особенно расположены вблизи поверхности, могут выйти на поверхность кристалла, их место займут атомы находящиеся дальше от поверхности, а принадлежащие им узлы окажутся свободны, т.е. возникнут тепловые вакансии. При данной температуре в кристалле создаются не только одиночные вакансии, но двойные, тройные и их группировки. Большинство вакансий являются двойные (так называемые дивакансии).

Вакансии образуются не только в результате нагрева, но и в процессе пластической деформации, рекристаллизации и при бомбардировке металла или частицами высоких энергий.

Межузельный атом, образованный в результате перехода атома из узла в межузелье, на месте которого образуется вакансия. В плотноупакованных решетках, характерных для большинства металлов, энергия образования межузельных атомов в несколько раз больше энергии образования тепловых вакансий. Поэтому в металле очень трудно возникают межузельные атомы и основными точечными дефектами являются тепловые вакансии.

Точечные дефекты вызывают местное искажение кристаллической решетки, смещение вокруг вакансии возникают обычно в первых двух-трех слоях соседних атомов и составляют доли межатомного расстояния. Вокруг межузельного атома в ГПУ решетках смещение соседей значительно больше, чем вокруг вакансий.

Наличие вакансий предопределяет возможность диффузии, т.е. перемещение атомов в кристаллическом теле на расстояние не превышающие средние межатомные для данного металла.

Если перемещения не связаны с изменением концентрации в отдельных объемах, то такой процесс называется самодиффузией. Диффузия, сопровождающаяся изменением концентрации, происходит в сплавах или металлах с повышенным содержанием примесей и называется гетеродиффузией.

Линейные дефекты. Линейные несовершенства имеют малые размеры в двух измерениях и имеют большую протяженность в третьем измерении. Этими несовершенствами могут быть ряд вакансий или ряд межузельных атомов. Особыми и важнейшими видами линейных несовершенств являются дислокации - краевые и винтовые.

Краевые дислокации (рисунок 3.2) представляют собой локализованное искажение кристаллической решетки, вызываемое наличием в ней "лишние" атомной полуплоскости или экстраплоскости.

Рис.3.2. Краевые дислокации (т -вектор сдвига): а - сдвиг, создавший краевую дислокацию; б - пространственная схема краевой дислокации; в, г - схемы расположения атомов у дислокации

Дислокационные линии не обрываются внутри кристалла, они выходят на его поверхность, заканчиваются на других дислокациях или образуют замкнутые дислокационные петли.

Если экстраплоскость образуется в верхней части кристалла то дислокацию называют положительной и обозначают ?,, а если в нижней - то отрицательной и обозначают Т. Различие между положительной и отрицательной чисто условное.

Знак важен при анализе их взаимодействия. Дислокации при приложении небольшого касательного напряжения легко перемещаются. Дислокации одного знака отталкиваются, а противоположного притягиваются, что приводит их к взаимному уничтожению.

Рис. Модель винтовой дислокации

Винтовая дислокация (рисунок 3.3) как и краевая, образована неполным сдвигом кристалла по плоскости Q . В отличие от краевой дислокации винтовая дислокация параллельна вектору сдвига. Если винтовая дислокация образована движение по часовой стрелке, ее называют правой, а против часовой стрелки - левой.

Вокруг дислокаций на протяжении нескольких межатомных расстояний возникает искажение решетки. Эта энергия искажения кристаллической решетки является одной из важнейших характеристик дислокации любого типа. Критерием этого искажения служит вектор Бюргерса b.

Вектор Бюргерса представляет собой разность параметров контуров вокруг данного атома в плоскости идеальной решетки и вокруг центра дислокаций в реальной решетке (рисунок 3.4), показывающую величину и направления сдвига в процессе скольжения. Квадрат вектора Бюргерса характеризует энергию дислокации и силы их взаимодействия. Важной характеристикой дислокационной структуры является плотность дислокаций. Под плотностью r дислокаций понимают суммарную длину дислокаций Sl, см, приходящих на единицу объема V кристалла, см3. Таким образом, размерность плотности дислокаций, см-2: r = Sl/ V.

Дислокации присутствуют в металлических кристаллах в огромной количестве (106-1012) и обладают легкой подвижностью, способностью к размножению. Большое влияние на механические и многие другие свойства оказывает не только плотность, но расположение дислокаций в объеме. Поверхностные дефекты. Это дефекты малы только в одном измерении. Они представляют поверхность раздела между отдельными зернами или субзернами в поликристаллическом металле; к ним относятся так же дефекты упаковки.

Поликристалл состоит из большого числа зерен, при этом в соседних зернах кристаллические решетки ориентированы различно. Границы между зернами называют большеугловыми, так как кристаллографические направления в соседних зернах образуют углы, достигающие десятков градусов.

Каждое зерно состоит из отдельных субзерен, образующие так называемую субструктуру.

Субструктура разориентированы относительно друг друга от нескольких долей до единиц градусов - малоугловые границы. Субзерна имеют размеры (0,1-1 мкм) на один три порядка меньше размеров зерен.

Границы между отдельными кристаллами (зернами) обычно представляют переходную область шириной до 2-3 межатомных расстояний (рисунок 3.5).

Атомы в такой области расположены иначе, чем в объеме зерна. Кроме того, по границам зерен в технических металлах концентрируются примеси, что еще больше нарушает правильный порядок расположения атомов. Несколько меньшие нарушения наблюдаются на границе субзерен.

С увеличением угла разориентации субзерен и уменьшением их величины плотность дислокаций в металле повышается.

Атомы на границах зерен (или субзерен) и атомы, расположенные на поверхности кристалла, вследствие нескомпенсированности сил межатомного взаимодействия, имеют более высокую потенциальную энергию, по сравнению с атомами в объеме зерен.

Список использованной литературы

1.Анурьев В.И. Справочник конструктора-машиностроителя. - М.: «Дело и Сервис», 2008. - 298с.

2.Гольдштейн Я. Е., Мизин В.Г. Модифицирование и микролегирование чугуна и стали. - М.: Издательский центр «Академия». - 272с.

3.Гольдштейн Я. Е., Мизин В.Г. Инокулирование железоуглеродистых расплавов. - М.: «Высшее образование». - 416с.

4.Горбацевич А.Ф., Шкред В.А., Виноградова В.М. Технология машиностроения. - М.: Издательский центр «Академия», 2009. - 291с.

5.Гуляев Б.Б. Синтез сплавов. - М.: Наука, 2008. - 147с.

6.Егоров М.Е. Технология машиностроения. - М.: «ДИС», 2010. - 255 с.

7.Ершов Г.С., Позняк Л.А. Микронеоднородность металлов и славов. - М.: «Высшее образование», 2009. - 214с.

8.Ляхтин Ю.М. Металловедение и термическая обработка металлов. - М.: «Высшее образование», 2010. - 310с.

9.Мещеряков Р.К. Справочник технолога-машиностроителя. - М.: «Машиностроение», 2009. - 416 с.

10.Монахов Г.А. Справочник технолога. - М.: «Высшее образование», 2010. - 689с.

11.Пилюшенко В.Л., Вихлевщук В.А., Лепорский С.В., Поживанов А.М. Научные и технологические основы микролегирования стали. - М.: «Наука», 2012. - 384с.

12.Тягунов Г.В. Повышение качества высоколегированных сталей и сплавов путем совершенствования температурных режимов их выплавки на основе исследований физико-химических свойств расплавов. - М.: «ДИС», 2011. - 47с.

Размещено на Allbest.ru


Подобные документы

  • Физические свойства и основные структурные типы ионных соединений. Влияние отношения ионных радиусов на устойчивость кристаллической структуры. Определение энергии кристаллической решетки. Влияние размеров ионов на растворимость ионных соединений в воде.

    лекция [946,5 K], добавлен 18.10.2013

  • Характеристика кристаллической структуры ниобия и ванадия, ее симметрия и междоузлия. Распространение элементов Nb и V в природе. Фазовые равновесия системы. Формулы для кристаллографических расчетов. Построение стереографических проекций ГЦК решетки.

    контрольная работа [391,5 K], добавлен 08.04.2013

  • Сравнительная характеристика органических и неорганических химических соединений: классификация, строение молекулярной кристаллической решетки; наличие и тип химической связи между атомами; относительная молекулярная масса, распространение на планете.

    презентация [92,5 K], добавлен 11.05.2014

  • Фуллерены – новые аллотропные формы углерода: структура кристаллической решетки, электронное строение и химические свойства. Исследования фуллеренов, перспективы их применения в биологии, медицине. Методы получения водорастворимой формы - фуллеренолов.

    реферат [2,2 M], добавлен 09.12.2012

  • Атомно-кристаллическое строение металла. Размещение атомов в кристаллографической плоскости. Исследование процесса перехода металла из жидкого состояния в твердое. Изучение роли точечного несовершенства кристаллической решетки в диффузионных процессах.

    реферат [863,9 K], добавлен 19.09.2013

  • Анализ химической связи как взаимодействия атомов. Свойства ковалентной связи. Механизм образования ионной связи, строение кристаллической решетки. Примеры межмолекулярной водородной связи. Схема образования металлической связи в металлах и сплавах.

    презентация [714,0 K], добавлен 08.08.2015

  • Строение атома оксида серы, его молекулярная формула, валентность, тип кристаллической решетки. Нахождение в природе сернистого газа SO2. Его физические и химические свойства. Получение сернистого газа в промышленности и в лабораторных условиях.

    презентация [330,6 K], добавлен 13.05.2015

  • Твердые вещества в кристаллическом и аморфном состоянии. Понятие "кристаллическая решетка". Виды частиц и характер связи между ними. Ионная кристаллическая решетка. Структурный тип NaCl, KBr, AgCl, MgO, TiO, UC. Энергия кристаллической решетки.

    презентация [1,4 M], добавлен 19.02.2016

  • Кристаллическая структура ниобия, золота и их сплавов; количество и положение междоузлий. Диаграмма состояния системы Nb-V; график зависимости периода кристаллической решетки от состава сплава; стереографические проекции; кристаллографические расчеты.

    курсовая работа [1,3 M], добавлен 09.05.2013

  • Химические свойства графита - минерала из класса самородных элементов, аллотропной модификации углерода. Соединение графита – соединения включения, образующиеся при внедрении атомов, ионов, молекул между углеродными слоями кристаллической решетки графита.

    реферат [532,8 K], добавлен 11.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.