Проектирование дороги

Понятие дорожных развязок, геодезические основания строительства. Действующие строительные нормы и правила проектирования развязок движения. Измерения углов и расстояний в ходе съемочного обоснования. Топографическая съемка. Проектирование дороги.

Рубрика Строительство и архитектура
Вид дипломная работа
Язык русский
Дата добавления 22.09.2015
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Введение

Дорожная развязка -- комплекс дорожных сооружений (мостов, туннелей, дорог), предназначенный для минимизации пересечений транспортных потоков и, как следствие, для увеличения пропускной способности дорог. Преимущественно под транспортными развязками понимаются транспортные пересечения в разных уровнях, но термин используется и для специальных случаев транспортных пересечений в одном уровне.

Термин чаще используется в отношении комплексов для одного определённого вида транспорта. В Казахстане наиболее известны автодорожные развязки, расположенные в городе Алматы, а также железнодорожные развязки.

Актуальность темы. В условиях роста экономического развития отраслей народного хозяйства Республики Казахстан, активизируются перевозки грузов и пассажиров в стране и увеличивается интенсивность движения на автомобильных дорогах. В связи с этим возрастает потребность строительства автомобильных дорог, на пересечениях которых не должны увеличиваться задержки автомобилей, уровень аварийности и социально-экономические потери от дорожно-транспортных происшествий. Следовательно, необходимо проектировать пересечения автомобильных дорог в разных уровнях с учетом взаимодействия транспортных потоков, по условию обеспечения безопасности движения на участках въезда и переплетения транспортных развязок.

Актуальность проектирования пересечений дорог в разных уровнях вытекает из сложившихся условий развития экономики Республики Казахстан и требует применения вероятностного подхода к проектированию новых и эксплуатации существующих транспортных развязок. Эффективность такого подхода обусловлена также высокой аварийностью на узлах автомобильных дорог, снижение которой приведет к росту социальной и экономической эффективности. По данным официальной статистики ГИБДД, показатели безопасности за прошлый год на автомобильных дорогах ухудшились: количество ДТП возросло, число погибших, как и число раненых на дорогах страны увеличилось. Так, за 2011 год произошло 199868 ДТП, в которых погибло 27953 человека и ранено 251848 человек. Проектирование автомобильных дорог необходимо осуществлять из условия пропуска потоков автомобилей средней и высокой интенсивности. Основными математическими моделями транспортного потока на пересечениях автомобильных дорог в разных уровнях необходимо считать теоретико-вероятностные модели, учитывающие риск причинения вреда пользователям. Такой подход соответствует требованиям Закона№ - 184 «О техническом регулировании». Все сказанное свидетельствует об актуальности данного направления исследований и будет способствовать росту экономической эффективности народного хозяйства в процессе перевозок грузов и пассажиров на участках пересечений и примыканий автомобильных дорог.

Цель настоящей работы состоит в повышении безопасности движения на проектируемых и существующих транспортных развязках с учетом вероятностной сущности взаимодействия транспортных потоков (на основе теории риска).

Для достижения поставленной цели были сформулированы и решены следующие задачи:

1. На основе экспериментальных исследований установить законы распределения скоростей свободного движения автомобилей на основных дорогах и съездах транспортных развязок и законы распределения интервалов между вливающимися и транзитными автомобилями.

2. Применяя статистическую обработку интервалов между вливающимся и транзитным автомобилями, определить приемлемые значения граничных интервалов (для вливания автомобилей съезда в транзитный поток основной дороги) и их среднеквадратические отклонения.

3. Для межпетлевых участков транспортных развязок на основе экспериментальных данных получить математическую модель, позволяющую определять среднюю плотность движения взаимодействующих транспортных потоков в зависимости от их интенсивности движения.

4. На основе установленных законов распределения скоростей движения и фактических граничных интервалов разработать математические модели теории риска, позволяющие:

- назначать радиусы съездов транспортных развязок по величине допустимого риска потери устойчивости автомобиля;

- определять на участках въезда и переплетения транспортных потоков риск возникновения ДТП;

- проектировать длины участков переплетения и переходно-скоростных полос по условию пропуска потоков автомобилей с учетом приемлемого риска возникновения ДТП.

5. Разработать рекомендации по проектированию съездов транспортных развязок по условию обеспечения допустимого риска заноса и опрокидывания автомобилей, движущихся с расчётной скоростью.

6. Разработать методики и практические рекомендации по проектированию участков въезда и переплетения транспортных потоков на основе оценки и снижения риска возникновения ДТП.

Научная новизна. Впервые рассмотрены вопросы проектирования транспортных развязок по условию обеспечения безопасности движения (основанные на теории риска), в соответствии с требованиями Закона№184-ФЗ «О техническом регулировании», по обеспечению безопасности продукции народного хозяйства. Впервые на основе теории риска разработаны теоретико-вероятностные модели оценки безопасности движения на участках въезда и на участках переплетения транспортных развязок. В данной математической модели учтена вероятностная сущность формирования транспортных потоков на пересечениях дорог в разных уровнях с определением основных характеристик движения взаимодействующих автомобилей на участках въезда и переплетения узлов автомобильных дорог.

Практическая значимость работы заключается в совершенствовании процессов проектирования транспортных развязок с учетом вероятностной сущности формирования транспортных потоков и назначения геометрических параметров пересечения автомобильных дорог по величине допустимого риска, причинения вреда пользователям (водителю, пассажирам, перевозчикам), также в разработке рекомендаций в нормативно-техническую литературу по назначению пересечений автомобильных дорог с учетом технико-экономического обоснования и величине допускаемого риска.

1. Транспортные развязки

1.1 Общее понятие и цель дорожных развязок

Алматы - один из крупнейших мегаполисов Казахстана. Естественно, что он, как и другие крупные города развитых стран, сталкивается с необходимостью решать проблему дорожных развязок. Сегодня при проектировании автомобильных дорог предпочтение отдают современным технологиям и методам производства изысканий, основанным, прежде всего, на использовании высокопроизводительных методов сбора информации о местности: использованию ГИС - технологий при изысканиях автомобильных дорог и сооружений на них, методам наземной и аэрокосмической цифровой фотограмметрии, системам спутниковой навигации « GPS », методам электронной тахеометрии, наземного лазерного сканирования местности и геофизическим методам инженерно - геологических изысканий. Транспортная развязка -- комплекс дорожных сооружений (мостов, туннелей, дорог), предназначенный для минимизации пересечений транспортных потоков и, как следствие, для увеличения пропускной способности дорог. Преимущественно под транспортными развязками понимаются транспортные пересечения в разных уровнях, но термин используется и для специальных случаев транспортных пересечений в одном уровне. На сегодняшний день при строительстве используются новейшие современные технологии при строительстве автотранспортных развязок для улучшения качества и безопасности развязок.

В нашем городе чаще используют такие приборы как Leica TC 407 производство Швейцария, а так же они выпускаю разные электронные рулетки и системы GPS.

Также при строительстве развязок используются новейшие программы ГИС, такие как Credo mix и AutoCAD. Эти программы специально предназначены для решения задач при строительстве разных видов и сложностей.

1.2 Виды автомобильных развязок

Транспортные развязки на пересечениях и примыканиях автомобильных дорог в разных уровнях являются сложнейшими узлами автомобильных дорог с точки зрения проектирования плана соединительных рамп, продольного и поперечных профилей, вертикальной планировки, организации поверхностного водоотвода. Развязки в разных уровнях, устраиваемые прежде всего на автомобильных дорогах высоких категорий, призваны для исключения пересечения транспортных потоков разных направлений в одном уровне с соответствующим увеличением пропускной способности дорог, скоростей движения, уровней удобства и безопасности движения. На примере сложной транспортной развязки, представленной на рисунке 1, показаны основные их элементы: пересекающиеся автомагистрали, левоповоротные, правоповоротные съезды, директивные левоповоротные съезды, путепроводы.

Тип и принципиальные схемы транспортных развязок движения определяются множеством факторов: категориями пересекающихся дорог, перспективной интенсивностью транспортных потоков по направлениям; рельефом и ситуационными особенностями местности в районе пересечения или примыкания и т. д. Из всего многообразия разработанных схем транспортных развязок на пересечениях и примыканиях автомобильных дорог на рисунке 2 представлены некоторые из них, находящие применение в практике транспортного строительства.

Рисунок 1. Схема сложной транспортной развязки в разных уровнях:

1 - пересекающие автомагистрали; 2 - левоповоротные съезды;

3 -правоповоротные съезды; 4 - директивные лево поворотные съезды; 5 - путепроводы

Со стороны действующих строительных норм и правил проектирования к развязкам движения предъявляют следующие требования:

- схемы развязки движения в разных уровнях на дорогах I - II категорий не должны допускать пересечений лево-поворотного движения с транспортными потоками основных направлений;

- пересечения и примыкания на дорогах I - II категорий предусматривают не чаще, чем через 5 км, а на дорогах III категории - не чаще, чем через 2 км;

- выезды с дорог I - III категорий и въезды на них осуществляют с устройством переходно-скоростных полос;

Рисунок 2 - Схемы развязок движения на пересечениях и примыканиях автомобильных дорог разных уровнях:

а- развязка «клеверный лист»; б, в, г, д - комбинированные клеверообразные развязки с директивными левоповоротными съездами; е - развязка «обжатый клеверный лист»; ж - развязка «обжатый не полный клеверный лист»; з - ромбовидное пересечение; и - Примыкающие с директивными левоповоротными съездами; л - Примыкающие по типу «трубы»; м - Примыкающие со смежными левоповоротными петлями

- на участках ответвлений и примыканий съездов развязок движения используют особые типы переходных кривых, характеризуемых параболическим либо S-образным законами изменения кривизны и наилучшим образом отвечающих условиям движения по ним автомобилей с переменными скоростями. Ширину проезжей части на всем протяжении левоповоротных съездов принимают равной 5,5 м, а на правоповоротных съездах - 5,0 м.

Ширина обочин с внутренней стороны закруглений на съездах должна быть не менее 1,5 м, а с внешней стороны - 3,0 м. Продольные уклоны на съездах развязок движения в разных уровнях не должны быть более 40.

Один из видов сложных транспортных развязок это клеверообразная. В конце 1960-х за рубежом клеверообразные накопительные развязки стали преобладать перед классическими клеверообразными. При такой конструкции развязки, съезды стали длиннее, соответственно увеличился радиус поворота, что позволяет повысить скорость передвижения по ней. В некоторых случаях для удлинения коротких петлевых съездов используют третий уровень развязки.

Преимущества этой развязки в том что дешевая по сравнению с другими видами развязки и используется только 2 уровня для 2-х шоссе, выезд расположен перед въездом, количественно снижается необходимость перестроения потоков перед выездами с шоссе. Высокая пропускная способность развязки.

Недостатки развязки в том, что необходимо преобладание одного из потоков над другим. Если потоки сравниваются, то становится невозможным движение общественного транспорта через светофорную зону, при росте потока может закупориться и тоннель, необходимо большее расстояние перед следующим перекрёстком.

Рисунок 3. Схема клеверообразной развязки

Другая альтернатива четырехуровневой накопительной развязки - это турбинная развязка (также ее называют «Вирпул», в переводе - "завихрение"). Обычно, турбинной развязке требуется меньше (обычно два или три) уровня, съезды развязки по спирали сходятся к её центру. Особенностью развязки являются съезды с большим радиусом поворота, позволяющие повысить пропускную способность развязки в целом.

Преимущества этой высокая пропускная способность и выезд расположен перед въездом, так же снижается необходимость перестроения потоков перед выездами с шоссе.

Недостатки заключаются в том, что требует много места для строительства, требует сооружения 11 мостов, резкие перепады высот на эстакадах съездов.

Рисунок 4. Схема развязки

Рисунок 5 - Развязка в натуре (аэрофотоснимок)

Светофорная развязка образуется путём пересечения под произвольным углом (обычно прямым) двух и более дорог. Термин «развязка» употребляют только при сложном светофорном цикле, наличии других дорог для поворотного движения или запрете следования в одном из направлений.

Преимущества:

1. Простота светофорных циклов;

2. Возможность выделить отдельный цикл для пешеходов.

Недостатки

1. Проблема левого поворота при интенсивном движении на одной из дорог;

2. При интенсивном движении время ожидания зелёного может достигать 10 минут ;

3. При большом трафике есть большой риск возникновения дорожных «пробок».

Светофорная с карманом для разворота и левого поворота устраивается в случаях, когда на одной из улиц уже есть разделение потоков.

Преимущества:

1. Простота светофорных циклов;

2. Используется имеющееся место на старом перекрёстке.

Недостатки:

1. Перегруз дороги, на которой устроены «карманы», может создать «пробки»;

2. При левом повороте (а иногда и при развороте) необходимо стоять на минимум двух «красных» (для решения этой проблемы обычно разрешают правый поворот на красный);

3. Ухудшается положение для пешеходов за счёт сокращения цикла или ликвидации фактически бессветофорного перехода. Такую развязку часто строят вместе с подземным переходом;

4. Необходимо убирать помехи для видимости пешеходов, либо создаётся опасность правого поворота.

Круговой перекрёсток в действии основан на том, что вместо перекрёстка строится круг, на который можно въезжать и съезжать в любом месте.

Преимущества:

1. Количество светофорных циклов снижается до минимальных двух (на пешеходный переход и проезд машин), иногда светофоры упраздняются вообще;

2. Нет проблемы левого поворота (при правостороннем движении);

3. Возможно ответвление и более четырёх дорог;

Недостатки:

1. Не может дать приоритет какой-либо (главной) дороге; применяется, как правило, на дорогах сходной загруженности;

2. Высокая аварийная опасность;

3. Необходимость чётко учитывать потоки пешеходов;

4.Требуется много лишнего места;

5. Пропускная способность ограничена длиной окружности;

6. Не более 3 полос движения.

Нетипичные решения. К-элемент. Одна из дорог обязательно состоит из трёх сегментов, два из которых представляют собой дороги для движения каждый в свою сторону, а третий -- выделенную полосу, при этом на перекрёстке центральная полоса «меняется» с одной боковой. Также есть частные случаи ухода выделенной полосы на второстепенную дорогу с выделением бульвара

Преимущества:

1. Выделенный цикл для ОТ совмещён с левым поворотом из двух полос;

2. Левый поворот проходит с оттянутым разворотом далее через центральную полосу.

Недостатки:

1. Необходимо учитывать строение окрестных улиц.

Виды развязок для пересечения шоссе и второстепенной дороги Parclo (Неполного развёртывания). Пример «полуромашки» или частичная клеверообразная.

Преимущества:

1. Больше скорость, чем на типичной клеверообразной за счёт более длинных полос;

2. Дешевле за счёт строительства меньшей длины мостов;

3. Задействованы все направления;

4. Часто проектируется именно под преобладание левого поворота.

Недостатки:

1. Выделяется только часть полос для съезда/выезда. Выделить все полосы невозможно;

2. Разворот с второстепенной дороги невозможен в принципе.

Светофорно-туннельная. На главной дороге для движения прямо строится туннель (или эстакада), для остальных сохраняется светофорное движение

Преимущества

1. Позволяет выделить преобладающий поток без ущерба для второстепенной дороги;

2. Практически нет препятствий для движения общественного транспорта;

3. Зачастую можно сделать верхнюю зону преимущественно пешеходной;

Недостатки:

1. Необходимо преобладание одного из потоков над другим. Если потоки сравниваются, то становится невозможным движение общественного транспорта через светофорную зону, при росте потока может закупориться и тоннель;

2. Необходимо большее расстояние перед следующим перекрёстком по сравнению со светофорной;

Ромбовидная развязка с изменением сторонности. Ромбовидная развязка с изменением сторонности -- Diverging diamond interchange.

Один из построенных вариантов в США.

На главной дороге для движения прямо строится туннель (или эстакада), для второй сохраняется светофорное движение. Причем на второстепенной дороге меняется сторонность движения в пределах развязки.

Преимущества:

1. Позволяет выделить преобладающий поток без ущерба для второстепенной дороги;

2. Две фазы для светофоров вместо трех в классической ромбовидной развязке;

3. По сравнению с классическим вариантом робмовидной развязки большая пропускная способность;

4. Увеличена безопасность движения за счет снижения скорости движения по второстепенной дороге и меньшему количеству конфликтных точек;

5. Есть возможность разворота для главной дороги.

Недостатки:

1. Непривычная организация дорожного движения может сильно путать водителей. Необходима хорошо видная разметка.

2. Не может работать без светофорного регулирования.

Кольцевая с выделением прямого направления.

Развязка отличается от кругового перекрестка тем, что прямое направление на главной дороге выделено с помощью туннеля или эстакады, для левых поворотов и разворотов используется кольцевое движение. Такие развязки часто строятся на основе круговых перекрестков выделением главной дороги -- такое решение часто применяют на площадях.

По сравнению с обычной кольцевой такая развязка позволяет организовать бессветофорное движение на прямом направлении.

1. Основные геодезические задачи при строительстве дорожных развязок

1.1 Съемочная геодезическая сеть

Геодезической основой для выполнения всех видов наземных топографо-геодезических работ при инженерно-геодезических изысканиях железных и автомобильных дорог и для геодезического обеспечения других видов инженерных изысканий служат пункты (точки) съемочной геодезической сети (съемочного обоснования).

В качестве съемочного обоснования следует использовать:

- при инженерно-геодезических изысканиях новых автомобильных дорог и вторых путей на обходах - пункты (точки) магистральных ходов, а для съемки поперечных профилей на стадии рабочей документации - закрепленные на местности точки трассы;

- при инженерно-геодезических изысканиях вторых путей и для реконструкции железных дорог на перегоне - ось существующего пути и точки магистрального хода, увязанные с эксплуатационным пикетажем;

- при наземной топографической съемке существующих железнодорожных станций - пункты (точки) одного или нескольких базисных ходов в пределах путевого развития и точки съемочных (теодолитных) ходов, опирающихся на пункты базисных ходов.

Ходы съемочной геодезической сети следует прокладывать:

- магистральные - вблизи трассы проектируемой дороги или вдоль земляного полотна существующего железнодорожного пути;

- базисные - как правило, вдоль главного пути или парка железнодорожной станции;

- съемочные - в местах, удобных для геодезических измерений и обеспечивающих съемку путевого развития и пристанционной территории.

Магистральные ходы должны быть привязаны в плане и по высоте к пунктам государственной геодезической сети не реже, чем через 30 км.

Если пункты государственной геодезической сети удалены от трассы на расстояние более 5 км, допускается вместо плановой привязки определять не реже, чем через 15 км, истинные азимуты сторон хода.

Методы определения истинных азимутов сторон хода (по зенитному расстоянию Солнца, часовому углу Полярной и др.) и требования к точности измерений должны устанавливаться в программе изысканий.

Базисные ходы на железнодорожных станциях должны быть, как правило, привязаны к пунктам геодезической основы на территории городов (поселков). Длины базисных ходов определяются длинами парков и устанавливаются в программе изысканий.

При топографической съемке промежуточных станций и разъездов с путевым развитием до 5 путей и перегонов длиной до 25 км на незастроенной территории допускается прокладывать базисный (магистральный) ход вдоль главного пути без привязки его к пунктам геодезической основы на территории родов (поселков).

Предельные длины съемочных ходов на железнодорожных станциях и магистральных ходов на перегоне на застроенной территории при использовании светодальномеров не должны превышать 1,8 км. При прокладке теодолитных ходов следует соблюдать требования СНиП 1.02.07-87.

Высотная привязка магистральных ходов к маркам и реперам государственной или ведомственной нивелирной сети должна быть произведена во всех случаях, когда указанные пункты отстоят не далее 5 км от границ съемки. При большем их удалении высотные ходы следует привязывать к предварительно установленным временным реперам.

Базисные ходы на железнодорожных станциях должны быть привязаны, как правило, не менее чем к двум реперам города (поселка). Привязка к одному реперу должна быть обоснована в программе изысканий. При этом должен быть обеспечен дополнительный контроль высотной привязки.

Временные реперы должны устанавливаться не реже чем через 2 км. При инженерно-геодезических изысканиях вторых путей или переустройства железнодорожных станций рекомендуется использовать в качестве временных реперов кордонные камни мостов, оголовки водопропускных труб, цоколи фундаментов или другие капитальные сооружения, а также постоянные знаки плановой съемочной геодезической сети.

Система координат и высот пунктов съемочной сети для составления топографических планов при инженерно-геодезических изысканиях железных и автомобильных дорог должна быть установлена в программе изысканий и согласована с органами, выдавшими разрешение на производство изысканий.

Допускается принимать местную (станционную) систему координат.

При съемке железнодорожных станций за начало местной (станционной) системы координат следует принимать, как правило, точку пересечения оси пассажирского здания (ось X) с магистральным (базисным) ходом, проложенным вдоль главного пути (ось У).

При съемке железнодорожных станций с тупиковым расположением вокзала за ось Х может быть принята геометрическая ось любого капитального здания, расположенного по возможности в средней части станции.

Работы по созданию съемочной геодезической сети следует выполнять в соответствии с проектом съемочного обоснования.

Положение магистральных ходов, используемых как геодезическая основа для наземных топографо-геодезических работ при инженерно-геодезических изысканиях новых железных и автомобильных дорог, и ходов привязки к пунктам и реперам государственной геодезической сети следует намечать на топографических картах и планах, по которым выполнялось камеральное трассирование.

Допустимые величины невязок в ходах съемочной геодезической сети следует принимать в соответствии с таблицей 1.

Таблица 1. Допустимые погрешности измерений

Виды работ

Допустимые погрешности измерений

угловые мин

линейные

высотные мм

Проложение ходов съемочного обоснования при изысканиях новых железных и автомобильных дорог магистральные ходы ходы привязки к пунктам геодезической сети ходы планово-высотного обоснования аэрофотоснимков

(в трудных условиях пересеченной и горной местности )

Полевое трассирование (вынос трассы в натуру) новых железных и автомобильных дорог

(в трудных условиях пересеченной и горной местности )

Проложение ходов съемочной геодезической сети при изысканиях на действующих дорогах

базисные и съемочные ходы на железнодорожных станциях магистральные ходы на перегонах на застроенной территории

съемочные ходы на железнодорожных станциях вне путевого развития базисные ходы на разъездах магистральные ходы на перегонах и автомобильных дорогах

Измерение длин при разбивке пикетажа (двойной промер мерной лентой)

-

-

Примечание. L - длина хода, n - число углов хода.

2.2 Постоянное закрепление точек базисного хода

Для постоянного закрепления пунктов (точек) базисных ходов съемочной геодезической сети рекомендуется использовать бетонные монолиты в виде усеченной пирамиды, аналогичные центрам геодезических пунктов типа 5 г.р. в соответствии с рисунком 1.

Рисунок 6. Образец постоянного знака для закрепления базисных ходов

В верхнюю часть монолита закладывают металлический стержень (старую накладку), на котором кернением фиксируется центр знака.

2.3 Ходы съемочного обоснования

Измерения углов и расстояний в ходах съемочного обоснования должны производиться, как правило, электронными и электрооптическими тахеометрами или теодолитами типа 2Т2, 2Т5 с установленными на их колонки светодальномерами по трехштативной системе.

При прокладке магистральных и съемочных ходов, а также при полевом трассировании допускается как исключение, при обосновании в программе изысканий, измерение углов теодолитами 2Т30 и измерение длин линий стальными мерными лентами или рулетками. При этом должно быть обеспечено выполнение требований СНиП 1.02.07-87.

Длины линий в ходах съемочного обоснования при измерениях светодальномером не должны быть менее 20 м на застроенной и 40 м на незастроенной территориях.Максимальная длина сторон базисного, магистрального и съемочного ходов должна устанавливаться в программе изысканий в зависимости от назначения хода и используемого светодальномера.

В ходах привязки к пунктам государственной геодезической сети и ходах планово-высотного обоснования маршрутной аэрофотосъемки максимальная длина стороны хода определяется условиями привязки и возможностями используемого светодальномера.

При выполнении работ электронными и электрооптическими тахеометрами или светодальномерами допускается использовать висячие ходы с одной стороной длиной не более 750 м.

Горизонтальные углы в магистральных (съемочных) ходах должны измеряться двумя полуприемами. Если число направлений на стоянке три и более, должно быть выполнено замыкание горизонта.

В качестве визирных целей при измерениях горизонтальных и вертикальных углов следует использовать, как правило, отражатели светодальномера, установленные на штативе.

Измерение горизонтальных углов в базисных и съемочных (в пределах путевого развития) ходах на железнодорожных станциях тахеометрами следует выполнять двумя круговыми приемами.

Измерения в ходах привязки к пунктам государственной геодезической сети должны выполняться так же, как и при прокладке магистральных ходов.

Для угловой привязки на пунктах государственной геодезической сети необходимо измерять два примычных угла на геодезические знаки, дирекционные углы направлений на которые известны, или на ориентирные пункты.

Разность измеренных примычных углов на исходные пункты не должна отличаться от разности исходных дирекционных углов больше чем на 30.

Пункты (точки) магистральных ходов при инженерно-геодезических изысканиях новых железных и автомобильных дорог закрепляются на местности временными знаками - деревянными кольями диаметром около 10 см или столбами, в которые вбиты гвозди, фиксирующие центр знака. При работах в залесенной и таежной местностях в качестве знаков могут быть использованы пни спиленных деревьев диаметром не менее 20 см.

Пункты (точки) ходов съемочной геодезической сети при инженерно-геодезических изысканиях для проектирования вторых путей и расширения (реконструкции) железнодорожных станций закрепляют, как правило, металлическими стержнями или трубками диаметром 20-25 мм и длиной не менее 50 см, забиваемыми вровень с землей. Центр точки фиксируется керном или крестообразной насечкой на торце стержня или пробки, забитой в верхний конец трубы.

Положение постоянных знаков выбирают так, чтобы обеспечить их сохранность при реконструкции станции, а при их закладке не были повреждены подземные коммуникации. На каждый постоянный знак должен быть составлен абрис с указанием не менее трех расстояний до ближайших сооружений или устройств, которые легко могут быть опознаны. Все постоянные знаки геодезической основы станции должны быть переданы по акту на хранение дистанции пути.

2.4 Нивелирование

Отметки точек магистральных, базисных и съемочных ходов, опознаков планово-высотного обоснования аэрофотосъемки и головки рельса существующих железных дорог допускается определять методами геометрического или тригонометрического нивелирования.

Выбор метода нивелирования определяется имеющимся парком геодезических приборов и условиями производства работ.

Рисунок 7. Геометрическое нивелирование

Тригонометрическое нивелирование следует применять, как правило, при производстве работ с использованием светодальномеров или электронных и электрооптических тахеометров.

Геометрическое нивелирование надлежит выполнять, как правило, путем прокладки по точкам съемочного обоснования ходов технического нивелирования, которые привязывают к пунктам государственной геодезической сети, маркам и реперам нивелирной сети и к временным реперам.

Для составления продольного профиля существующей автомобильной дороги нивелирный ход следует прокладывать по обочине.

При привязке к пунктам государственной геодезической сети, маркам и реперам в случаях, когда местность имеет большие углы наклона и число станций на 1 км хода более 25, допустимую невязку следует подсчитывать по формуле

,

где - число станций в ходе.

Для производства технического нивелирования следует использовать нивелиры с увеличением труб не менее 20 и ценой деления цилиндрического уровня не более 45 на 2 мм или нивелира с компенсатором.

Для определения высот точек базисных ходов, прокладываемых на железнодорожных станциях, надлежит применять нивелиры с увеличением трубы 25* и ценой деления цилиндрического уровня не более 25 на 2 мм. Для определения длин линий при тригонометрическом нивелировании следует использовать светодальномеры, электронные и электрооптические тахеометры, которые обеспечивают среднюю квадратическую погрешность измерения расстояния не более ±2 см.

Для измерения вертикальных углов нужно использовать теодолиты типа 2Т2 и 2Т5 или равноточные им электронные и электрооптические тахеометры.

Рекомендуется использовать теодолиты с компенсаторами места нуля вертикального круга.

Измерения вертикальных углов теодолитами типа 2Т2 (или равноценными им по точности электрооптическими и электронными тахеометрами) следует выполнять одним приемом с наведением на визирную цель центральной нити сетки нитей.

Контролем измерений вертикального угла в поле служат вычисленные значения места нуля (места зенита), которые не должны отличаться от средних. значений за день более чем на 6.

Вычисление превышений рекомендуется выполнять в поле: при производстве тригонометрического нивелирования электронными и электрооптическими тахеометрами - с помощью микропроцессора, встроенного в прибор, при использовании светодальномеров, установленных как насадка на колонки теодолита - с помощью микрокалькулятора.

2.5 Cовременные тахеометры и их характеристики

Известно, что требования к качеству строительной продукции быстро растут. Возрастает и необходимость постоянного повышения общего технического уровня строительных работ, надежности, долговечности, эстетичности, технологичности строительного производства. Инженерно-геодезические измерения и инженерно-геодезические построения занимаю особое место в общей схеме строительных работ. Они начинаются задолго до начала строительства при проведении инженерно-геодезических изысканий, выноса проектов сооружений в натуру, являются составной частью технологии строительно-монтажных работ в период всего строительства, а также сопутствуют при проверке качества строительной продукции и продолжаются в эксплуатационный период при проведении наблюдений за деформациями зданий и сооружений, если того требуют условия проекта. Поэтому вопросы точности проведения геодезических работ имеют принципиальное значение, ибо они в конечном счете определяют уровень качества и надежность выстроенных зданий и сооружений. При оценке надежности и точности измерений главным является выбор совершенной методики геодезических работ и соответствующих приборов и оборудования, исходя из заданных технологических требований проекта и допусков.

С ростом научно-технического прогресса и технического уровня строительства развивались и совершенствовались методики и приборы для проведения инженерно-геодезических работ. Если до 60-х годов нашего столетия развитие геодезического приборостроения шло по пути совершенствования успешно зарекомендовавшей себя традиционной технологии, в основе которой лежали физические принципы, разработанные, в основном, еще в конце XIX века, то за последние 30 лет развитие микроэлектроники, ставшей символом XX века, положило начало новой эпохи средств и методов геодезических работ Современный геодезический прибор такой как электронные тахеометры TCR1205 R100; TCR1205 R300 и TCR 705, сегодня - это продукт высоких технологий, объединяющий в себе последние достижения электроники, точной механики, оптики, материаловедения и других наук. А использование спутниковой навигации систем СРS-Глонасс (в том числе и в целях геодезии) - можно смело считать новым достоянием цивилизации, преимущества которого в полной мере еще не оценены [8].

2.5.1 Краткие характеристики электронного тахеометра TPS 700

Точность измерения углов: 2/3/5

Точность без отражателя: 3мм + 2pp

Дальность измерения: 3000м

Дальность безотражательных измерений: 80м

Технические характеристики:

Классические электронные тахеометры для топографических и кадастровых работ, изысканий и строительства. Простой пользовательский интерфейс, наличие встроенного программного обеспечения сделают вашу работу более эффективной. Программирование клавиш позволяет настроить прибор под конкретного пользователя.

Данные измерений хранятся во внутренней памяти объемом до 7000 точек. Тахеометр может снабжаться безотражательным дальномером. Встроенный набор программ может дополняться по выбору пользователя программами проложение хода, трассирования дорог, мониторинга, разбивки от исходной линии и др. Классические электронные тахеометры для топографических и кадастровых работ, изысканий и строительства. Простой пользовательский интерфейс, наличие встроенного программного обеспечения сделают вашу работу более эффективной. Программирование пользователем помогут настроить прибор под конкретного пользователя.

Программы:

- съемка - быстрое ориентирование прибора, установка координат станции, определение файлов исходных данных и измерений;

- разбивка -два классических метода разбивочных работ: полярный и ортогональный;

- неприступное расстояние - измерение расстояний и превышений между двумя визирными целями, определение дирекционного угла этого направления;

- вычисление площадей - в режиме on-line или с использованием точек, хранящихся в памяти;

- обратная засечка - выполнение измерений в любых комбинациях, в том числе только угловых [8].

2.6 Топографическая съемка

Топографические съемки выполняются с целью составления инженерно-топографических планов, служащих основой для проектирования строительства новых железных и автомобильных дорог, вторых путей, реконструкции существующих железных дорог и железнодорожных станций и узлов, а также получения аналитических данных и создания ЦММ.

Инженерно-топографические планы для трассирования и проектирования железных и автомобильных дорог должны составляться, как правило, аэрофототопографическим методом по материалам аэрофотосъемки.

Наземную съемку как основной вид съемки следует применять в случаях, когда выполнение аэрофотосъемки невозможно или экономически нецелесообразно в связи с ограниченностью снимаемой территории.

При аэрофототопографической съемке железнодорожных станций и перегонов наземные съемки выполняют на участках предполагаемой реконструкции путевого развития для получения аналитических данных и создания ЦММ.

Точность инженерно-топографических планов должна отвечать требованиям СНиП 1.02.07-87.

Основным видом наземной топографической съемки при инженерно-геодезических изысканиях новых железных и автомобильных дорог и вторых путей служит тахеометрическая съемка.

Тахеометрическую съемку следует выполнять электронными и электрооптическими, авторедукционными и номограммными тахеометрами.

Можно использовать картографические столики, соединяющиеся механическими приспособлениями с геодезическими приборами.

Рисунок 8. План масштаба 1:500

Тахеометрическую съемку следует выполнять, как правило, с пунктов (точек) съемочного обоснования.

При производстве тахеометрической съемки должны соблюдаться требования, установленные СНиП 1.02.07-87.

Выполнение полевых работ при тахеометрической съемке следует сочетать с камеральной обработкой материалов съемки, при этом должны быть выполнены:

- проверка полевых журналов и составление подробной схемы съемочной геодезической сети;

- вычисление координат и высот точек магистральных ходов;

- вычисление в полевых журналах высот всех пикетов на станциях;

- накладка точек магистральных ходов, пикетных точек, проведение горизонталей и нанесение ситуации.

Съемку элементов станционной ситуации на существующих железнодорожных станциях следует выполнять способами прямоугольных координат, полярных координат и угловой засечки.

Одновременно со съемкой станционной ситуации должны быть определены координаты: основных элементов путевого развития, углов пассажирского здания, локомотивного и вагонного депо, постов централизации, а также расположенных между путями или в непосредственной близости к ним служебных и технических зданий, наружных граней опор искусственных сооружений, прожекторных мачт и опор высоковольтных линий передач, высоких и низких платформ.

Точность съемки определяется масштабом составляемого инженерно-топографического плана.

При съемке с использованием электрооптических и электронных тахеометров и светодальномеров расстояния до определяемых точек не должны превышать величин, приведенных в СНиП 1.02.07-87.

Расстояние до определяемой точки и горизонтальный угол следует измерять одним полуприемом. Визирование производят на отражатель, закрепленный на раздвижной вехе.

Способ угловой засечки следует применять при съемке элементов ситуации, удаленных от ходов съемочной геодезической сети на расстояние от 20 до 80 м. При съемке способом угловой засечки в качестве базиса засечки следует использовать прямую, соединяющую две ближайшие к снимаемому участку точки съемочного обоснования.

Базис засечки можно располагать как вдоль, так и поперек путей. Поперечный базис должен пересекать пути под углом, близким к прямому.

Положение базиса засечки следует выбирать в зависимости от условий съемки. Длина базиса засечки не должна превышать 200 м. Угол засечки на определяемые точки не должен быть менее 30° и более 150°.

Визирование выполняют на шпильку или марку, установленную над точкой базиса на штативе.

При съемке производственных, служебно-технических, жилых и других зданий и сооружений они должны быть обмерены по наружному периметру и по каждому указано характеристика, наименование, материал стен, фундамента и кровли, состояние и принадлежность.

Одновременно со съемкой ситуации следует производить съемку воздушных линий электропередач, осветительной сети, связи, желобов и тяг СЦБ и т.п.

При обосновании в программе изысканий и согласовании с главным инженером проекта на участках, где не предусматривается реконструкция путевого развития, координирование элементов станционной ситуации может выполняться фотограмметрическим методом.

2.7 Проектирование дороги CAD_CREDO

2.7.1 Исходные данные для проектирования автомобильной дороги в CAD_CREDO и основные функции

Исходные данные для проектирования автомобильной дороги в CAD_CREDO попадают, в основном, из системы CREDO_LIN "Линейные изыскания" и включают:

- продольный и поперечный профили, плановую геометрию оси трассы, общую информацию по объекту. Данные в CREDO_LIN могут вводиться из полевых журналов и схем или формироваться при экспорте из других систем CREDO.

Геометрическая модель автомобильной дороги формируется трассой (пространственной линией - осью дороги) и поперечными сечениями. Проекция трассы на горизонтальную плоскость дает план трассы, на вертикальную - продольный профиль.

Система CAD_CREDO предоставляет возможность многовариантного проектирования, оценки каждого варианта и направленного поиска оптимального проектного решения.

Внесение изменений возможно на любой стадии проектирования, исходные данные и результаты расчетов сохраняются в памяти компьютера, что позволяет избежать повторного ввода для задач, использующих эту информацию.

Функции CAD_СREDO обеспечивают:

- Увязку элементов закруглений плана трассы.

- Проектирование продольного профиля методом сплайн-интерполяции опорных точек или методом динамической оптимизации.

- Корректировку профиля в интерактивном режиме, сохранение и сравнение вариантов.

- Проектирование поперечных профилей с привязкой к конкретным условиям местности и с учетом ранее принятых проектных решений.

- Проектирование водоотводных устройств (дополнительная задача системы).

- Расчет осадки насыпи на слабом основании на определенном пикете (дополнительная задача системы).

- Расчет устойчивости откосов земляного полотна без подтопления и с подтоплением (дополнительная задача системы).

- Проектирование выравнивания продольного и поперечного профилей при реконструкции дороги, расчет объемов выравнивающих слоев и срезки существующего покрытия.

- Конструирование и прочностной расчет дорожной одежды нежесткого типа.

- Гидравлический расчет для малых искусственных сооружений (дополнительная задача системы).

- Расчет объемов земляных, укрепительных и планировочных работ с использованием цифровой модели местности и математической модели проектного решения.

- Моделирование движения расчетных автомобилей и транспортных потоков в существующих и проектируемых дорожных условиях.

-Транспортно-эксплуатационную и экологическую оценку проекта по показателям стоимости перевозок, скорости движения, расхода топлива, безопасности движения, объемов токсичных выбросов.

- Проектирование экологических мероприятий.

- Оценку загрязнения водной среды (дополнительная задача системы).

- Архитектурно-ландшафтную и аналитическую оценку перспективных изображений участков дороги.

- Создание чертежей (типа DXF и PLT), таблиц и ведомостей.

- Проектирование индивидуальных дорожных знаков (дополнительная задача системы).

2.7.2 Проектирование трассы

Плановая геометрия трассы может создаваться в системах:

1. CREDO_MIX - "Цифровая модель проекта".

2. CREDO_TER - "Цифровая модель местности".

3. CREDO_PRO - "Геометрическое проектирование".

4. CREDO_LIN - "Линейные изыскания".

5. CAD_CREDO - "Проектирование автодороги".

Трасса автодороги обычно представляет собой набор прямых (L), полных несмещенных клотоид (K) и дуг круговых кривых (O).

При проектировании плана трассы выполняется расчет параметров каждого закругления и их увязка, формируется ведомость углов поворота, прямых и кривых. Проектирование продольного профиля

В системе применяются два метода проектирования продольного профиля, которые в дальнейшем условно определены следующим образом:

1. Метод автоматизированного проектирования или оптимизация.

2. Метод конструирования проектной линии по опорным точкам и элементам.

Трасса автодороги обычно представляет собой набор прямых (L), полных несмещенных клотоид (K) и дуг круговых кривых (O).

Метод автоматизированного проектирования предусматривает программный контроль соблюдения требований Пользователя по минимально допустимым радиусам, максимальным уклонам и контрольным отметкам. Если в пределах требований.

Рисунок 9. Трасса автодороги

L - отрезок прямой

K - клотоида

О - дуга окружности

Результатом проектирования является проектная линия профиля, представленная в виде последовательности гладко сопрягаемых криволинейных или прямолинейных элементов.

Рисунок 10. Проектная линия профиля

В этой таблице Пользователь может указать первоначальное значение параметров создаваемого объекта, т.е. имя, тип линии, ее цвет и толщину, номер условного знака, которыми изображается объект, характер отображения пикетов, начальный пикет и т. д. После построения объекта запрос о параметрах будет содержать именно эти текущие параметры, которые можно изменить для данного объекта.

Пользователя теоретически возможно решение, то соблюдение требуемых ограничений по радиусам и уклонам гарантировано.

При использовании метода конструирования проектной линии по опорным точкам и элементам контроль соблюдения требований по минимально допустимым радиусам и максимально допустимым уклонам возлагается на Пользователя.

Рисунок 11. Параметры объекта

Программная реализация обоих методов предусматривает их независимое использование и полную совместимость результатов их работы в последующих расчетах, при уточнениях или повторном проектировании проектной линии продольного профиля. Объемы работ считаются по принципу поперечных сечений в характерных точках.

В каждом таком сечении считаются отдельно площади насыпи, выемки, кювета, растительного грунта и т.д., исходя из фактического очертания существующего и проектного поперечника с учетом виражей.

Рисунок 12. Сечение дороги

Перед расчетом исключают ненужные участки, задают необходимые данные по конструкции дорожной одежды, укреплению обочин и откосов и хотя бы один механизм в машинно-дорожном отряде. После расчета, если необходимо, откорректируйте результаты и введите объемы по съездам, автобусным остановкам, переходно-скоростным полосам, нарезке уступов и др., которые система не рассчитывает. Проектирование дорожной одежды и земляного полотна.

Заполните общие данные по конструктивным слоям и транспортным нагрузкам, выполните анализ прочности дорожной конструкции с расчетом толщины слоев проектируемой дорожной одежды.

Если проектом предусмотрено сохранение существующего твердого покрытия, укажите участки поперечного выравнивания, выполните расчет "коричневых" отметок.

В процессе расчета определите, какую таблицу формировать для проектирования продольного профиля и как будет представлена проектная линия при формировании исходных данных: прямыми, руководящими отметками (для автоматизированного проектирования); прямыми, через опорные точки (для сплайн-интерполяции опорных точек

Приступите к проектированию продольного профиля, используя один из методов или их комбинацию: автоматизированное проектирование, конструирование проектной линии по опорным точкам и элементам.

Оцените продольный профиль, анализируя по таблице результатов проектирования рассчитанные расстояния видимости и просмотрев его на экране.

Перепроектируйте те участки продольного профиля, которые вас не устраивают, при этом не забывайте сохранять варианты проектных решений. Проектирование поперечного профиля. Введите исходные данные для проектирования откосов насыпей, выемок и кюветов запроектируйте продольный водоотвод. Внимательный просмотр проектных поперечных профилей позволяет визуально оценить рациональность принятых проектных решений.

Если необходимо, делают расчет осадки насыпи на слабом основании и устойчивости откосов земляного полотна.

Для дальнейшего автоматизированного моделирования проектной поверхности дороги в ЦММ (цифровую модель местности) выполняют в пункт "Построение ЦММ проектного решения".

Для ручного моделирования поверхности в системе CREDO_TER (CREDO_MIX) сделайте экспорт проектного решения в файлы обменного формата (ООФ). После конвертации в ЦММ этих файлов границы откосов, кюветов, бровок и др. Будут представлены структурными линиями, кромки проезжей части и ось дороги - линейными объектами.

Рассчитайте объемы земляных работ. Перед расчетом исключите ненужные участки, задайте необходимые данные по конструкции дорожной одежды, укреплению обочин и откосов и хотя бы один механизм в машинно-дорожном отряде.

После расчета, если необходимо, откорректируйте результаты и введите объемы по съездам, автобусным остановкам, переходно-скоростным полосам, нарезке уступов и др., которые система не рассчитывает. Вывод результатов проектирования завершая проектирование, приступите к формированию выходных форм и чертежей.

Рисунок 13. Карточка дороги

Создают и вычерчивают индивидуальные дорожные знаки, необходимые для проекта организации движения дороги.

Еще раз о конфигурации: не забудьте установить количество строк на странице для ведомостей и параметры вывода продольного профиля.

Система предлагает таблицы и ведомости просмотреть на экране, записать в файл или вывести на печать.

Для продольного профиля создайте или выберите сетку чертежа. При формировании чертежа определите его масштаб, высоту листа, вывод интерполированных отметок, наличие вычерчиваемых параметров, заполните или выберите вариант штампа.

По окончании формирования чертежа система сообщит имя созданного графического файла в формате, который предполагает заданный вами в конфигурации (клавиша [F4]) порт для вывода на плоттер. При необходимости откорректируйте чертеж продольного профиля.

Распечатка ведомостей и вычерчивание продольного и поперечных профилей - завершающий этап предлагаемой типовой последовательности работы в системе CAD_CREDO.

2.7.3 Карточка дороги

В карточке дороги содержится общая информация: пикет начала и конца, протяженность, название и категория дороги, тип рельефа и, если необходимо, регистрируется рубленность.

Карточка дороги заполняется на этапе обработки линейных изысканий. При экспорте трассы из систем CREDO_TER, CREDO_PRO, CREDO_MIX заполнение происходит автоматически.

По умолчанию заполнены поля "Категория дороги" и "Тип местности", которые используются при оценке проектного решения. Эти параметры выбираются по клавише [Пробел].

После ввода пикетного положения начала и протяженности проектируемого участка дороги пикетное положение конца дороги вычисляется автоматически. Пикеты и плюсы в системе отражают реальное расстояние.

При наличии рубленных пикетов необходимо заполнить "Карточку регистрации рубленности". Перед ее заполнением в "КОНФИГУРАЦИЯ / Прочее" (клавиша [F4]) уточните тип рубленности:


Подобные документы

  • Характеристика района реконструкции автомобильной дороги. Технические нормативы проектирования и виды транспортной развязки: клеверный лист; распределительное кольцо с двумя путепроводами. Сравнение развязок по способу движения и пропускной способности.

    курсовая работа [1,3 M], добавлен 08.05.2012

  • Нормы на проектирование трассы и развитие первичных навыков трассирования по карте и проектирования продольного и поперечного профилей дороги. Транспортная характеристика района строительства. Категория дороги, расчет и обоснование технических нормативов.

    курсовая работа [101,2 K], добавлен 27.01.2014

  • Организация строительства при проектно-изыскательных работах. Климатическая характеристика Тюменской области. Многослойная конструкция автомобильной дороги. Ремонт земляного полотна. Расчет геометрических размеров конструктивных слоев дорожной одежды.

    курсовая работа [162,1 K], добавлен 24.04.2015

  • Природно-климатические условия проектирования автомобильной дороги. Расчет технических норм автомобильной дороги. Проектирование плана трассы. Расчет неправильного пикета. Проектирование продольного профиля автомобильной дороги. Проект отгона виража.

    курсовая работа [1,8 M], добавлен 11.10.2008

  • Транспортно - экономическая характеристика автомобильной дороги Сковородино-Джалинда. Технические нормативы на основные элементы трассы. Проектирование плана дороги. Вычисление направлений и углов поворота трассы. Проектирование продольного профиля.

    курсовая работа [44,9 K], добавлен 31.05.2008

  • Краткая характеристика района строительства. Определение технической категории автомобильной дороги. Обоснование норм и параметров проектирования. Расчет искусственных сооружений. Проектирование продольного профиля. Подсчет объемов земляных работ.

    курсовая работа [943,9 K], добавлен 12.03.2013

  • Краткая характеристика района строительства. Определение технической категории автомобильной дороги. Обоснование норм и параметров проектирования. Расчет искусственных сооружений. Проектирование продольного профиля. Подсчет объемов земляных работ.

    курсовая работа [909,6 K], добавлен 21.05.2013

  • Анализ природных условий района проектирования автомобильной дороги. Характеристика дорожно-строительных материалов. Варианты конструкций дорожной одежды, проект транспортной развязки, гидравлический расчет мостов и труб. Проект и смета строительства.

    дипломная работа [2,1 M], добавлен 14.11.2011

  • Построение эпюры грузонапряженности и установление категории дороги. Проектирование дороги в плане. Подсчет объёмов работ по отсыпке земляного полотна и устройству труб. Определение сметной стоимости строительства дороги и дорожно-транспортных расходов.

    курсовая работа [720,5 K], добавлен 09.03.2016

  • Характеристика района строительства дороги - Вологодская область. Составление общей ведомости объемов дорожно-строительных материалов. Контроль качества строительства конструктивных слоев дорожной одежды. Техника безопасности при выполнении работ.

    курсовая работа [479,4 K], добавлен 09.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.