Экологические проблемы при добыче и переработке медно-молибденовой руды

Общая характеристика месторождения медно-молибденовых руд. Технологии добычи и переработки медно-молибденовых руд и экологические проблемы, возникающие при этой деятельности. Решение экологических проблем путем создания системы оборотного водоснабжения.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 23.05.2012
Размер файла 440,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Химико-металлургический факультет

Кафедра Обогащения полезных ископаемых и инженерной экологии им. Леонова С.Б.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

Экологические проблемы горно-обогатительного производства

Тема

Экологические проблемы

при добыче и переработке медно-молибденовой руды

Выполнил

студент группы ООС 09-1

Конев Е. В.

Нормоконтроль

Домрачева В.А

Иркутск, 2012

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ (КУРСОВУЮ РАБОТУ)

По курсу Экологические проблемы горно-обагатительного производства

Тема проекта Экологические проблемы при добычи и переработке медно-молибденовых руд

Задание 1. Рассмотреть технологии добычи и переработки медно молибденовых руд и экологические проблемы возникающие при этой деятельности.

Исходные данные: Технологические схемы, нормативные документы.

Рекомендуемая литература: Справочник по обогащению руд, журнал «Экология»

Дата выдачи задания “ 20 ” февраля 2012 г.

Дата представления проекта руководителю “ 7” мая 2012 г.

Руководитель курсовой работы__ Домрачева В. А._

Введение

Современное состояние горно-добывающей промышленности характеризуется сильным влиянием на экологическую ситуацию в пределах региона добычи полезного ископаемого. Медь широко применяется в промышленности, в частности в электротехнической. Медь является тяжелым высокотоксичным металлом, а медно-молибденовые руды обогащаются исключительно флотацией. Так, при добыче, место выработки засоряется соединениями меди, не говоря уже про огромное негативное влияние на ландшафт, подземные и наземные воды. Примером может послужить самое токсичное в мире озеро, находящееся в кратере медного карьера Беркли Пит, разработка которого велась с 1953 до 82 года. Но не только добыча, но и переработка влияет на состояние окружающей среды. Использование флотореагентов- токсичных соединений, так же приводит к загрязнению окружающей среды. В настоящий момент, актуальным становится не только замена флотореагентов на менее токсичные, но и замена самой флотации на менее экологически опасные методы- гравитационные методы. Или на флотогравитационные, что не так опасны для окружающей среды, как флотационные.

1. Общая характеристика медно-молибденовых руд

1.1 Характеристика руды

Медно-молибденовые руды - комплексные руды, в состав к-рых входят минералы меди и молибдена.

Медный минерал обычно представлен Халькопиритом CuFeS2, хотя на нек-рых м-ниях известны также Борнит Cu5FeS2, Халькозин Cu2S, Ковеллин CuS, Малахит Cu2(CO3)(OH)2, Азурит Cu3(CO3)2 (OH)2, Куприт Cu2O, ТЕНОРИТ CuO и самородная медь. Молибденовый минерал - молибденит MoS2 c примесью ферримолибдита Fe2(MoO4)3·7H2O. M.-м. p. слагают медно-молибден - порфировые м-ния плутоногенного гидротермального класса. B ряду этих м-ний крайними членами являются медно-порфировые м-ния без молибдена и молибден-порфировые м-ния без меди; осн. масса м-ний относится к комплексным при обычном соотношении Cu:Mo как 10:1. B процессе формирования M.-м. p. молибденит отлагается обычно несколько ранее халькопирита и др. медных минералов, c образованием перекрывающих друг друга зон c повышенным содержанием меди или молибдена. Ho контуры таких зон не разобщены настолько, чтобы их было возможно отрабатывать независимо друг от друга.

МЕДНЫЕ РУДЫ -- природные минеральные образования, содержащие медь в таких соединениях и концентрациях, при которых их промышленное использование технически возможно и экономически целесообразно. В первичных рудах большинства промышленных месторождений медь присутствует в сульфидной форме. В зоне окисления она представлена карбонатами, силикатами, сульфатами, оксидами и другими соединениями. Известно свыше 200 медьсодержащих минералов, промышленного скопления образующих около 20 главных минералов меди в сульфидных рудах , на долю которых приходится свыше 90% мировых запасов и добычи меди: халькопирит (34,5% Cu), борнит (52-65% Cu) и халькозин (79,8% Cu). В медно-никелевых месторождениях в существенных количествах встречается кубанит (22-45% Cu), в месторождениях самородной меди -- медь самородная (98-100% Cu). Главные минералы меди в окисленных рудах: малахит (57,4% Cu), азурит (55,5% Cu), хризоколла (36,1% Cu), брошантит (56,2% Cu), куприт (88,8% Cu).

1.2 Месторождения медно-молибденовых руд

По существующей классификации промышленное значение имеют следующие месторождения: жильные, скарновые, а также штокверковые. К жильным месторождениям относятся кварц-молибденитовая, кварц- вольфрамит-молибденитовая и кварц-молибденит-серицитовая формации. Месторождения последней формации существуют в России, Норвегии, Канаде, США. Кроме молибденита и кварца, в этих рудах содержатся вольфрамит (гюбнерит, ферберит), пирит, халькопирит и др. Скарновые месторождения в основном комплексные, они могут содержать молибден, вольфрам, олово, медь, цинк, висмут и др. В СНГ к ним относятся Тырныаузское, Чорух-Дайронское, Майхуринское и др. Вольфрам в этих рудах присутствует в виде шеелита.

Штокверковые месторождения делятся на собственно молибденовые, медно-молибденовые и вольфрамо-молибденовые. В СНГ это месторождения медно-молибденовых руд, при обогащении которых обычно получают медные и молибденовые концентраты. Эти руды содержат сульфиды (пирит, молибденит, халькопирит, борнит и др. и пронизаны тонкими прожилками кварца. К медно-молибденовым месторождениям СНГ относятся Коунрадское, Алмалыкское, Бощекульское, Каджаранское, Агаракское, Сорское и др. Из зарубежных месторождений можно отметить Медет (Болгария), Бингем (США), Чукикамата (Чили), Бренда, Лорнекс (Канада) и др. В порфировых медно- молибденовых рудах молибден ассоциирует с халькопиритом и пиритом. К собственно молибденовым месторождениям относятся Богадинское, Мачкатица, а также крупнейшее в мире месторождение Клаймакс, в котором сосредоточено более половины запасов молибдена капиталистических стран. Молибденовые и медно-молибденовые руды делятся по содержанию в них окисленных форм молибдена на сульфидные (менее 10-12 %), смешанные (10-20 %) и окисленные (более 20 %). В СНГ добыча молибденовых концентратов осуществляется из шток- верковых (60 %), скарновых (20 %) и жильных (20 %) месторождений, хотя основные запасы сосредоточены в скарновых месторождениях. В капиталистических странах основная добыча осуществляется из руд штокверковых месторождений (около 70 %) и в меньшей степени - из жильных и скарновых.

Промышленное содержание молибдена в перерабатываемых рудах колеблется в широких пределах.

В чисто молибденовых рудах обычно содержится 0,1-0,5 % Мо и более, а в медно-молибденовых, вольфрамо-молибденовых и других, включающих два и более ценных компонентов, - 0,01 % и менее. В то же время в процессе обогащения необходимо получать концентраты с высоким содержанием молибдена (45-50 % и более). Месторождения меди разделяются на 9 геолого- промышленных типов, входящих в 6 генетических групп.

Для каждого из типов месторождений характерны свои промышленные (по набору основных и важнейших попутных компонентов) и минеральные типы руд, отличающиеся по содержанию меди и технологическим свойствам. В CCCP главное значение в запасах и добыче меди имеют 4 геолого - промышленных типа месторождений; медно-никелевый, медистых песчаников и сланцев, медно-колчеданный и медно- порфировый; в развитых капиталистических и развивающихся странах -- только два: медно- порфировый и медистых песчаников и сланцев; значение медно-никелевых и медно- колчеданных месторождений ограниченное. Практическое значение кварцево-сульфидных (жильных) и скарновых месторождений в целом подчинённое, остальных типов незначительное. В перспективе в качестве самостоятельных геолого-промышленных типов могут оформиться месторождения медьсодержащих морских железомарганцевых конкреций и илов, а также ураново-золотомедные месторождения типа Олимпик-Дам в Австралии. Среднее содержания меди в различных типах руд основных геолого-промышленных типов месторождений меди колеблются в пределах 0,3-5%. Содержания в них основных попутных компонентов варьируют ещё в большей степени, составляя в среднем для платиноидов, Au, Re 10 -- 10 %; для Ag, Se, Te, In, Tl, Ga, Ge 10 -- 10 %; для Mo, Bi, Cd, Со 10 -- 10 %; для Zn, Pb, Ni, R, Ti, V 10 -- n%; для S и Fe (магнетитового) n -- n*10%. В качестве вредных примесей в медных рудах часто встречаются мышьяк и сурьма (10 -- 10 %), иногда ртуть (10 %). Основной способ добычи медных руд -- открытый, на долю которого приходится около 65% добычи металла в развитых капиталистических и развивающихся странах. В частности, свыше 80% Cu добывается открытым способом в США, Мексике, Перу, Заире, на Филиппинах, около 60% -- в Замбии, свыше 50% -- в Чили и Швеции, более 40% -- в Канаде и ЮАР, 100% -- в Папуа -- Новой Гвинее. Годовая мощность наиболее крупных меднорудных предприятий превышает 30 млн. т по руде и 200 тысяч т по металлу (Чукикамата и Эль-Теньенте в Чили, Бингем в США, Пангуна в Папуа -- Новой Гвинее). Около 85% медьсодержащих руд подвергаются обогащению методом флотации. Только небольшая часть богатых медно- никелевых и сплошных медно-колчеданных руд пригодна для непосредственной плавки. Медно-никелевые руды обогащаются по схемам селективной и коллективной флотации с получением медного и медно-никелевого концентратов. Железомедные руды в габброидах, карбонатитовые и скарновые, перерабатываются по схемам селективной флотации и магнитной сепарации с получением медного и железного (магнетитового) концентратов. Молибденово-медные руды медно-порфировых месторождений обогащаются способом коллективной флотации с последующим разделением полученного продукта на медный и молибденовый концентраты. Собственно медные руды месторождений медистых песчаников и сланцев, жильных, самородной меди перерабатываются по схемам селективной флотации с получением одного медного концентрата, причём при обогащении руд с самородной медью производится дополнительное извлечение последней способом гравитации на концентрационных столах. Медные, цинково-медные и медно- цинковые колчеданные руды перерабатываются по схемам прямой селективной либо коллективной и коллективно-селективной флотации с выпуском медного, цинкового и серного (пиритового) концентратов. Окисленные и смешанные руды при благоприятных условиях также перерабатываются с помощью флотации, но чаще способом химического и бактериального выщелачивания в чанах и кучного. Извлечение меди из руд различных типов колеблется в пределах 50-97%, содержание её в концентратах -- от 15 до 50% в зависимости от минерального состава руд, а также, их структурных и текстурных особенностей. Наиболее высокие содержания меди (до 50%) характерны для концентратов, получаемых из борнитовых и халькозиновых руд, минимальные -- из халькопиритовых. Основные месторождения меди важнейших геолого-промышленных типов имеют геологический возраст от раннего докембрия до кайнозоя включительно и располагаются в пределах как протяжённых глобальных металлогенических поясов, так и обособленных рудных районов (карта). Максимумы проявления медно-никелевого оруденения приходятся на поздний докембрий и мезозой. Докембрийский возраст имеют месторождения Кольского полуострова (CCCP), Ботсваны в Южной Африке, Канадского щита в Северной Америке, Западной Австралии; мезозойский -- Норильского района (CCCP) и некоторых африканских стран (ЮАР). Основные месторождения медно- порфирового типа располагаются в пределах четырёх глобальных металлогенических поясов: Западно-Тихоокеанского, объединяющего месторождения складчатых сооружений Кордильер и Анд от Аляски до южных районов Чили, возраст их от юрско-раннемелового на севере до плиоценового на юге (см. Меденосный пояс Южной Америки); восточно- Тихоокеанского, включающего миоцен- плиоценовые месторождения юго-восточной Азии и Океании (Филиппины, Папуа -- Новая Гвинея, Малайзия и др.); Средиземноморского сектора Тетиса -- ранне-миоценовые месторождения Балканской (Югославия, Болгария), Малокавказской (CCCP) и Ирано- Пакистанской провинций; Палеотетиса -- средне-верхнекарбоновые месторождения Джунгаро-Балхашской и Кураминской провинций (CCCP) и пермо-триасовые Орхоно- Селенгинской провинции (Монголия). Возраст основной части месторождений медно- колчеданного типа -- средне- верхнепалеозойский (Урал, Северный Кавказ, Рудный Алтай в CCCP, месторождения Испании, Португалии); докембрийский возраст имеют месторождения Канады, Австралии, Индии, США; нижнепалеозойский -- месторождения Салаира и Чингиза в CCCP, месторождения скандинавских стран; мезозойско- кайнозойский -- месторождения Закавказья и Дагестана в CCCP, месторождения Югославии, Болгарии, Турции, Японии, Перу и др. По времени проявления оруденения в медистых песчаниках и сланцах выделяется два максимума -- докембрийский и верхнепалеозойский. Нижнепротерозойский возраст имеет Удоканское месторождение (CCCP), верхнепротерозойский -- месторождения Меденосного пояса Центральной Африки и месторождения США, вендский -- месторождения Афганистана, верхнепалеозойский -- Джезказганское месторождение в CCCP, месторождения Польши и ГДР. Запасы меди в развитых капиталистических и развивающихся странах на начало 1984 составляли 847,6 млн. т, в том числе доказанные 447,4 млн. т. Распределение запасов по континентам и странам крайне неравномерное. В 1984 на Южную и Центральную Америку (главным образом на Чили, Перу, Мексику и Панаму) приходилось 363,9 млн. т (43,0% общих запасов), на Северную Америку (США и Канаду) -- 175,2 млн. т (20,7%), Африку (в основном Замбию, Заир, ЮАР) -- 162,7 млн. т (19,1%), Азию (Филиппины, Иран и др.) -- 68,1 млн. т (8,1%), Австралию и Океанию -- 60,5 млн. т (7,1%), Европу -- 8,3 млн. т (2,0%). Сырьевая база меди в Японии незначительная (общие запасы меди в 1984 -- 1,8 млн. т), а в таких развитых Западноевропейских странах -- крупных потребителях меди, как Бельгия, Великобритания, Франция и ФРГ, практически отсутствует.

2. Технология добычи и переработки медно-молибденовых руд

2.1 Технологии добычи

Штольни, расположенные на любом уровне, называют по их абсолютной отметке; так, 570-й горизонт находится на 570 м выше уровня моря.

Главных опасностей, которые подстерегают шахтеров-угольщиков, здесь нет. Кровля горных выработок прочная, обвалы редки. Магматические породы не газоносны, взрывы метана исключены. Но все же в выработках ставят деревянные крепи, потому что породы трещиноваты, а применение взрывчатки при горных работах увеличивает трещины, расшатывает блоки горных пород.

В конце штольни (в забое) пробуривают скважины небольшого диаметра -- шпуры. Шпур может быть направлен вниз, в сторону (горизонтальный шпур), вверх (восстающий). В каждый шпур закладывают взрывчатку и, удалив всех людей, производят взрыв. О наиболее мощных взрывах предупреждают даже население прилегающих поселков.

А после взрыва выбирают из забоя руду. При этом бывает, что от основной массы породы отваливаются куски, слишком большие, чтобы можно было их транспортировать. В таком куске (негабаритном) делают шпур и разбивают глыбу несильным взрывом.

На извлечении руды из забоя работают горные комбайны.

Серьезная опасность для горняков -- пыль. Если не применять защитных средств, она оседает в легких, вызывая тяжелую болезнь -- силикоз. Поэтому обязательному применению респираторов уделяют на рудниках и на обогатительных фабриках большое внимание, а в городской системе здравоохранения работает противосиликозная служба.

Открытую добычу ведут в карьерах. Если руда залегает с поверхности, прямо с поверхности можно вести и добычу (горняки всегда говорят добыча). Если же рудное тело перекрыто другими породами -- вскрышей, нужно эти породы сначала удалить, то есть произвести вскрышные работы. Карьер -- это или ступень на склоне горы, или большая, глубиной иногда в сотни метров, яма со склонами в виде огромных ступеней, по которым могут ездить (и ездят в большом количестве) самосвалы.

Иногда карьер, сделанный в виде понижения на плоской вершине горы, расширяясь, добирается до ее склона и прорезает его, открываясь в соседнюю долину.

Отделяют руду от дна и стенок карьера тоже взрывами, но обычно гораздо более мощными, чем при подземной добыче.

Негабаритные глыбы, как и при подземной разработке, дробят маломощными взрывами.

На поездах руду везут на обогатительную фабрику. Разгрузка происходит просто: вагоны самоопрокидывающиеся. Руду дополнительно дробят и размалывают в порошок. Снова пыль; на этот раз она в большом количестве выбрасывается через трубы фабрики с горячим воздухом.

2.2 Технологии переработки

На рисунке 1 представлена технологическая схема измельчения апатитовой руды перед обогащением. По схеме измельчение проводят в три ступени: крупное, среднее и тонкое.

Руду из карьера вагонами 3 подают в бункер 2 с колосниковой решеткой, которая преграждает доступ кускам, размер которых превышает ширину пасти дробилки. Из бункера руду подают питателем 1 на транспортер 4, а последним - на грохот 5. Здесь материал разделяется на две фракции. Нижняя (мелкая) фракция проваливается через отверстия грохота и по желобу 15 попадает на транспортер 7. Верхняя (крупная) фракция поступает в конусную дробилку 6, измельчается и тоже поступает на транспортер 7. На средней ступени измельчения руда попадает на грохот 8, где делится также на две фракции. Нижняя фракция по желобу 16 направляется на транспортер 10, а верхняя (крупная) - в конусную дробилку среднего дробления 9. Из дробилки материал попадает на транспортер 10 и далее в бункер 11, т. е. на ступень тонкого измельчения. Из бункера питателем 12 руду подают в барабанную мельницу 13, заполненную стальными шарами и работающую в замкнутом цикле со спиральным классификатором 14. В мельницу по трубопроводу 18 поступает вода, объем которой зависит от режима измельчения и характера дальнейшей обработки получаемой в мельнице суспензии. Обычно соотношение объема жидкости и массы твердого вещества составляет 1:2 - 1:3. Суспензию из мельницы направляют по желобу 19 в классификатор 14, где крупные частицы оседают на дно корыта й шнеком по желобу 17 подаются обратно в мельницу, а мелкие, находясь во взвешенном состоянии, вместе с жидкостью переливаются через порог классификатора и по желобу 20 поступают на флотацию и дальнейшую обработку.

Рисунок 1. Технологическая схема измельчения медно-молибденовой руды: а - крупное; б - среднее; в - мелкое; 1, 12 - питатели; 2 - бункер с колосниками; 3 - вагон с рудой; 4, 7 и 10 - ленточные транспортеры; 5, 8 - грохоты; 6 - конусная дробилка крупного дробления; 9 - дробилка среднего дробления; 11 - бункер; 13 - барабанная мельница; 14 - спиральный классификатор; 15-17, 19, 20 - желоба; 18 - трубопровод для воды.

Из схемы видно, что на любой ступени измельчения перед дробилкой из потока отделяют мелочь, что уменьшает переизмельчение.

Здесь отделяются крупные частицы твердой фазы и по трубе 11 возвращаются в мельницу на домол, а мелкие транспортируются' газовым потоком по трубе 13 в циклон 6, откуда шнеком 7 выносятся в приемник продукта 8. Газ, освобожденный в циклоне от основной массы твердых частиц, отсасывается вентилятором и частично возвращается в цикл. Основную часть газа выпускают в атмосферу через рукавный фильтр 5, который устанавливают на выхлопной линии, чтобы улавливать фосфоритную муку и не отравлять окружающую среду.

2.3 Методы обогащения медно-молибденовых руд

Технология переработки сульфидных медных и медно-пиритных руд отличается относительной простотой и определяется типом руды (вкрапленная или сплошная), составом медных минералов и минералов пустой породы, крупностью их вкрапленности, флотационной активностью пирита, способностью минералов к ошламованию и т.д. Этими факторами определяются прежде всего стадиальность и тип флотационной схемы - коллективной или прямой селективной флотации.

Для легкообогатимых руд с равномерной вкрапленностью медных минералов на фабриках небольшой производительности применяют обычно одностадиальные схемы, которые включают операции измельчения и классификации, основную флотацию, контрольную и одну-три перечистные . Для медных руд с неравномерной и сложной вкрапленностью применяют двухстадиальные схемы нескольких видов. Если в руде присутствуют вторичные минералы меди, особенно ковеллин, способный к переизмельчению и ошламованию, то после I стадии измельчения до крупности 45-60 % класса -0,074 мм и основной флотации получается готовый медный концентрат, а богатые хвосты контрольной медной флотации доизмельчаются до крупности 80-85 % класса -0,074 мм и поступают на стадию медной флотации, где получается медный концентрат, который после перечистных операций присоединяется к готовому медному концентрату.

На фабриках большой производительности используются двухстадиальные схемы, по которым после I стадии измельчения до крупности 45-60 % класса -0,074 мм выделяются грубый медный концентрат и пиритсодержащие хвосты. Грубый медный концентрат доизмельчается до 85-95 % класса -0,074 мм и поступает на перечистные операции.

При получении в I стадии обогащения богатого медного концентрата и отвальных хвостов сростки медных минералов с пиритом и минералами пустой породы выделяются в промпродукт. Промпродукт доизмельчают и флотируют с получением бедного медного концентрата и отвальных хвостов или направляют в основную медную флотацию. В первом случае, когда промпродукт перерабатывается в отдельном цикле - промпродуктовом, операция основной флотации проводится как бы в открытом цикле. При переработке руд с высоким содержанием первичных шламов и растворимых солей флотацию целесообразно осуществлять в двух циклах - песковом и шламовом. При раздельной флотации создаются наиболее благоприятные условия для флотации крупных и мелких частиц - шламов, которые обычно повышают общий расход реагентов, подавляют флотацию крупных частиц, налипая на них, создают обильную и прочную пену. В зависимости от типа медной руды и характера вкрапленности медных минералов и пирита между собой и минералами пустой породы различают две основные разновидности схем - коллективно-селективную и прямую селективную. Вкрапленные медные руды (медно-порфировые, медистые песчаники и жильные руды), отличающиеся невысоким содержанием пиритной серы и меди (0,4-2,0 %), в зависимости от содержания пирита могут перерабатываться с получением только медного концентрата или медного и пиритного концентратов. В первом случае применяется коллективная флотация, а во втором - коллективно-селективная или прямая селективная. Медно-порфировые руды на территории бывшего СССР перерабатываются на Алмалыкской и Балхашской фабриках (Узбекистан, Казахстан). Сплошные (колчеданные) сульфидные руды перерабатывают по схеме прямой селективной флотации. Технологический режим флотации сульфидов меди и железа в этом случае тот же, что и коллективно-селективной схемы. При этом в основной и перечистных операциях медной флотации щелочность пульпы поддерживается на уровне 500-1000 г/м свободной СаО. Если в руде содержание пустой породы не превышает 10-15 %, то хвосты контрольной медной флотации являются готовым пиритным концентратом, содержание серы в котором может быть повышено при классификации в гидроциклоне. Из пиритсодержащих хвостов медной флотации может быть выделен (при рН около 6-7) готовый пиритный концентрат. Технологический режим селективной флотации сплошных руд осложняется наличием вторичных сульфидов меди, например «сажистого» ковеллина, легко шламующегося при измельчении. В этом случае применяются стадиальные схемы флотации: в I стадии при грубом измельчении извлекаются вторичные сульфиды меди, а во II стадии - халькопирит. Следует также учитывать применение цианида для подавления пирита, который будет влиять на флотируемость вторичных сульфидов меди в широком диапазоне рН (7-11).

2.4 Получение концентрата

Осн. кол-во меди (85-88%) получают по пирометаллургич. схемам, к-рые, как правило, включают след. последовательные стадии: обжиг концентрата, плавку, конвертирование, рафинирование. Обжиг проводят при переработке высокосернистых и полиметаллич. концентратов. При обжиге удаляют избыточное кол-во S в форме газов, содержащих 5-8% SO2 и используемых для произ-ва H2SO4, и переводят часть примесей (Fe, Zn, As, Pb и др.) в формы, переходящие при послед. плавке в шлак. Обжиг проводят в печах "кипящего слоя" с применением дутья, обогащенного О2 (24-26% О2), без затрат углеродистого топлива. Продукт обжига - огарок -плавят в печах отражательного типа, реже - электропечах. Богатые медью руды плавили в шахтных печах, в настоящее время этот способ имеет подчиненное значение. Перечисл. способы плавки связаны с расходом (10-18% от массы шихты) углеродистого топлива (прир. газ, мазут, кокс) или электроэнергии (350-450 кВт.ч на 1 т шихты).

В процессе плавки образуются 2 жидкие фазы-сплав сульфидов меди, Fe, цветных металлов (штейн; 22-45% Сu) и сплав оксидов металлов и силикатов (шлак; 0,4-0,7% Сu), к-рые не смешиваются друг с другом. Шлаки складируют или используют при произ-ве строит. материалов. Осваиваются автогенные процессы плавки, использующие тепло экзотермич. р-ций окисления сульфидов; концентраты обрабатывают в атмосфере О2, воздуха, обогащенного О2, или подогретого воздуха. Высокая производительность, получение богатых медью штейнов (до 75% Сu) и концентрированных по SO2 газов, миним. расход углеродистого топлива-достоинства, определяющие автогенные процессы как перспективное направление в развитии пирометаллургии меди. Важнейшие способы автогенной плавки-кислородно-факельная, взвешенная, отражательная, электроплавка, плавка в жидкой ванне, процессы "Норанда", "Мицубиси".

Расплав штейна (в осн. Cu2S * FeS) направляют на кон-вертирование - продувку сжатым воздухом с целью количеств. окисления FeS и его ошлакования в присут. кварцевого флюса (первая стадия процесса), окисления Cu2S и макс. удаления S и большинства примесей (вторая стадия): При конвертировании используют тепло экзотермических р-ций окисления, конечный продукт-черновая медь (98,5-99,3% Сu).Черновую медь рафинируют огневым, а затем электрохим. способом. Огневое рафинирование основано на большем, чем у меди, сродстве большинства металлов-примесей к кислороду, что позволяет при продувке расплава воздухом окислить и ошлаковать количественно Fe, S, Zn, Pb и, частично, Ni, As, Sb, Bi. Для удаления кислорода расплав меди обрабатывают восстановителем (прир. конверсир. газ, сырая древесина). Готовый металл (>=99,5% Сu) разливают в формы, удобные для проведения электролиза. Полученные отливки служат анодами. Электролитич. рафинирование проводят в сернокислых р-рах при наложении постоянного тока; в процессе электролиза осуществляется непрерывная циркуляция подогреваемого (57-67°С) р-ра, медь осаждают на катодных основах, получаемых также электролизом в спец. матричных ваннах при условиях, обеспечивающих осаждение чистого металла. Для получения ровного катодного осадка требуемой текстуры в электролит вводят ПАВ. Катодную медь (>=99,94% Сu) переплавляют и разливают в формы, удобные для послед. обработки прокаткой, волочением. При растворении анодов ряд примесей (As, Fe, Ni, Sb) накапливается в электролите, поэтому часть его выводят из циркуляц. цикла (заменяя равным объемом р-ра H2SO4) и направляют на переработку для получения техн. сортов медного и никелевого купоросов. Нерастворимые включения анода образуют дисперсный продукт - шлам, в к-ром концентрируются благородные и редкие металлы. Этот продукт специально перерабатывают в шламовом цикле. Анодные остатки (выход их 15-18% от массы анода) возвращают на переплавку в цикл огневого рафинирования. При пирометаллургич. переработке медного концентрата извлекают до 96-98% меди и благородных металлов, однако степень извлечения сопутствующих элементов (S, Zn, Ni, Pb) гораздо ниже, a Fe полностью теряется со шлаком. Многие проблемы пирометаллургич. произ-ва меди (экологическая из-за повыш. тепло-, пыле- и газовыделения, взрывоопасность в случае контакта расплава штейна с водой и др.) устраняются при использовании гидрометаллургич. технологии. Она включает: селективное выщелачивание меди из сырья, чаще всего р-ром H2SO4 или NH3; очистку р-ра от примесей и извлечение сопутствующих ценных элементов (Zn, Co, Ni, Cd и др.); выделение меди. При переработке бедных р-ров (0,5-12,0 г/л меди) используют цементацию на железном скрапе и экстракцию с послед. электрохим. осаждением меди. Из богатых р-ров (30-40 г/л меди) медь извлекают чаще электролизом или автоклавным осаждением водородом (127-197 °С, давление Н2 1,5-2,5 МПа). В последнем случае медь получают в форме порошка (>=99,6% меди). Гидрометаллургич. схемы эффективны при извлечении меди из бедных руд методами подземного, кучного, чанового выщелачивания, в т. ч. с использованием биохим. окисления сульфидов; остатки от выщелачивания смешанных руд обогащают флотацией. Рациональна переработка полиметаллич. концентратов, вторичного сырья, особенно при небольшом объеме произ-ва. В этом случае весьма перспективно автоклавное выщелачивание при повыш. т-рах (137-197 °С) и давлении кислородсодержащего газа-окислителя (давление О2 0,2-1,0 МПа), обеспечивающее значит. интенсификацию процесса, получение более чистых р-ров и элементной S при окислении сульфидов. Гидрометаллургич. схемы позволяют более комплексно использовать сырье, проще обеспечить экологич. и пром. санитарию. Внедрение их сдерживается из-за недостаточной интенсивности, повыш. эксплуатац. затрат и др.

Рисунок 2. Технологическая схема обогащения медно-молибденовой руды на Алмалыкском ГОКе.

2.4 Технология обогащения на Алмалыкской медной фабрике

При коллективной медно-молибденовой флотации руда измельчается в шаровых мельницах, работающих в замкнутом цикле с классификаторами и гадроциклонами, до крупности 57 % класса -0,074 мм. Перед классификаторами для улавливания свободного золота установлены отсадочные машины ОП-12, концентрат которых поступает на золотодоводочную секцию. В мельницы этого цикла подается веретенное масло (6-8 г/т) в качестве собирателя молибденита.

В операции межцикловой флотации при рН 8-9, создаваемом известью, удается выделить легкошламующиеся вторичные сульфиды меди. В первые камеры флотационных машин подаются собиратель - смесь бутилового и изопропилового ксантогенатов (4,5 г/т) и сернистый натрий (21 г/т) для сульфидизации поверхности окисленных минералов меди.

Хвосты межцикловой флотации доизмельчаются до крупности 60-62 % класса -0,074 мм и направляются на основную коллективную флотацию. Туда же подается сернистый натрий (25 г/т) и собиратель (10 и 2,5 г/т). На одной из секций фабрики хвосты межцикловой флотации классифицируются на пески и шламы, которые флотируются в самостоятельных циклах при одном и том же реагентном режиме - сернистый натрий (12 г/т) и собиратель (7,5 г/т). В песковую флотацию иногда подается пенообразователь.

После контрольной флотации, куда подается сернистый натрий (8 г/т) и собиратель (1,5 г/т), выделяются отвальные хвосты, а концентраты объединяются и направляются на перечистки. Особенностью этой части технологической схемы является наличие промпродуктовой флотации, в процессе которой перерабатываются после доизмельчения до 90 % класса -0,074 мм хвосты I перечистной и концентрат контрольной песковой флотации. Хвосты промпродуктовой флотации являются отвальными, а концентрат направляется на перечистку.

После II перечистной флотации, где поддерживается высокая щелочность (500-800 г/м свободной СаО) для подавления пирита, получается коллективный медно-молибденовый концентрат, содержащий до 18 % Cu и до 0,16 % Мо, при извлечении меди 83-85 % и молибдена 70-75 %. Высокая щелочность в цикле коллективной флотации поддерживается также для стабилизации ионного состава жидкой фазы пульпы, так как в оборотной воде, применяемой на фабрике, содержится много ионов железа, меди, кальция, магния, натрия и хлора. Для медных руд со средним содержанием пирита применяют как коллективно-селективные, так и прямые селективные схемы. При обогащении по коллективно-селективным схемам отделение медных минералов и пирита от минералов пустой породы происходит при грубом измельчении (до 45-50 % класса -0,074 мм), когда возможно получение хвостов с отвальным содержанием меди. Тогда по схеме коллективно-селективной флотации после измельчения до вышеуказанной крупности проводится коллективная флотация сульфидов меди и железа при рН не выше 7,5 (концентрация свободной СаО не превышает 20-50 г/м). Получаемый коллективный медно- пиритный концентрат после доизмельчения до 80-95 % класса -0,074 мм перемешивается с известью при рН 12,0-12,5 (400-500 г/м3 свободной СаО) и цианидом для подавления пирита и направляется на медную флотацию. Хвосты контрольной медной флотации вкрапленных руд, как правило, содержат не более 30-35 % S и поэтому направляются на пиритную флотацию, которая проводится после удаления избыточней щелочности до рН 5-7.

В качестве собирателей сульфидных медных минералов применяются ксантогенаты (средний расход обычно 10-30 г/т) и дитиофосфаты (10 г/т). Широко используется сочетание реагентов-собирателей. Например, при флотации медных руд за рубежом применяется реагент Z-200 (изопропилэтил- тионокарбамат), который является наиболее селективным по отношению к пириту, в сочетании с изопропиловым или амиловым ксантогенатом. Часто используется сочетание сульфгидрильных собирателей с аполярными (машинное масло, керосин и т.п.). В СНГ наибольшее распространение получил бутиловый ксантогенат, который применяется на всех медных фабриках. Общая доля ксантогенатов, используемых на фабриках США, составляет ~60 %, дитиофосфатов - около 40 %. Подавители минералов пустой породы при флотации медных вкрапленных руд обычно не применяются. Но если в пульпе повышенное содержание шламов, то в основную медную флотацию и в перечистки медного концентрата добавляют жидкое стекло (до 0,4 г/т). Если же в руде присутствуют окисленные медные минералы, то в измельчение и в основную медную флотацию подается сернистый натрий (200-300 г/т).

По схеме прямой селективной флотации руду перед медной флотацией измельчают сразу до 80-85 % класса -0,074 мм в целях максимального отделения медных минералов от пирита. Основная медная флотация осуществляется при рН 11-12 (концентрация свободной СаО 400-800 г/м пульпы) для подавления пирита. Для этой же цели можно также дополнительно подавать цианид и цинковый купорос. Медный концентрат для повышения качества перед перечистными операциями доизмельчается до 90-95 % класса -0,074 мм. Из хвостов медной флотации извлекается пиритный концентрат обычным методом. Если же в руде содержится магнетит, то он извлекается из хвостов медной или пиритной флотации магнитной сепарацией при напряженности магнитного поля 65-80 кА/м. Селективное разделение сульфидов меди и пирита может быть улучшено путем введения операции перемешивания пульпы перед флотацией, что способствует подавлению пирита и особенно пирротина благодаря образованию на них поверхностных устойчивых пленок гидроксида железа. Повышение качества медного концентрата при обогащении колчеданных руд достигается применением тонкого доизмельчения перед очистными операциями.

2.5 Применение

Медь в промышленности. Применение меди. Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности. В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум- аппараты, трубопроводы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры. Медь служит анодом при электролитическом рафинировании. Чистая медь -- тягучий вязкий металл светло-розового цвета, легко покатываемый в тонкие листы. Она очень хорошо проводит тепло и электрический ток, уступая в этом отношении только серебру. В сухом воздухе медь почти не изменяется, так как образующаяся на её поверхности тончайшая плёнка оксидов придает меди более тёмный цвет и также служит хорошей защитой от дальнейшего окисления. Но в присутствии влаги и диоксида углерода поверхность меди покрывается зеленоватым налётом гидpоксокаpбоната меди - (CuOH)2CO3. Медь широко используется в промышленности из-за : высокой теплопроводимости, высокой электропроводимости, ковкости, хороших литейных качеств, большого сопротивления на разрыв, химической стойкости. Около 40% меди идёт на изготовление различных электрических проводов и кабелей. Одна из важнейших отраслей применения меди - электротехническая промшленность. Из меди изготавливают электрические провода. Для этой цели металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02% алюминия снизит ее электрическую проводимость почти на 10%. Еще более резко возрастает. сопротивление металла в присутствии неметаллических примесей. Для получения чистой меди, которую можно использовать в электротехнике, проводят ее электрорафинирование. Этот метод основан на проведении электролиза водного раствора соли меди с растворимым медным анодную или черновую, медь, которая служит одним из электродов, погружают ванну, заполненную водным раствором сульфата меди. В ванну погружают еще один электрод. К электродам подключают источник постоянного тока таким образом, чтобы техническая медь стала анодом (положительный полюс источника тока), электрод - катодом. На аноде идет реакция окисления металла: анод (+) Сu (техн.)-2e=Сu2+ + примеси Ионы меди переходят в раствор и перемещаются к катоду (отрицательно заряженному электроду). Нерастворимые примеси собираются вблизи анода, некоторые примеси могут переходить в раствор. На катоде протекает процесс восстановления ионов меди: катод (-) Сu2 + + 2е=Сu Условия электролиза таковы, что примеси, находящиеся в растворе, не восстанавливаются. Электрорафинированием получают Н электролитическую медь чистотой 99,999%, что вполне достаточно для нужд электротехники.Очень важная область применения меди-производство медных сплавов. Со многими металлами медь образует так называемые твердые растворы, которые похожи на обычные растворы тем, что в них атомы одного компонента (металла) равномерно распределены среди атомов другого. Большинство сплавов меди-это твердые растворы. Сплав меди, известный с древнейших времен,- бронза содержит 4-30% олова (обычно 8-10%). Широкое применение в машиностроительной промышленности и электротехнике нашли различные сплавы меди с другими веществами. Наиболее важные из них являются латуни (сплав меди с цинком), медноникеливые сплавы и бронзы. Все медные сплавы обладают высокой стойкостью против атмосферной коррозии. В химическом отношении медь -- малоактивный металл. Однако с галогенами она реагирует уже при комнатной температуре. Например, с влажным хлором она образует хлорид - CuCl2. При нагревании медь взаимодействует и с серой, образуя сульфид - Cu2S. Находясь в ряду напряжения после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислоты на медь не действуют. В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум- аппараты, трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры. Высокая вязкость и пластичность меди позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий. Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же , как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается, не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам. Медь и ее сплавы применяются при строительстве линий электропередач и линий связи, в электромашиностроении и приборостроении, в холодильной технике (производство теплообменников охлаждающих устройств) и химическом машиностроении (изготовление вакуум- аппаратов, змеевиков). Около 50% всей меди расходует электропромышленность. На основе меди создано большое число сплавов с такими металлами, как Zn, Sn, Al, Be, Ni, Mn, Pb, Ti, Ag, Au и др., и реже с неметаллами Р, S, О и др. Область применения этих сплавов очень обширна. Многие из них обладают высокими антифрикционными свойствами. Сплавы применяют в литом и кованом состоянии, а также в виде изделий из порошка. Широко применяют сплавы типа оловянных (4-- 33 % Sn), свинцовых (~ 30 % Pb), алюминиевых (5-11 % Al), кремниевых (4-5 % Si) и сурьмяных бронз. Бронзы применяют для изготовления подшипников, теплообменников и других изделий в виде листа, прутков и труб в химической, бумажной и пищевой промышленности. Сплавы меди с хромом и порошковый сплав с вольфрамом идут на изготовление электродов и электроконтактов. В химической промышленности и машиностроении также широко применяют латунь -- сплав меди с цинком (до 50 % Zn), обычно с добавками небольших количеств других элементов (Al, Si, Ni, Mn). Сплавы меди с фосфором (6-8 %) используют в качестве припоев.

Медь -- основной материал для проводов; свыше 50 % добываемой Меди применяют в электротехнической промышленности. Все примеси понижают электропроводность Меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9 % Cu . Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из Меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30 -- 40 % Меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50 % Zn ) и различные виды бронз; оловянистые , алюминиевые, свинцовистые, бериллиевые. Кроме нужд тяжёлой промышленности, связи, транспорта, некоторое количество Меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шёлка. Медь как художественный материал используется с медного века (украшения, скульптура, утварь, посуда). Кованые и литые изделия из Меди и сплавов украшаются чеканкой, гравировкой и тиснением. Лёгкость обработки Меди (обусловленная её мягкостью) позволяет мастерам добиваться разнообразия фактур, тщательности проработки деталей, тонкой моделировки формы. Изделия из Меди отличаются красотой золотистых или красноватых тонов, а также свойством обретать блеск при шлифовке. Медь нередко золотят, патинируют, тонируют, украшают эмалью. С 15 века Медь применяется также для изготовления печатных форм. Технически чистую медь поставляют или в виде катодных листов, или в виде полуфабрикатов-слитков, предназначенных для дальнейшего передела прокаткой. Поставляют также и готовые медные изделия, полученные литьем (отливки разной формы и назначения) и обработкой давлением - проволоку, листы, ленты, полосы и др. Наибольшее распространение получили медные сплавы двух типов латунь и бронза. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь -- незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике -- для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др. Широко распространено использование меди в качестве кровельного и облицовочного материала. Благодаря своей пластичности медь идеально подходит в качестве кровельного покрытия для крыш любой архитектурной сложности. Защитная оксидная пленка (патина) надежно предохраняет медную кровлю от коррозии. Металл обладает замечательными декоративными свойствами. С течением времени медная кровля (как и любое другое изделие из меди) меняет свой цвет и из золотисто-красной становится малахитово- зеленой. Из меди делают ювелирные украшения, посуду и различную домашнюю утварь, декоративные элементы интерьера. Медь - достаточно мягкий материал, поэтому его легко обрабатывать. Это позволяет мастерам добиваться разнообразия фактур и тщательности проработки деталей. Медь нередко золотят, патинируют, тонируют, украшают эмалью.

Молибден используется для легирования сталей, как компонент жаропрочных и коррозионностойких сплавов. Молибденовая проволока (лента) служит для изготовления высокотемпературных печей, вводов электрического тока в лампочках. Соединения молибдена -- сульфид, оксиды, молибдаты -- являются катализаторами химических реакций, пигментами красителей, компонентами глазурей. Гексафторид молибдена применяется при нанесении металлического Mo на различные материалы, MoS2 используется как твердая высокотемпературная смазка. Mo входит в состав микроудобрений. Радиоактивные изотопы 93Mo (T1/2 6,95ч) и 99Mo (T1/2 66ч) -- изотопные индикаторы. Молибден -- один из немногих легирующих элементов, способных одновременно повысить прочностные, вязкие свойства стали и коррозионную стойкость.

Обычно при легировании одновременно с увеличением прочности растет и хрупкость металла. Известны случаи использования молибдена при изготовлении в Японии холодного оружия в XI--XIII вв. Молибден-99 используется для получения технеция-99, который используется в медицине при диагностике онкологических и некоторых других заболеваний. В 2005 году мировые поставки молибдена (в пересчёте на чистый молибден) составили, по данным «Sojitz Alloy Division», 172,2 тыс. тонн (в 2003--144,2 тыс. тонн). Чистый монокристаллический молибден используется для производства зеркал для мощных газодинамических лазеров. Теллурид молибдена является очень хорошим термоэлектрическим материалом для производства термоэлектрогенераторов (термо-э.д.с 780 мкВ/К). Трёхокись молибдена (молибденовый ангидрид) широко применяется в качестве положительного электрода в литиевых источниках тока. Молибден применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов и теплоизоляции. Дисилицид молибдена применяется в качестве нагревателей в печах с окислительной атмосферой, работающих до 1800 °С. Биологическая роль Физиологическое значение молибдена для организма животных и человека было впервые показано в 1953 г, с открытием влияния этого элемента на активность фермента ксантиноксидазы. Молибден промотирует (делает более эффективной) работу антиокислителей, в том числе витамина С. Важный компонент системы тканевого дыхания. Усиливает синтез аминокислот, улучшает накопление азота. Молибден входит в состав ряда ферментов (альдегидоксидаза, сульфитоксидаза, ксантиноксидаза и др.), выполняющих важные физиологические функции, в частности, регуляцию обмена мочевой кислоты. Молибденоэнзимы катализируют гидроксилирование различных субстратов. Альдегидоксидаза окисляет и нейтрализует различные пиримидины, пурины, птеридины. Ксантиноксидаза катализирует преобразование гипоксантинов в ксантины, а ксантины -- в мочевую кислоту. Сульфитоксидаза катализирует преобразование сульфита в сульфат. Недостаток молибдена в организме сопровождается уменьшением содержания в тканях ксантиноксидазы. При недостатке молибдена страдают анаболические процессы, наблюдается ослабление иммунной системы. Тиомолибдат аммония (растворимая соль молибдена), является антагонистом меди и нарушает ее утилизацию в организме. Круговорот азота Молибден входит в состав активного центра нитрогеназы -- фермента для связывания атмосферного азота (распространён у бактерий и архей). Микроэлемент Микроколичества молибдена необходимы для нормального развития организмов, используется в составе микроэлементной подкормки, в частности, под ягодные культуры. Влияет на размножение (у растений).

добыча руда экологический месторождение

3. Экологические проблемы при добыче и переработке медно- молибденовой руды

3.1 Проблемы при добыче

Добыча и обогащение медно-молибденовой руды приводит к техногенным изменениям окружающей среды. Разработка руды открытым способом на большинстве месторождений нарушает естественный ландшафт. При этом возникают крупные антропогенные осыпи и обширные карьеры.

А в связи с высокой токсичностью ионов меди и ее соединений, наблюдается картина старого медного рудника близ города Бьютт, штат Монтана, США- самое токсичное озеро в мире.

С хвостохранилищ сдувается пыль, переносимая ветрами на расстояние до 6 км. Пыль оседает на поверхности растений, забивая устьица листьев и хвои, что приводит к их угнетению.

3.2 Пути решения экологических проблем

С другой стороны, оседание пыли на поверхности почв улучшает их свойства, потому что минеральные частицы пыли облегчают аэрацию верхних, оторфованных горизонтов почв, снижают кислотность и поставляют питательные вещества (фосфор и микроэлементы). В Полярном альпийском ботаническом саду Кольского филиала РАН проводятся работы по подбору трав для высевания на хвостохранилищах, чтобы прекратить выдувание пыли с их поверхности. А также переход с флотореагентов на другие менее токсичные. И изменение методов обогащения апатитовых руд. Посадка лесополос для защиты от пыли.

4. Экологические проблемы при переработке

4.1 Система оборотного водоснабжения

Проблема сохранения, а в ряде случаев и улучшения качеств водных ресурсов в нашей стране решается в общегосударственном масштабе. Решение связано, в первую очередь, с разработкой новых производственно-технологических процессов и оборудования, обеспечивающих максимальную утилизацию и обеззараживание промышленных отходов. Внедрение бессточных технологий практически полностью решает проблему защиты водоемов от загрязнения.


Подобные документы

  • Загрязнение земли, воды и атмосферы. Решение экологических проблем на транспорте. Способы переработки мусора. Антропогенные экологические проблемы. Отрицательное влияние электромагнитных полей, излучения, городского шума и радиации на организм человека.

    реферат [44,4 K], добавлен 26.05.2019

  • Экологическая ситуация в начале XXI века. Главные экологические проблемы. Общемировые проблемы атмосферы. Важнейшие экологические проблемы гидросферы. Причины экологической ситуации. Экологические проблемы в современном мире (анализ философского текста).

    контрольная работа [16,9 K], добавлен 28.07.2010

  • Пути решения экологических проблем города: экологические проблемы и загрязнения воздушной среды, почвы, радиации, воды территории. Решение экологических проблем: приведение к санитарным нормам, уменьшение выбросов, переработка отходов.

    реферат [23,3 K], добавлен 30.10.2012

  • Экологические программы Забайкалья и решение экологических проблем Читинской области. Конвенция о сохранении биологического разнообразия природы. Экологическое движение Забайкалья. Воспитание культуры населения для решения экологических проблем.

    реферат [21,6 K], добавлен 18.08.2011

  • Способы получения электроэнергии и связанные с ними экологические проблемы. Решение экологических проблем для тепловых и атомных электростанций. Альтернативные источники энергии: солнца, ветра, припливов и отливов, геотермальная и энергия биомассы.

    презентация [4,0 M], добавлен 31.03.2015

  • Значение нефти и газа в экономике России и мира. Последствия загрязнения атмосферы, гидросферы и почв нефтепродуктами. Пути решения экологических проблем при интенсивной добыче, транспортировке и переработке нефти. Задачи экологического мониторинга.

    реферат [35,5 K], добавлен 21.02.2012

  • Характеристика экологических проблем и оценка их особенностей в выявлении критериев взаимодействия человека и окружающей среды. Факторы экологических проблем и периоды влияния общества на природу. Анализ взаимосвязи экологических и экономических проблем.

    контрольная работа [21,3 K], добавлен 09.03.2011

  • Характеристика экологических проблем современности. Основные экологические проблемы исследуемой области. Анализ периодических изданий по проблеме исследования. Пути предотвращения загрязнения окружающей среды: воздуха, воды, грунта. Проблема отходов.

    курсовая работа [31,5 K], добавлен 06.10.2014

  • Основные экологические проблемы современности. Влияние хозяйственной деятельности людей на природную среду. Пути решения экологических проблем в рамках регионов государств. Pазрушение озонового слоя, парниковый эффект, загрязнение окружающей среды.

    реферат [23,8 K], добавлен 26.08.2014

  • Экологические проблемы большого города. Проблемы экологии Красноярского края, для которого характерна высокая концентрация производства. Обзор основных экологических проблем, связанных с урбанизацией. Уровень загрязнения атмосферного воздуха городов края.

    курсовая работа [182,0 K], добавлен 22.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.