Статистические расчеты
Группировка количества разговоров по длительности на основании данных выборочного наблюдения. Состав занятого населения. Средняя производительность труда в целом по предприятию. Общий и индивидуальные индексы себестоимости. Вид корреляционной зависимости
Рубрика | Экономика и экономическая теория |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.01.2010 |
Размер файла | 95,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Задача 1. На основании данных выборочного наблюдения была произведена группировка количества разговоров по длительности:
Длительность разговора, мин. |
3-5 |
5-7 |
7-9 |
9-11 |
11-13 |
Свыше 13 |
Всего разговоров |
|
Число разговоров |
90 |
85 |
70 |
60 |
30 |
5 |
340 |
Выполнить вторичную группировку, чтобы обеспечить представительность последней группы. Образовать 4 группы с неравными интервалами: 3-5, 5-8, 8-12, свыше 12 мин.
Решение:
Проведём вторичную группировку:
Длительность разговора, мин. |
3-5 |
5-8 |
8-12 |
Свыше 12 |
Всего разговоров |
|
Число разговоров |
90 |
108 |
117 |
25 |
340 |
Задача 2. По следующим данным сравнить состав занятого населения двух областей, вычислив относительный показатель, характеризующий соотношение между численностью работников производственной деятельности и работников двух других сфер деятельности
Категории деятельности |
Количество работников, чел. |
||
В I области |
Во II области |
||
Сфера производства |
3250 |
2560 |
|
Аппарат управления |
320 |
390 |
|
Прочие виды деятельности |
670 |
740 |
Решение:
Определим относительную величину между численностью работников производственной сферы деятельности и других сфер деятельности по областям:
- между численностью сферы производства и аппарата управления:
а) для области I:
б) для области II:
Вывод: на численность производственной сферы работников аппарата управления во второй области приходиться на 5,38% больше, чем в первой (15,23 - 9,85)
- между численностью сферы производства и прочими видами деятельности:
а) для области I:
б) для области II:
Вывод: на численность производственной сферы работников других видов деятельности во второй области приходиться на 8,29% больше, чем в первой (28,91 - 20,62)
Задача 3. Определите среднюю производительность труда в целом по предприятию в I полугодии по следующим данным:
Цех |
Производительность труда, млн. р./чел. |
Среднесписочное числоработников, чел. |
|
№ 1 |
80 |
60 |
|
№ 2 |
68 |
50 |
|
№ 3 |
55 |
30 |
Определите, как колеблется данный показатель.
Решение:
Рассчитаем среднюю производительность труда по формуле средней арифметической взвешенной:
,
где - средняя производительность труда по предприятию; - производительность труда рабочего в i-м цехе; - число рабочих; - производительность труда рабочих i-го цеха завода.
Рассчитаем размер вариации:
1) дисперсия (у2)
2) среднее квадратичное отклонение (у):
3) коэффициент вариации (V):
.
Задача 4. По данным задачи 1:
1) определите среднее значение изучаемого признака, моду и медиану;
2) постройте гистограмму;
3) оцените характер асимметрии.
Решение:
Рассчитаем среднее значение изучаемого признака:
Рассчитаем моду:
где - начало (нижняя граница) модального интервала; - величина интервала; - частота модального интервала; - частота интервала, предшествующего модальному; - частота интервала, следующего за модальным.
Рассчитаем медиану:
где - начало (нижняя граница) медианного интервала; - величина интервала; - сумма всех частот ряда; - сумма накопленных частот вариантов до медианного; - частота медианного интервала.
Построим график интервального ряда распределения:(гистограмма):
Так как М0 >МЕ >, то перед нами левосторонняя асимметрия.
Задача 5. Ежегодные темпы прироста продукции (в % к предыдущему году) составили:
Годы |
1-й |
2-й |
3-й |
4-й |
5-й |
|
Темпы прироста |
2,4 |
1,7 |
2,0 |
1,5 |
2,8 |
Вычислите за приведенные годы базисные темпы роста по отношению к начальному (базисному) году и среднегодовые темпы роста и прироста за весь период.
Решение:
Рассчитаем средний уровень ряда по формуле средней арифметической простой:
,
В зависимости от задачи исследования абсолютные приросты (снижения) Дy, темпы прироста (снижения) ДТ
Рассчитаем базисные темпы роста по отношению к начальному году:
- 2-ой год по отношению к 1-му:
- 3-ий год по отношению к 1-му:
- 4-ый год по отношению к 1-му:
- 5-ый год по отношению к 1-му:
Рассчитаем среднегодовой темп роста за весь период:
Рассчитаем среднегодовой темп прироста:
Задача 6. По следующим данным исчислите общий и индивидуальные индексы себестоимости и сумму экономики.
Изделие |
Затраты на товарную продукцию, млрд. р. |
Объем производства в отчетном году, тыс. ед. |
Снижение себестоимости единицы продукции по сравнению с базисным периодом, % |
|
А |
220 |
4,5 |
7,5 |
|
Б |
305 |
6,0 |
4,5 |
|
В |
148 |
2,8 |
3,0 |
Решение:
Рассчитаем затраты на товарную продукцию в базисном периоде:
- для изделия А:
Z0 = 220 + 220 * 7,5 % = 236,5 млн. руб.
- для изделия Б:
Z0 = 305 + 305 * 4,5 % = 318,725 млн. руб.
- для изделия В:
Z0 = 148 + 148 * 3,0 % = 152,44 млн. руб.
Рассчитаем общий индекс:
Рассчитаем индивидуальные индексы:
- для изделия А:
- для изделия Б:
- для изделия В:
Рассчитаем экономию по каждому изделию:
- по изделии А:
Э = Z1 - Z0 = 220 - 236,5 = - 16,6 млн. руб.
- по изделии Б:
Э = Z1 - Z0 = 305- 318,725 = - 13,725 млн. руб.
- по изделию В:
Э = Z1 - Z0 = 148 - 152,44 = - 4,44 млн. руб.
Задача 7. В отчетном периоде произошло снижение цен на 5% при увеличении физического объема продукции на 15%. Определите:
1) изменение стоимости продукции в отчетном периоде по сравнению с базисным периодом;
2) абсолютное изменение стоимости продукции за счет изменения физического объема продукции;
3) абсолютное и относительное изменение стоимости продукции за счет изменения цен.
Решение:
Рассчитаем стоимость продукции и физический объём:
q1 = q0 + q0 * 15 % = q0 + 0,15 * q0 = 1,15 * q0
P1 = P0 - P0 *5 % = Р0 - 0,05 * Р0 = 0,95 * Р0
Таким образом, изменение стоимости в отчетном периоде по сравнению с базисным:
Рассчитаем абсолютное изменение стоимости продукции за счёт изменения физического объёма продукции:
Рассчитаем абсолютное и относительное изменение стоимости продукции за счет изменения цен:
Задача 8. Изменение средней годовой численности работников отрасли характеризуется следующими данными:
Годы |
1980 |
1990 |
2000 |
2005 (прогноз) |
|
Численность работников, тыс. чел. |
153,2 |
226,1 |
315,9 |
340,5 |
Изобразите эти данные в виде графиков: а) прямоугольных (столбиковых и ленточных); б) квадратных. Какой из этих графиков наиболее наглядно изображает изменение численности работников в данной отрасли за 1980-2005 гг.? Сформулируйте выводы, следующие из графических изображений.
А) - Столбиковая:
- Ленточная:
б) Квадратная:
На мой взгляд, наиболее полно отражает изменение численности работников в данной области столбиковая диаграмма. В соответствии с данными графиков, можно сделать вывод, что на протяжении 1980 - 2005 гг. численность работников увеличилась в два раза и продолжает расти.
Задача 9. Хронометраж работы станочника дал следующие результаты:
Затраты времени на изготовление одной детали, мин. |
20-21 |
21-22 |
22-23 |
23-24 |
|
Число изготовленных деталей |
6 |
13 |
10 |
7 |
Определите среднюю трудоемкость изготовления детали и предельную ошибку этого показателя с вероятностью 0,954, учитывая, что хронометраж производится при массовом выпуске. Какие результаты получатся, если взять вероятность 0,997?
Решение:
Рассчитаем среднюю трудоёмкость изготовления детали:
Рассчитаем среднюю внутригрупповую дисперсию:
Рассчитаем среднюю ошибку выборочной средней при повторном отборе
где - дисперсия выборочной совокупности; n - объем (число единиц) выборки.
Рассчитаем предельную ошибку выборки, при , t = 2 (для p=0,954):
Рассчитаем предельную ошибку выборки, при , t = 3 (для p=0,997):
Задача 10. Имеются следующие данные о продолжительности производственного стажа и среднем проценте выполнения норм выработки по 30 рабочим-сдельщикам цеха о продолжительности производственного стажа и среднем проценте выполнения норм выработки:
Группы рабочих по продолжительности стажа работы, лет |
Число рабочих, чел. |
Средний процент выполнения норм выработки одним рабочим |
|
До 5 |
8 |
100,5 |
|
5-10 |
10 |
104,0 |
|
10-15 |
8 |
106,0 |
|
15-20 |
2 |
107,0 |
|
20 и более |
2 |
110,0 |
Определите:
1)средний процент выполнения норм выработки по цеху;
2) вид корреляционной зависимости между данными показателями;
3) параметры уравнения регрессии;
4) тесноту изучаемой связи.
Решение:
Рассчитаем средний процент выполнения норм выработки по цеху:
Определим вид корреляционной зависимости между данными показателями:
В качестве линии регрессии используем уравнение прямой:
,
где y - результативный (зависимый) признак; x - факторный (независимый) признак; a и b - параметры уравнения прямой.
Для определения параметров a и b по методу наименьших квадратов составляется система двух нормальных уравнений:
,
.
Решая эту систему уравнений, находим:
Для измерения тесноты данной связи используем коэффициент корреляции, исчисляемый по формуле:
Подобные документы
Средние величины и показатели вариации. Агрегатные индексы физического объёма товарной массы. Группировка статистических данных. Индивидуальные и сводный индексы себестоимости единицы продукции. Показатели ряда динамики. Расчёт стоимости основных средств.
контрольная работа [306,8 K], добавлен 04.06.2015Предмет и метод статистики. Сводка и группировка статистических данных. Функции статистических показателей. Статистические ряды, вариация и дисперсия. Преимущества выборочного наблюдения. Методы анализа корреляционных связей, экономические индексы.
методичка [371,4 K], добавлен 15.01.2010Графическое изображение данных. Статистические таблицы: общее понятие, виды, основные элементы. Понятие корреляционной связи и предпосылки ее использования. Измерение степени тесноты корреляционной связи в случае парной, множественной зависимости.
контрольная работа [327,5 K], добавлен 19.01.2012Сущность статистического анализа и выборочного метода. Правила группировки данных выборочного наблюдения по величине объема инвестиций. Графическое представление вариационного ряда (гистограмма, кумулята, кривая Лоренца). Расчет асимметрии и эксцесса.
курсовая работа [70,7 K], добавлен 26.10.2011Цель выборочного наблюдения и формирование выборки. Особенности организации различных видов выборочного наблюдения. Ошибки выборочного отбора и методы их расчета. Применение выборочного метода для анализа предприятий топливно-энергетического комплекса.
курсовая работа [71,7 K], добавлен 06.10.2014Классификация ошибок наблюдения в зависимости от причин возникновения. Особенности ошибок регистрации и репрезентативности. Преимущества выборочного наблюдения перед сплошным. Допустимый уровень ошибки. Понятие ряда динамики в статистической науке.
контрольная работа [73,8 K], добавлен 22.06.2015Понятие, источники данных, показатели производительности труда. Группировка сельскохозяйственных предприятий Карасукского, Чистоозерного, Красноозерского районов по уровню производительности труда. Динамика уровня производительности труда по предприятию.
курсовая работа [191,0 K], добавлен 22.06.2011Метод статистики, анализ данных, поиск закономерностей. Сводка и группировка данных статистического наблюдения за жилищным фондом. Вариационный анализ показателя площади жилищ, приходящихся в среднем на одного жителя. Выборочное наблюдение субъектов.
курсовая работа [117,9 K], добавлен 04.10.2008Систематизация материалов статистического наблюдения. Понятие статистической сводки как сводной характеристики объекта исследования. Статистические группировки, их виды. Принципы выбора группированного признака. Статистические таблицы и ряд распределения.
реферат [196,8 K], добавлен 04.10.2016Определение относительных величин интенсивности и координации для занятого населения области для каждого года. Среднедушевый доход населения (в размерах минимальной оплаты труда). Оценка уровня жизни населения региона. Индексы сезонности заболеваемости.
контрольная работа [81,1 K], добавлен 11.09.2010