Статистическая выборка

Основы использования в статистике выборочного метода. Методы вероятностного отбора, обеспечивающие репрезентативность. Организационные и методологические особенности случайной, механической, типической и серийной выборки. Процедура случайного отбора.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 19.03.2012
Размер файла 410,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

  • Введение
  • 1. Роль выборки
  • 2. Методы вероятностного отбора, обеспечивающие репрезентативность
  • 3. Организационные и методологические особенности случайной, механической, типической и серийной выборки
  • Заключение
  • Список литературы

Введение

Статистика - аналитическая наука, которая необходима всем современным специалистам. Современный специалист не может быть грамотным, если он не владеет статистической методологией. Статистика - важнейший инструмент связи предприятия с обществом. Статистика одна из важнейших дисциплин в учебном плане всех специальностей, т.к. статистическая грамотность - неотъемлемая составляющая высшего образования, а по количеству отведенных часов в учебном плане она занимает одно из первых мест. Работая с цифрами, каждый специалист должен знать, как получены те или иные данные, какова их природа исчисления, насколько они полны и достоверны.

1. Роль выборки

Множество всех единиц совокупности, обладающих определенным признаком и подлежащих изучению, носит в статистике название генеральной совокупности.

На практике по тем или иным причинам не всегда возможно или же нецелесообразно рассматривать всю генеральную совокупность. Тогда ограничиваются изучением лишь некоторой части ее, конечной целью которого является распространение полученных результатов на всю генеральную совокупность, т.е. применяют выборочный метод.

Для этого из генеральной совокупности особым образом отбирается часть элементов, так называемая выборка, и результаты обработки выборочных данных (например, средние арифметические значения) обобщаются на всю совокупность.

Теоретической основой выборочного метода является закон больших чисел. В силу этого закона при ограниченном рассеивании признака в генеральной совокупности и достаточно большой выборке с вероятностью, близкой к полной достоверности, выборочная средняя может быть сколь угодно близка к генеральной средней. Закон этот, включающий в себя группу теорем, доказан строго математически. Таким образом, средняя арифметическая, рассчитанная по выборке, может с достаточным основанием рассматриваться как показатель, характеризующий генеральную совокупность в целом.

2. Методы вероятностного отбора, обеспечивающие репрезентативность

Для того чтобы можно было по выборке делать вывод о свойствах генеральной совокупности, выборка должна быть репрезентативной (представительной), т.е. она должна полно и адекватно представлять свойства генеральной совокупности. Репрезентативность выборки может быть обеспечена только при объективности отбора данных.

Выборочная совокупность формируется по принципу массовых вероятностных процессов без каких бы то ни было исключений от принятой схемы отбора; необходимо обеспечить относительную однородность выборочной совокупности или ее разделение на однородные группы единиц. При формировании выборочной совокупности должно быть дано четкое определение единицы отбора. Желателен приблизительно одинаковый размер единиц отбора, причем результаты будут тем точнее, чем меньше единица отбора.

Возможны три способа отбора: случайный отбор, отбор единиц по определенной схеме, сочетание первого и второго способов.

Если отбор в соответствии с принятой схемой проводится из генеральной совокупности, предварительно разделенной на типы (слои или страты), то такая выборка называется типической (или расслоенной, или стратифицированной, или районированной). Еще одно деление выборки по видам определяется тем, что является единицей отбора: единица наблюдения или серия единиц (иногда используют термин "гнездо"). В последнем случае выборка называется серийной, или гнездовой. На практике часто используется сочетание типической выборки с отбором сериями. В математической статистике, обсуждая проблему отбора данных, обязательно вводят деление выборки на повторную и бесповторную. Первая соответствует схеме возвратного шара, вторая - безвозвратного (при рассмотрении процесса отбора данных на примере отбора шаров разного цвета из урны). В социально-экономической статистике нет смысла применять повторную выборку, поэтому, как правило, имеется в виду бесповторный отбор.

Так как социально-экономические объекты имеют сложную структуру, то выборку бывает довольно трудно организовать. Например, чтобы провести отбор домохозяйств при изучении потребления населением крупного города, легче произвести сначала отбор территориальных ячеек, жилых домов, потом квартир или домохозяйств, затем респондента. Такая выборка называется многоступенчатой. На каждой ступени используются разные единицы отбора: более крупные - на начальных ступенях, на последней ступени единица отбора совпадает с единицей наблюдения.

Еще один вид выборочного наблюдения - многофазовая выборка. Такая выборка включает определенное количество фаз, каждая из которых отличается подробностью программы наблюдения. Например, 25% всей генеральной совокупности обследуются по краткой программе, каждая 4-я единица из этой выборки обследуется по более полной программе и т.д.

При любом виде выборки отбор единиц производится тремя отмеченными способами. Рассмотрим процедуру случайного отбора. Прежде всего, составляется список единиц совокупности, в котором каждой единице присваивается цифровой код (номер или метка). Затем производится жеребьевка. Закладываются в барабан шары с соответствующими номерами, они перемешиваются и проводится отбор шаров. Выпавшие номера соответствуют единицам, попавшим в выборку; число номеров равно запланированному объему выборки.

Отбор жеребьевкой может быть подвержен смещениям, вызванным недостатками техники (качеством шаров, барабана) и другими причинами. Более надежен с точки зрения объективности отбор по таблице случайных чисел. Такая таблица содержит серии цифр, чередующихся случайным образом, отобранных путем электронных сигналов. Так как мы пользуемся десятичной цифровой системой 0, 1, 2,., 9, вероятность появления любой цифры равна 1/10. Следовательно, если бы нужно было создать таблицу случайных чисел, включающую 500 знаков, то из них около 50 были бы 0, столько же - 1 и т.д.

Часто используется отбор по какой-либо схеме (так называемая направленная выборка). Схема отбора принимается такой, чтобы отразить основные свойства и пропорции генеральной совокупности. Простейший способ: по спискам единиц генеральной совокупности, составленным так, чтобы упорядочивание единиц было бы не связано с изучаемыми свойствами, проводится механический отбор единиц с шагом, равным N: п. Обычно отбор начинают не с первой единицы, а отступив полшага, чтобы уменьшить возможность смещения выборки. Частота появления единиц с теми или иными особенностями, например студентов с тем или иным уровнем успеваемости, живущих в общежитии, и т.д. будет определяться той структурой, которая сложилась в генеральной совокупности.

Для большей уверенности в том, что выборка отразит структуру генеральной совокупности, последняя подразделяется на типы (страты или районы), и проводится случайный или механический отбор из каждого типа. Общее число единиц, отобранных из разных типов, должно соответствовать объему выборки.

Особые трудности возникают, когда нет списка единиц, а отбор нужно произвести либо на местности, либо из образцов продукции на складе готовой продукции. В этих случаях важно детально разработать схему ориентации на местности и схему отбора и следовать ей, не допуская отклонений. Например, счетчик имеет указание двигаться от определенной автобусной остановки на север по четной стороне улицы и, отсчитав два дома от первого угла, войти в третий и провести опрос в каждом 5-м жилом помещении. Неукоснительное следование принятой схеме обеспечивает выполнение главного условия формирования репрезентативной выборки - объективности отбора единиц.

От случайной выборки следует отличать квотный отбор, когда выборка конструируется из единиц определенных категорий (квот), которые должны быть представлены в заданных пропорциях. Например, при опросе покупателей универмага может быть запланировано провести отбор 150 респондентов, в том числе 90 женщин, из них 25 - девушек,20 - молодых женщин с маленькими детьми, 35 - женщин среднего возраста, одетых в деловой костюм, 10 - женщин 50 лет и старше; кроме того, планировался опрос 70 мужчин, из них 25 - подростков и юношей,20 - молодых мужчин с детьми, 15 - мужчин, которые одеты в костюмы, 10 - мужчин, одетых в спортивную одежду. Для определения потребительских ориентаций и предпочтений такая выборка, может быть, и хороша, но если мы захотим по ней установить среднюю сумму покупок, их структуру, мы получим непредставительные результаты. Это происходит потому, что квотная выборка нацелена на отбор определенных категорий.

Выборка может быть нерепрезентативной, даже если она формируется в соответствии с известными пропорциями генеральной совокупности, но отбор проводится без какой-либо схемы - единицы набираются как угодно, лишь бы обеспечить соотношение их категорий в тех же пропорциях, что и в генеральной совокупности (например, соотношение мужчин и женщин, респондентов в возрасте моложе и старше трудоспособного и в трудоспособном и т.д.).

Эти замечания должны предостеречь вас от подобных подходов к формированию выборки и еще раз подчеркнуть необходимость объективного отбора.

3. Организационные и методологические особенности случайной, механической, типической и серийной выборки

В зависимости от того, как осуществляется отбор элементов совокупности в выборку, различают несколько видов выборочного обследования. Отбор может быть случайным, механическим, типическим и серийным.

Случайным является такой отбор, при котором все элементы генеральной совокупности имеют равную возможность быть отобранными. Другими словами, для каждого элемента генеральной совокупности обеспечена равная вероятность попасть в выборку.

выборка статистическая вероятностный случайный

Требование случайности отбора достигается на практике с помощью жребия или таблицы случайных чисел.

При отборе способом жеребьевки все элементы генеральной совокупности предварительно нумеруются и номера их наносятся на карточки. После тщательной перетасовки из пачки любым способом (подряд или в любом другом порядке) выбирается нужное число карточек, соответствующее объему выборки. При этом можно либо откладывать отобранные карточки в сторону (тем самым осуществляется так называемый бесповторный отбор), либо, вытащив карточку, записать ее номер и возвратить в пачку, тем самым давая ей возможность появиться в выборке еще раз (повторный отбор). При повторном отборе всякий раз после возвращения карточки пачка должна быть тщательно перетасована.

Способ жеребьевки применяется в тех случаях, когда число элементов всей изучаемой совокупности невелико. При большом объеме генеральной совокупности осуществление случайного отбора методом жеребьевки становится сложным. Более надежным и менее трудоемким в случае большого объема обрабатываемых данных является метод использования таблицы случайных чисел.

Механический отбор производится следующим образом. Если формируется 10% -ная выборка, т.е. из каждых десяти элементов должен быть отобран один, то вся совокупность условно разбивается на равные части по 10 элементов. Затем из первой десятки выбирается случайным образом элемент. Например, жеребьевка указала девятый номер. Отбор остальных элементов выборки полностью определяется указанной пропорцией отбора N номером первого отобранного элемента. В рассматриваемом случае выборка будет состоять из элементов 9, 19, 29 и т.д.

Механическим отбором следует пользоваться осторожно, так как существует реальная опасность возникновения так называемых систематических ошибок. Поэтому прежде чем делать механическую выборку, необходимо проанализировать изучаемую совокупность. Если ее элементы расположены случайным образом, то выборка, полученная механическим способом, будет случайной. Однако нередко элементы исходной совокупности бывают частично или даже полностью упорядочены. Весьма нежелательным для механического отбора является порядок элементов, имеющий правильную повторяемость, период которой может совпасть с периодом механической выборки.

Нередко элементы совокупности бывают упорядочены по величине изучаемого признака в убывающем или возрастающем порядке и не имеют периодичности. Механический отбор из такой совокупности приобретает характер направленного отбора, так как отдельные части совокупности оказываются представленными в выборке пропорционально их численности во всей совокупности, т.е. отбор направлен на то, чтобы сделать выборку представительной.

Другим видом направленного отбора является типический отбор. Следует отличать типический отбор от отбора типичных объектов. Отбор типичных объектов применялся в земской статистике, а также при бюджетных обследованиях. При этом отбор "типичных селений" или "типичных хозяйств" производился по некоторым экономическим признакам, например по размерам землевладения на двор, по роду занятий жителей и т.п. Отбор такого рода не может быть основой для применения выборочного метода, так как здесь не выполнено основное его требование - случайность отбора.

При собственно типическом отборе в выборочном методе совокупность разбивается на группы, однородные в качественном отношении, а затем уже внутри каждой группы производится случайный отбор. Типический отбор организовать сложнее, чем собственно случайный, так как необходимы определенные знания о составе и свойствах генеральной совокупности, но зато он дает более точные результаты.

При серийном отборе вся совокупность разбивается на группы (серии). Затем путем случайного или механического отбора выделяют определенную часть этих серий и производят их сплошную обработку. По сути дела, серийный отбор представляет собой случайный или механический отбор, осуществленный для укрупненных элементов исходной совокупности.

В теоретическом плане серийная выборка является самой несовершенной из рассмотренных. Для обработки материала она, как правило, не используется, но представляет определенные удобства при организации обследования, особенно в изучении сельского хозяйства. Например, ежегодные выборочные обследования крестьянских хозяйств в годы, предшествовавшие коллективизации, проводились способом серийного отбора. Историку полезно знать о серийной выборке, поскольку он может встретиться с результатами таких обследований.

Кроме описанных выше классических способов отбора в практике выборочного метода используются и другие способы. Рассмотрим два из них.

Изучаемая совокупность может иметь многоступенчатую структуру, она может состоять из единиц первой ступени, которые, в свою очередь, состоят из единиц второй ступени, и т.д. Например, губернии включают в себя уезды, уезды можно рассматривать как совокупность волостей, волости состоят из сел, а села - из дворов.

К таким совокупностям можно применять многоступенчатый отбор, т.е. последовательно осуществлять отбор на каждой ступени. Так, из совокупности губерний механическим, типическим или случайным способом можно отобрать уезды (первая ступень), затем одним из указанных способов выбрать волости (вторая ступень), далее провести отбор сел (третья ступень) и, наконец, дворов (четвертая ступень).

Примером двухступенчатого механического отбора может служить давно практикуемый отбор бюджетов рабочих. На первой ступени механически выбираются предприятия, на второй - рабочие, бюджет которых обследуется.

Изменчивость признаков исследуемых объектов может быть различной. Например, обеспеченность крестьянских хозяйств собственной рабочей силой колеблется меньше, чем, скажем, размеры их посевов. В связи с этим меньшая по объему выборка по обеспеченности рабочей силой будет столь же представительной, как и большая по числу элементов выборка данных о размерах посевов. В этом случае из выборки, по которой определяются размеры посевов, можно сделать под выборку, достаточно репрезентативную для определения обеспеченности рабочей силой, осуществив тем самым двухфазный отбор. В общем случае можно добавить и следующие фазы, т.е. из полученной подвыборки сделать еще подвыборку и т.д. Этот же способ отбора применяется в тех случаях, когда цели исследования требуют различной точности при исчислении разных показателей.

Задание 1. Описательная статистика

На экзамене 20 студентов получили следующие оценки (по 100 бальной шкале):

89

78

91

68

71

63

58

69

98

85

91

87

59

67

86

73

79

98

53

59

1) Построить ряд распределения частот, относительных и накопленных частот для 5 интервалов;

2) Построить полигон, гистограмму и кумулятивный полигон;

3) Найти среднюю арифметическую, моду, медиану, первый и третий квартили, межквартальный размах, стандартное отклонение и коэффициенты вариации. Проанализировать данные с использованием этих характеристик и указать интервал, включающий 50% центральных значений указанных величин.

Решение:

1) x (min) =53, x (max) =98

R=x (max) - x (min) =98-53=45

h=R/1+3.32lgn, где n - объем выборки, n=20

h= 45/1+3.32*lg20= 9

a (i) - нижняя граница интервала, b (i) - верхняя граница интервала.

a (1) = x (min) - h/2, b (1) = a (1) +h, тогда, если b (i) - верхняя граница i-го интервала (причем a (i+1) =b (i)), то b (2) =a (2) +h, b (3) =a (3) +h и т.д. Построение интервалов продолжается до тех пор, пока начало следующего по порядку интервала не будет равно или больше x (max).

a (1) = 47.5 b (1) = 56.5

a (2) = 56.5 b (2) = 65.5

a (3) = 65.5 b (3) = 74.5

a (4) = 74.5 b (4) = 83.5

a (5) = 83.5 b (5) = 92.5

a (6) = 92.5 b (6) = 101.5

Интервалы, a (i) - b (i)

Подсчет частот

Частота, n (i)

Накопленная частота, n (hi)

1

47.5 - 56.5

/

1

1

2

56.5 - 65.5

// //

4

5

3

65.5 - 74.5

// // /

5

10

4

74.5 - 83.5

//

2

12

5

83.5 - 92.5

// // //

6

18

6

92.5 - 101.5

//

2

20

2) Для построения графиков запишем вариационные ряды распределения (интервальный и дискретный) относительных частот W (i) = n (i) /n, накопленных относительных частот W (hi) и найдем отношение W (i) /h, заполнив таблицу.

x (i) =a (i) +b (i) /2; W (hi) =n (hi) /n

Статистический ряд распределения оценок:

Интервалы, a (i) - b (i)

x (i)

W (i)

W (hi)

W (i) /h

47.5 - 56.5

52

0.05

0.05

0.005

56.5 - 65.5

61

0.2

0.25

0.02

65.5 - 74.5

70

0.25

0.5

0.027

74.5 - 83.5

79

0.1

0.6

0.01

83.5 - 92.5

88

0.3

0.9

0.03

92.5 - 101.5

97

0.1

1

0.01

Для построения гистограммы относительных частот по оси абсцисс откладываем частичные интервалы, на каждом из которых строим прямоугольник, площадь которого равна относительной частоте W (i) данного i-го интервала. Тогда высота элементарного прямоугольника должна быть равна W (i) /h.

Из гистограммы можно получить полигон того же распределения, если середины верхних оснований прямоугольников соединить отрезками прямой.

Для построения кумуляты дискретного ряда по оси абсцисс откладываем значения признака, а по оси ординат - относительные накопленные частоты W (hi). Полученные точки соединяем отрезками прямых. Для интервального ряда по оси абсцисс откладываем верхние границы группировки.

3) Среднее арифметическое значение находим по формуле:

/n=

Мода рассчитывается по формуле:

, где

- нижняя граница модального интервала; h - ширина интервала группировки; - частота модального интервала; - частота интервала, предшествующего модальному; - частота интервала, следующего за модальным. = 23,125.

Найдем медиану:

n=20: 53,58,59,59,63,67,68,69,71,73,78,79,85,86,87,89,91,91,98,98

Me= (73+78) /2= 75.5

Далее рассчитаем первый, второй и третий квартили.

Подставив значения, получаем: Q1=65;

Значение второго квартиля совпадает со значением медианы, поэтому Q2=75.5; Q3= 88.

Межквартальный размах равен:

Среднеквадратическое (стандартное) отклонение находим по формуле:

Коэффициент вариации:

Из данных расчетов видно, что 50% центральных значений указанных величин включает в себя интервал 74,5 - 83,5.

Задание 2. Статистическая проверка гипотез.

Предпочтения в спорте для мужчин, женщин и подростков следующие:

Бейсбол

Баскетбол

Футбол

Мужчина

19

15

24

Женщина

16

18

16

Подростки

20

12

10

Проверить гипотезу о независимости предпочтения от пола и возраста б = 0,05.

Решение:

1) Проверка гипотезы о независимости предпочтений в спорте.

Бейсбол

Баскетбол

Футбол

ni

Мужчина

19

15

24

58

Женщина

16

18

16

50

Подростки

20

12

10

42

nj

55

45

50

n = 150

Коэффициент Пирсена:

Ф2=

Табличное значение критерия хи-квадрат со степенью свободы 4 при б = 0,05 равно ч2табл=9,488.

.

Так как , то гипотеза отвергается. Различия в предпочтениях существенные.

2. Гипотеза о соответствии.

Волейбол как вид спорта ближе всего к баскетболу. Проверим соответствие в предпочтениях для мужчин, женщин и подростков.

волейбол

баскетбол

ni

Мужчина

20

15

35

Женщина

10

18

28

Подросток

18

12

30

nj

48

45

n=93

Ф2=0.1896+0.1531+0.1624+0.1786+0.1415+0.1533 = 0.979.

При уровне значимости б = 0,05 и степени свободы k = 2 табличное значение ч2табл=9,210.

Тогда .

Так как Ф2>, то различия в предпочтениях существенные.

Задание 3. Корреляционно-регрессионный анализ.

Анализ дорожно-транспортных происшествий дал следующую статистику относительно процента водителей, моложе 21 года и числа происшествий с тяжелыми последствиями на 1000 водителей:

№ п/п

1

2

3

4

5

6

7

8

9

10

% ниже 21 г.

9

9

10

12

14

11

13

11

12

8

Число происшествий

1,43

0,93

1,93

2,24

2,35

1,29

2,63

1,85

1,91

0,64

Провести графический и корреляционно-регрессионный анализ данных, спрогнозировать число ДТП с тяжелыми последствиями для города, в котором число водителей, моложе 21 года равно 20% от общего числа водителей.

Решение:

Получаем выборку объема n = 10.

i

1

2

3

4

5

6

7

8

9

10

xi

8

9

11

12

14

11

10

12

13

9

yi

0.64

1.43

1.85

2.24

2.35

1.29

1.93

1.91

2.63

0.93

x - процент водителей моложе 21 года,

y - число происшествий на 1000 водителей.

Уравнение линейной регрессии имеет вид:

,

где .

Последовательно вычисляем:

,

,

Аналогично находим

Выборочный коэффициент регрессии

Связь между x, y сильная.

Уравнение линейной регрессии принимает вид:

На рисунке представлено поле рассеяния и график линейной регрессии. Проводим прогноз для xn=20.

Получаем yn=0.29*20-1.46 = 4.34.

Прогнозное значение получилось больше всех значений, представленный в исходной таблице. Это следствие того, что корреляционная зависимость прямая и коэффициент равен 0,29 достаточно большой. На каждую единицу приращения Дx он дает приращение Дy=0.3

Задание 4. Анализ временных рядов и прогнозирование.

Спрогнозировать значения индексов на ближайшую неделю, используя:

а) метод скользящей средней, выбрав для ее вычисления трехнедельные данные;

б) экспоненциальную взвешенную среднюю, выбрав в качестве б=0,1.

Решение:

Из таблицы случайных чисел находим номера 41, 51, 69, 135, 124, 93, 91, 144, 10, 24.

Располагаем их в порядке возрастания: 10, 24, 41, 51, 69, 91, 93, 124, 135, 144.

Проводим новую нумерацию от 1 до 10. Получаем исходные данные для десяти недель:

i

1

2

3

4

5

6

7

8

9

10

yi

13,16

13,42

13,01

12,77

12,75

13,07

12,73

13,29

13,3

13,41

Вычисляем данные для скользящей средней по трехнедельным промежуткам.

i

2

3

4

5

6

7

8

9

yi

13,34

13,07

12,85

12,86

12,85

13,07

13,11

13,33

Экспоненциальное сглаживание при б = 0,1 дает только одно значение .

i

3

4

5

6

7

8

yi

13,02

13,00

12,87

12,92

13,03

13,16

Для середины всего срока получаем три прогноза: 12,855; 1309; 12,895.

Наблюдается согласование этих прогнозов.

Задание 5. Индексный анализ.

Компания занимается перевозкой грузов. Имеются данные за ряд лет по объемам перевозки 4-х видов грузов и стоимости перевозки единицы груза.

Вид груза

Базисный год (16)

Отчетный год (20)

Количество

Тариф

Количество

Тариф

А

597

20,48

875

24,18

В

176

48,45

102

53,7

С

869

23,7

950

27,8

Д

171

45

150

51

Определите простые индексы цен, количества и стоимости для каждого вида продукта, а также индексы Ласпейреса и Паше и индекс стоимости. Прокомментируйте полученные результаты содержательно.

Решение. Вычислим простые индексы:

Вид груза

Простые индексы

цен

количества

стоимости

А

1,18

1,47

1,73

В

1,11

0,58

0,64

С

1,17

1,09

1,28

Д

1,13

0,88

0,99

Индекс Ласпейреса:

.

Индекс Паше:

.

Индеек стоимости:

=0,87.

Индивидуальные индексы указывают на разнобой в изменении цен и количеств по грузам А, В, С, Д. Агрегатные индексы указывают на общие тенденции изменения. В целом стоимость перевозимых грузов уменьшилась на 13%. Причина в том, что самый дорогой груз уменьшился на 42% по количеству, а его тариф почти не изменился.

Годы 16-20 нумеруем по порядку от 1 до 5. Исходные данные принимают вид:

Год

1

2

3

4

5

А

597

675

758

788

875

Д

171

164

160

153

150

Сначала исследуем динамику количества груза А.

Год

Показатель

Абсолютные приросты

Темпы роста, %

Темпы прироста, %

Цепн.

Базис.

Цепн.

Базис.

Цепн.

Базис.

1

597

-

-

100

100

0

0

2

675

78

78

113,1

113,1

13,1

13,1

3

758

83

161

112,3

127

12,3

27

4

788

30

191

104

132

4

32

5

875

87

278

111

146,6

11

46,6

Средние

69,5

177

110

129,1

10

29,1

При этом темпы роста усреднялись по формулам:

, .

Для темпа прироста в любом случае Тпрр-1.

Теперь рассматриваем груз Д.

Год

Показатель

Абсолютные приросты

Темпы роста, %

Темпы прироста, %

Цепн.

Базис.

Цепн.

Базис.

Цепн.

Базис.

1

171

-

-

100

100

0

0

2

164

-7

-7

95,9

95,9

-4,1

-4,1

3

160

-4

-11

97,6

93,6

-2,4

-6,4

4

153

-7

-18

95,6

89,5

-4,4

-10,5

5

150

-3

-21

98

87,7

-2

-12,3

Средние

-5,3

-14,3

96,8

91,6

-3,2

-8,4

Заключение

Средние величины и их разновидности в статистике играют большую роль. Средние показатели широко применяются в анализе, так как именно в них находят свое проявление закономерности массовых явлений и процессов как во времени, так и в пространстве. Так, например, закономерность повышения производительности труда находит свое выражение в статистических показателях роста средней выработки на одного работающего в промышленности, закономерность неуклонного роста уровня благосостояния населения проявляется в статистических показателях увеличения средних доходов рабочих и служащих и т.д.

Широкое применение имеют такие описательные характеристики распределения варьирующего признака как мода и медиана. Они являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Так, чтобы охарактеризовать наиболее часто встречающуюся величину признака, применяют моду, а чтоб показать количественную границу значения варьирующего признака, которую достигла половина членов совокупности - медиану.

Таким образом, средние величины помогают изучать закономерности развития промышленности, конкретной отрасли, общества и страны в целом.

Список литературы

1. Теория статистики: Учебник / Р.А. Шмойлова, В.Г. Минашкин, Н.А. Садовникова, Е.Б. Шувалова; Под ред.Р.А. Шмойловой. - 4-е изд., перераб. и доп. - М.: Финансы и статистика, 2005. - 656с.

2. Гусаров В.М. Статистика: Учебное пособие для вузов. - М.: ЮНИТИ-ДАНА, 2001.

3. Октябрьский П.Я. Статистика: Учебник. - М.: ТК Велби, Изд-во Проспект, 2005. - 328 с.

4. Сборник задач по теории статистики: Учебное пособие/ Под ред. проф.В. В. Глинского и к. э. н., доц.Л.К. Серга. Изд. З-е. - М.: ИНФРА-М; Новосибирск: Сибирское соглашение, 2002.

5. Статистика: Учебное пособие/Харченко Л-П., Долженкова В.Г., Ионин В.Г. и др., Под ред. В.Г. Ионина. - Изд.2-е, перераб. и доп. - М.: ИНФРА-М. 2003.

Размещено на Allbest.ru


Подобные документы

  • Дескриптивная статистика и статистический вывод. Способы отбора, обеспечивающие репрезентативность выборки. Влияние вида выборки на величину ошибки. Задачи при применении выборочного метода. Распространение данных наблюдения на генеральную совокупность.

    контрольная работа [289,3 K], добавлен 27.02.2011

  • Выборочный метод и его роль. Развитие современной теории выборочного наблюдения. Типология методов отбора. Способы практической реализации простой случайной выборки. Организация типической (стратифицированной) выборки. Объем выборки при квотном отборе.

    доклад [28,1 K], добавлен 03.09.2011

  • Цель выборочного наблюдения и формирование выборки. Особенности организации различных видов выборочного наблюдения. Ошибки выборочного отбора и методы их расчета. Применение выборочного метода для анализа предприятий топливно-энергетического комплекса.

    курсовая работа [71,7 K], добавлен 06.10.2014

  • Выборочное наблюдение как метод статистического исследования, его особенности. Случайный, механический, типический и серийный виды отбора при образовании выборочных совокупностей. Понятие и причины возникновения ошибки выборки, методы ее определения.

    реферат [21,1 K], добавлен 04.06.2010

  • Понятие и роль статистики в механизме управления современной экономикой. Сплошное и несплошное статистическое наблюдение, описание выборочного метода. Виды отбора при выборочном наблюдении, ошибки выборки. Производственные и финансовые показатели.

    курсовая работа [135,5 K], добавлен 17.03.2011

  • Изучение выполнения плана. Десятипроцентное выборочное обследование по методу случайного бесповторного отбора. Себестоимость продукции завода. Предельная ошибка выборки. Динамика средних цен и объема продажи продукта. Индекс цен переменного состава.

    контрольная работа [146,7 K], добавлен 09.02.2009

  • Получение выборки объема n-нормального распределения случайной величины. Нахождение числовых характеристик выборки. Группировка данных и вариационный ряд. Гистограмма частот. Эмпирическая функция распределения. Статистическое оценивание параметров.

    лабораторная работа [496,0 K], добавлен 31.03.2013

  • Сущность понятий выборки и выборочного наблюдения, основные виды и категории отбора. Определение объема и численности выборки. Практическое применение статистического анализа выборочного наблюдения. Расчет ошибок выборочной доли и выборочной средней.

    курсовая работа [132,8 K], добавлен 17.02.2015

  • Понятие о выборочном наблюдении. Ошибки репрезентативности, измерение ошибки выборки. Определение необходимой численности выборки. Применение выборочного метода вместо сплошного. Дисперсия в генеральной совокупности и сопоставление показателей.

    контрольная работа [39,8 K], добавлен 23.07.2009

  • Виды отбора и ошибки наблюдения. Способы отбора единиц в выборочную совокупность. Характеристика коммерческой деятельности предприятия. Выборочное обследование потребителей продукции. Распространение характеристик выборки на генеральную совокупность.

    курсовая работа [2,2 M], добавлен 01.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.