Математическое моделирование процесса сушки

Математическое моделирование как метод оптимизации процессов. Расчет сушилок, баланс влаги. Моделирование процесса радиационно-конвективной сушки. Уравнение переноса массы. Период условно-постоянной скорости. Градиент влагосодержания и температуры.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 26.12.2013
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт природных ресурсов

Кафедра химической технологии топлива и химической кибернетики

РЕФЕРАТ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА СУШКИ

Томск - 2012

Введение

Сушка - это процесс удаления влаги из твердого или пастообразного материала путем испарения содержащейся в нем жидкости за счет подведенного к материалу тепла. Целью сушки является улучшение качества материала (снижение его объемной массы, повышение прочности) и, в связи с этим, увеличение возможностей его использования. В химической промышленности, где технологические процессы протекают в основном в жидкой фазе, конечные продукты имеют вид либо паст, либо зерен, крошки, пыли. Это обусловливает выбор соответствующих методов сушки [1].

Сушка характеризуется различной интенсивностью перемещения влаги внутри материала (влагопроводность) и последующего ее испарения с поверхности (влагообмен). Главная трудность сушильного процесса заключается в перемещении влаги из средней зоны сортимента. Эффективность сушки во многом определяется возможностью оперативного управления этим процессом и поддержания режимных параметров на заданном уровне.

В основе любой системы управления лежит математическое описание процесса. В работе будет рассмотрен процесс сушки, как объект возможного моделирования и математического описания сложных физических явлений тепломассопереноса.

1. Математическое моделирование как метод оптимизации процессов

Существенная особенность химико-технологических процессов (ХТП) состоит в том, что совокупность составляющих их явлений носит детерминированно-стохастическую природу, проявляющуюся в наложении стохастических особенностей гидродинамической обстановки в аппарате на процессы массо-, теплопереноса и химического превращения. Это объясняется случайным взаимодействием составляющих компонентов фаз (соударением частиц, их дроблением, случайным блужданием по объему аппарата) или случайным характером геометрии граничных условий в аппарате (случайное расположение элементов беспорядочно уложенной насадки, зерен катализатора, производственная ориентация межфазной границы движущихся сред и т.п.) [2].

Традиционные методы расчета ХТП, основанные на учете при вычислениях упрощенных механизмов их протекания. Абсолютно не удовлетворяют современным требованиям [3].

Ключ к решению этих проблем дает метод математического моделирования, базирующийся на стратегии системного анализа, сущность которой заключается в представлении процесса как сложной взаимодействующей иерархической системы с последующим качественным анализом ее структуры, разработкой математического описания и оценкой неизвестных параметров.

Метод математического моделирования это исследование процессов на математических моделях, с целью предсказания результатов их протекания в реальных условиях. Модель это объект, отличающийся от оригинала всеми признаками кроме тех, которые нужно изучить.

При разработке математического описания объекта в настоящее время применяется два основных подхода: системный и эмпирический [1].

2. Расчет сушилок

Расчет сушильных аппаратов обычно проводят в следующей последовательности: составляют материальный баланс и определяют количество испаренной влаги (если нужно, по зонам); составляют тепловой баланс и находят требуемые количество теплоты, расходы топлива, пара, сушильного агента и т. д.; исходя из эмпирического коэффициента тепло- и массообмена или удельных напряжений на единицу объема аппарата или поверхности (греющей или решетки) находят размеры сушильной камеры, а также необходимое число сушилок; анализируют эффективность сушильной установки: степень совершенства сушилки как теплового агрегата можно оценивать энергетический кпд, который определяется как отношение полезно используемой энергии ко всей затраченной; изменение при сушке качества энергии сушильного агента учитывает эксергетический кпд - отношение полезно использованной эксэргии к затраченной.

2.1 Материальный баланс сушилок

Материальный баланс сушилки играет большую роль в расчётах процесса сушки. Сначала необходимо определить начальное щ1 и конечное щ2 влагосодержание продукта.

Влажность можно представить как отношение общего количества влаги W в материале к сумме W+Gсух.

Или же как отношение общего количества влаги W в материале к количеству абсолютно сухого веществаGсух.

Следовательно, влажность в % можно определить как:

(1)

Абсолютная влажность в % выражается так:

(2)

При необходимости связать общую и абсолютную влажность используют следующие формулы:

(3)

(4)

Ведём следующие обозначения:

G1 - количество влажного продукта, входящего в сушилку, кг/ч;
G2 - количество высушенного материала, выходящего из сушилки, кг/ч;
W - количество влаги, удаляемой из продукта.

Количество абсолютно сухого вещества можно определить по формуле (5):

(5)

Используя это уравнение, вычислим количество высушенного продукта:

(6)

Таким же образом определим количество продукта, поступающего на сушку:

(7)

По формуле (8) определим количество влаги, которое удаляется из продукта:

(8)

Так же можно воспользоваться формулой (9):

(9)

Выполняя расчёт сушильных установок, необходимо производительность сушилок относить по влажности или высушенному продукту к единице объёма сушильной камеры или поверхности нагрева. Эта величина называется напряжением сушилки. Она зависит от типа сушильного аппарата, влажности продукта и других факторов[1].

Введём следующие обозначения:

V - объём сушильной камеры, м3;

- время сушки, ч.

Найдём объём сушильной камеры по влагосодержанию, кг/(м3Чч):

(10)

где W - количество удаляемой влаги, кг.

2.2 Баланс влаги в сушилке

Пользуясь уравнениями материального баланса сушилки, можно найти расход сушильного агента (воздуха) в сушилке. Для этого необходимо составить уравнение баланса влаги. Если принять, что процесс сушки является установившимся и отсутствуют потери влаги, то она поступает в сушильную камеру с продуктом и сушильным агентом, а выводится с высушенным продуктом и отработанным сушильным агентом [3]. В этом случае уравнение баланса влаги можно записать в следующем виде:

(11)

Где L - количество абсолютно сухого воздуха, который необходим для процесса сушки, кг/ч;

d1 и d2 - влагосодержание сушильного агента (воздуха) на входе и выходе из сушильной камеры, г/кг сухого воздуха.

Удельный расход сухого воздуха на 1 кг испаряемой влаги равен l=L/W. Отсюда определим удельный расход сухого воздуха, кг/кг:

(12)

Калорифер нагревает воздух от температуры t0 до температуры t1. При этом количество влаги в сушильной камере остаётся неизменным, т.е. d0=d1. Исходя из этого запишем формулу (12) в виде:

(13)

2.3 Тепловой баланс сушилки

Чтобы составить тепловой баланс сушилки по теплу, которое передано установке (рисунок 1), нужно учитывать, что подводимое к сушилке тепло  для общих случаев будет складываться из  (тепла нагревания сушильного агента) и  (дополнительно подводимого тепла).

Рис. 1 - Принципиальная схема сушилки [1]

Чтобы составить тепловой баланс необходимо ввести обозначения:

- средняя удельная теплоемкость в (Дж/кг?К): сушильного агента; влаги; которая удаляется в процессе сушки; самого продукта и транспортировочных устройств сушилки;

- соответственно температура воздуха до его попадания в воздухоподогревательное устройство и на выходе из сушилки, °С;

- температура продукта перед входом в сушилку и на выходе из нее, °С;

- вес транспортных механизмов, кг;

- температура транспортного механизма на входе и выходе из сушильной установки, °С;

- энтальпия водяного пара в свежем воздухе и отработанном, Дж/кг.

Баланс тепла выражают так:

Приход:

Расход:

С сушильным агентом

С сушильным агентом

С обрабатываемым материалом

С готовой продукцией

С влагой, которая удаляется из продукта

С удаленной из продукта влагой

Физическое тепло транспортных механизмов

Физическое тепло нагретых транспортных механизмов

Подводимое тепло

Потери тепла в атмосферу

Тепловой баланс выражается следующим равенством:

(14)

Будем решать уравнение (14) по подводимому теплу Q.

(15)

Исходя из этого уравнения можно сказать, на что тратится тепло, которое подводится в сушилку:

1) расход тепла с уходящим сушильным агентом:

2) на процесс испарения влаги из продукта:

3) на нагрев высушенного материала:

4) на нагрев транспортных механизмов:

5) в атмосферу .

Исходя из этого уравнение (14) может принять вид:

(16)

Чтобы можно было сравнивать работу различных видов сушильных установок, лучше всего тепловой расчет вести на 1 кг испаренной влаги.

В уравнении (15) разделим все члены на величину W, которая обозначает количество испаренной влаги, и обозначим через строчные буквы удельный расход тепла и сушильного агента. В результате получится:

(17)

Теперь проведем преобразование первых двух членов уравнения (17) исходя из того, что теплоемкость влажного воздуха рассчитывается по формуле , энтальпия пара , а удельный расход воздуха . Получаем:

Теперь нужно сложить и вычесть из правой части только что полученного уравнения  и провести небольшие преобразования, в результате получим:

Теперь известное значение  подставляем в уравнение (17), получаем:

,

(18)

здесь  - сумма удельных расходов тепла в подогревающем воздух устройстве и сушильной установке.

Введем обозначение разницы величин:

Исходя из этого, уравнение (18) приводится к виду:

Рассчитаем количество тепла , которое вносится сушильным агентом:

,

(19)

здесь  - тепло воздуха из атмосферы,

- тепло, которое получил воздух в воздухоподогревателе.

Из (19) , а значит

.

(20)

Вынесем  за скобки и, подставив , поучим уравнение вида:

Учитываем, что , окончательно выражение принимает вид:

(21)

Данное уравнение является уравнением теплового баланса сушильных камер конвективного типа [1].

3. Моделирование процесса радиационно-конвективной сушки материала

По своей физической сущности сушка является сложным диффузионным процессом, скорость которого определяется скоростью диффузии влаги из глубины высушиваемого материала в окружающую среду. Удаление влаги при сушке сводится к перемещению теплоты и вещества (влаги) внутри материала и их переносу с поверхности материала в окружающую среду [2].

При испарении жидкости с поверхности капиллярно-пористого тела имеют место три случая [3]:

Поверхность тела покрыта сплошным слоем влаги (внешняя задача). В этом случае процесс массоуноса аналогичен испарению со свободной поверхности жидкости. При дополнительном подводе ИК-энергии скорость массоуноса не остается постоянной, как в классическом случае, а возрастает пропорционально величине поглощаемой мощности ИК-излучения. В связи с этим, данный период называется периодом условно постоянной скорости осушки.

Очаговое испарение, при котором процесс массоуноса происходит частично со свободной смоченной поверхности, а частично с осушенной, когда уровень жидкости в капиллярах совпадает с видимой геометрической поверхностью тела.

Поверхность испарения перемещается внутрь, в глубину материала с образованием прослойки, представляющей собой дополнительное сопротивление переносу теплоты и вещества изнутри продукта (внутренняя задача).

Таким образом, общая задача моделирования процессов тепломассопереноса при конвективной осушке продуктов с дополнительным подводом ИК-энергии, состоит из двух составляющих.

Первая математическая модель (внешняя задача) описывает период условно постоянной скорости осушки и связан с уносом свободной влаги с поверхности материала до достижения его воздушно-сухого равновесного состояния.

Вторая математическая модель описывает период убывающей скорости сушки, когда фронт испарения влаги проникает внутрь продукта.

Такой подход наиболее приемлем, так как в массе находящегося в аппарате материала присутствуют объекты, обрабатывающиеся в режиме как первого, так и второго периода одновременно [2].

В качестве модели материала принят плоский диск диаметром D и толщиной 2R. Ось X ориентирована вдоль поверхности, а Z перпендикулярна поверхности материала. Начало координатной системы выбрано на оси симметрии его поперечного сечения.

Период условно постоянной скорости сушки

В этот период влажный материал содержит как связанную (гигроскопическую), так и свободную влагу и поэтому носит название мокрого или сырого материала. Задача осушки сводится к внешней - к удалению свободной влаги.

При обтекании поверхности объекта потоком теплоносителя, в пограничном слое возникают градиенты скорости, температуры и влагосодержания.

Дифференциальные уравнения переноса для теплоносителя могут быть записаны в следующем виде [1].

Уравнение переноса массы:

Уравнение переноса теплоты:

Показано весьма слабое влияние фактора поперечного потока массы на процессы тепло- и массообмена в процессах испарения. Таким образом, в уравнениях (22) и (23) можно положить:

В период условно постоянной скорости сушки (внешняя задача) могут быть записаны уравнения сохранения энергии и массы для осушаемого объекта.

Плотность потока массы определяется механизмом перемещения влаги внутри материала в виде пара или жидкости (влагопроводность, термовлагопроводность, бародиффузия) и механизмом перемещения влаги с поверхности материала в окружающую среду через пограничный слой при естественной или вынужденной конвекции, а так же энергетикой испарения (удельная теплота, испарения, структура, размер и форма капилляров, энергия связи влаги).

Общее выражение для плотности потока влаги в капиллярно-пористом теле (в направлении оси Z) записывается [2] в виде соотношения:

В таком случае уравнение сохранения массы для образца может быть записано в форме уравнения (22), а уравнение сохранения энергии для осушаемого плоского двумерного объекта, в условиях пренебрежения термическим сопротивлением тонкой пленки влаги, может быть записано в классическом виде [3]:

Для решения уравнений (22), (23), (24) тепломассопереноса в первом периоде сушки необходимо сформировать условия однозначности - краевые условия.

С учетом фазового перехода при испарении воды со свободной поверхности, граничные условия третьего рода для уравнений (22) и (23) примут вид:

Начальные условия записываются в следующем виде:

±R - координаты Z для верхней и нижней поверхности материала при толщине 2R;

п - индекс для поверхности объекта.

Следует отметить, что граничные условия 3 рода для уравнения (24) при указанном способе осушки материала записываются в форме уравнения (26).

Начальные условия записываются в следующем виде:

Период убывающей скорости сушки

Необходимость рассмотрения этой фазы процесса сушки обусловлена, как отмечалось ранее, наличием объектов находящихся в стадии не только первого, но и второго периода - убывающей скорости сушки [3], когда фронт испарения проник внутрь материала по координате z.

Во втором периоде сушки удаляется гигроскопическая (связанная) влага, ввиду того, что вся свободная влага с поверхности материала удалена. Таким образом, в условиях пренебрежения бародиффузией [2], движущей силой процесса массоуноса является градиент влагосодержания и температуры.

В этом случае совместная система уравнений тепло- и массопереноса записывается в следующем виде:

математический моделирование сушка уравнение

В начальный момент времени температуру tн и влагосодержание Uо(t) материала принимаем постоянными:

При этом следует иметь в виду, что Uо(t) - гигроскопическое влагосодержание объекта, установившееся к моменту окончания осушки свободной влаги с поверхности.

Граничные условия могут быть записаны в виде:

Поставленная задача (22)-(34) не может быть решена аналитически без существенного упрощения в связи с математическими трудностями, обусловленными как нелинейностью, так и переменностью коэффициентов переноса. Поэтому следующим этапом реализации искомого решения целесообразно выбрать переход к критериальным уравнениям[3].

При переходе к уравнениям подобия рассмотрен период условно постоянной скорости осушки.

Преобразуя полученные дифференциальные уравнения (22), (23) и краевые условия (24), (26) к безразмерному виду и принимая в качестве определяемого критерий Нуссельта, связанная система уравнений подобия совместного тепломассопереноса для момента времени, соответствующего максимальной разности движущих потенциалов, преобразуется к следующему обобщенному виду:

Заключение

Вопрос математического моделирования процесса осушки поверхностной влаги материалов после товарной обработки является актуальным, так как определяет сроки их длительного хранения.

Метод математического моделирования позволяет учесть наибольшее количество факторов и явлений, которые влияют на реальное протекание процесса сушки.

Главная трудность сушильного процесса заключается в перемещении влаги из средней зоны сортимента. Эффективность сушки во многом определяется возможностью оперативного управления этим процессом и поддержания режимных параметров на заданном уровне, что позволяет математическое моделирование.

Модель позволяет количественно рассчитать скорость газа, влагосодержание частиц, газа, а также другие физические величины и все необходимые коэффициенты. Метод позволяет повысить точность расчета, благодаря чему впоследствии могут быть снижены коэффициенты запаса для обеспечения надежности оборудования химических производств, что ведет к экономии энергетических, материальных и других ресурсов.

Список литературы

1. Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: Химия, 1971. - 784 с.

2. Кафаров В.В., Глебов М.Б. Математическое моделирование основных процессов химических производств. - М.: Высшая школа, 1991. - 400 с.

3. Гартман Т.Н., Клушин Д.В. Основы компьютерного моделирования химико-технологических процессов. - М.: Академкнига, 2006. - 416 с.

Размещено на Allbest.ru


Подобные документы

  • Экономико-математическое моделирование как метод научного познания, классификация его процессов. Экономико-математическое моделирование транспортировки нефти нефтяными компаниями на примере ОАО "Лукойл". Моделирование личного процесса принятия решений.

    курсовая работа [770,1 K], добавлен 06.12.2014

  • Разработка оптимального режима процесса получения максимального выхода химического вещества. Обоснование выбора методов получения математической модели и оптимизации технологического процесса. Входная и выходная информация, интерпретация результатов.

    курсовая работа [114,9 K], добавлен 08.07.2013

  • Математическое моделирование технических объектов. Моделируемый процесс получения эмульгатора. Определение конструктивных параметров машин и аппаратов. Математический аппарат моделирования, его алгоритм. Создание средств автоматизации, систем управления.

    курсовая работа [32,3 K], добавлен 29.01.2011

  • Концептуальное математическое моделирование поведения химического реактора, работающего в адиабатическом режиме. Оптимизация конструктивных и технологических параметров объекта. Построение статических и динамических характеристик по различным каналам.

    курсовая работа [1,3 M], добавлен 05.01.2013

  • Изучение экономических показателей и особенностей повышения эффективности химического производства, которое достигается различными методами, одним из которых является метод математического моделирования. Анализ путей снижения затрат на производство.

    курсовая работа [41,2 K], добавлен 07.09.2010

  • Составление математической модели транспортной задачи закрытого типа, представленной в матричной форме, с ограничениями пропускной способности. Поиск оптимального плана, при котором выполняется условие наименьшего суммарного пробега порожних вагонов.

    контрольная работа [60,5 K], добавлен 20.03.2014

  • Создание математической модели для оперативного мониторинга продажи услуг в Региональном филиале ОАО "Сибирьтелеком"-"Томсктелеком". Преимущества, стоимость и основные перспективы развития услуг ISDN. Математическое моделирование dial-up подключений.

    дипломная работа [2,8 M], добавлен 20.09.2010

  • Графический метод решения и построение экономико-математической модели производства. Определение выручки от реализации готовой продукции и расчет оптимального плана выпуска продукции. Баланс производства проверка продуктивность технологической матрицы.

    задача [203,4 K], добавлен 03.05.2009

  • Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

    реферат [150,6 K], добавлен 21.06.2010

  • Модель оптимизации структуры сельскохозяйственных угодий и условия оптимизации. Состав переменных и ограничений. Анализ оптимального решения. Модель формирования многоукладного землевладения и землепользования. Математические подходы и схема реализации.

    курсовая работа [68,6 K], добавлен 02.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.