Математическая модель системы в переменных пространства состояний
Движение системы в переменных пространства состояний. Переходные процессы в системе. Ступенчатые воздействия по каналам управления. Устойчивость и неустойчивость линейной многомерной системы. Характер движения динамической системы. Матрица управляемости.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 26.01.2009 |
Размер файла | 76,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 10 -
МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ СИСТЕМ В ПЕРЕМЕННЫХ ПРОСТРАНСТВА СОСТОЯНИЙ
ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Математическая модель системы в переменных пространства состояний имеет вид
, (2.1.1)
(2.1.2)
где мерный вектор параметров состояний; мерный вектор управляющих воздействий; мерный вектор возмущающих воздействий; l- мерный вектор выходов; А - матрица состояний системы размерности ; В - матрица управлений размерности ; Г - матрица возмущений размерности ; С - матрица выходов размерности ln; D - матрица компенсаций (обходов) размерности lm.
Решение векторного дифференциального уравнения (2.1.1) имеет следующий вид:
, (2.1.3)
где - экспоненциал матрицы А.
Подставляя выражение (2.1.3) в формулу (2.1.2), получаем интегральное уравнение движения системы в переменных «вход - выход».
Рассмотрение движения системы в переменных пространства состояний связано с трудностью решения дифференциальных уравнений n-го порядка, описывающих движение системы в переменных «вход - выход», и с хорошо разработанными методами решения систем дифференциальных уравнений первого порядка.
2.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 2.2.1
Определить переходные процессы в системе
(2.2.1)
, (2.2.2)
под действием ступенчатых воздействий по каналам управления
и возмущения .
Решение
В соответствии с выражениями (2.1.2), (2.1.3) запишем уравнение движения системы в интегральной форме
. (2.2.3)
Учитывая, что u(t)=u*1(t)=u, r(t)=r*1(t)=r и t0=0, представим выражение (2.2.3) в виде
. (2.2.4)
Для нахождения экспоненциала матрицы А определим корни характеристического уравнения , то есть
и .
Так как корни различные действительные и матрица А диагональная, то ее экспоненциал равен
. (2.2.5)
Подставляя выражения (2.2.5) в формулу (2.2.4) и последовательно проводя преобразования, получаем
=
.
Следовательно, уравнение движения рассматриваемой системы в переменных «вход - выход» имеет вид:
.
УСТОЙЧИВОСТЬ
ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Устойчивость или неустойчивость линейной многомерной системы (2.1.1) определяется ее свободным движением ( ), которое характеризуется собственными числами матрицы А, определяемыми из характеристического уравнения
(3.1.1)
Линейная система (2.1.1) устойчива тогда и только тогда, когда все вещественные части собственных (характеристических) чисел лj=лj(A) (j=1,…,n) имеют неположительные значения, т.е. Reлj. Если Reлj<0, то система асимптотически устойчива.
Характеристическое уравнение (3.1.1) можно записать в виде
???n????n-1??????n?????n??0. (3.1.2)
Условия устойчивости для системы n-го порядка записываются в виде определителей Гурвица, получаемых из квадратной матрицы коэффициентов характеристического уравнения (3.1.2).
.
Для устойчивости линейной системы по критерию Гурвица необходимо и достаточно, чтобы при б0>0 были положительными и все n диагональных определителей Гурвица, то есть ДI>0 (i=l,...,n). Положительность последнего определителя Гурвица
Дn=бnДn-1 (3.1.3)
при Дn-1>0 сводится к положительности свободного члена бn характеристического уравнения.
3.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 3.2.1
Определить устойчивость и характер свободного движения динамической системы, заданной в пространстве состояний векторными уравнениями
, (3.2.1)
. (3.2.2)
Решение.
Запишем для системы (3.2.1) характеристическое уравнение (3.1.1)
, (3.2.3)
решение которого дает следующие корни:
.
Рассматриваемая динамическая система является устойчивой. Ее свободное движение носит апериодический сходящийся характер, так как вещественные части корней характеристического уравнения отрицательные.
Задача 3.2.2
Определить устойчивость динамической системы, заданной в пространстве состояний векторно-матричными уравнениями
, , (3.2.4)
. (3.2.5)
Решение.
Запишем для системы (3.2.4) характеристическое уравнение (3.1.1)
. (3.2.6)
Раскроем скобки и приведем подобные члены, получим следующее характеристическое уравнение:
. (3.2.7)
Устойчивость системы будем определять на основе алгебраического критерия устойчивости Гурвица, составив для этого по уравнению (3.2.7) матрицу Гурвица
. (3.2.8)
Для устойчивости линейной системы по критерию Гурвица необходимо и достаточно, чтобы при положительности коэффициента при старшей степени (в нашем случае коэффициент при л3 равен 1) были положительными и все n диагональных определителей Гурвица, то есть Дi>0 (i=1,2,3)
, .
В соответствии с вышеизложенным находим, что свободный член характеристического уравнения (3.2.7) равный 54 - положительный.
Следовательно, система (3.2.4) является устойчивой.
УПРАВЛЯЕМОСТЬ
ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Управляемость системы (2.1.1), (2.1.2) по состояниям определяется теоремой (критерием) Калмана: система будет управляемой тогда и только тогда, когда ранг матрицы управляемости Lc размерности равен n, то есть
rankn, (4.1.1)
где
. (4.1.2)
Если rank<n, то система будет частично управляемой, а при rank=0 - полностью неуправляемой.
Управляемость системы (2.1.1), (2.1.2) по выходам (критерий Калмана): система будет управляемой тогда и только тогда, когда ранг матрицы управляемости размерности равен l то есть
rank=l, (4.1.3)
где
. (4.1.4)
Если rank<l, то система будет частично управляемой по выходам, а при rank=0 - полностью неуправляемой.
Показатель степени n в выражениях (4.1.2), (4.1.4) соответствует размерности вектора состояний.
4.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 4.2.1
Определить управляемость динамической системы по состояниям, заданной векторными уравнениями
,
(4.2.1)
. (4.2.2)
Решение.
В соответствии с выражением (4.1.2) запишем матрицу управляемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
Следовательно, матрица управляемости имеет вид
,
и ее ранг rank2, то есть настоящая система полностью управляема по состояниям.
Задача 4.2.2
Определить управляемость по выходам динамической системы, заданной векторными уравнениями
,
.
Решение.
В соответствии с выражением (4.1.2) запишем матрицу управляемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
.
Следовательно, матрица управляемости имеет вид
,
и ее ранг rank=2, то есть настоящая система полностью управляема по выходам.
5. НАБЛЮДАЕМОСТЬ
5.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Наблюдаемость системы (2.1.1), (2.1.2) определяется теоремой (критерием) Калмана: система будет вполне наблюдаемой тогда и только тогда, когда ранг матрицы наблюдаемости L0 размерности равен n, то есть
rankn, (5.1.1)
где
. (5.1.2)
Если rank<n, то система будет не вполне наблюдаемой, а при rank=0 - полностью ненаблюдаемой.
5.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 5.2.1
Определить наблюдаемость динамической системы, заданной векторными уравнениями
.
Решение.
В соответствии с выражением (5.1.2) запишем матрицу наблюдаемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
Следовательно, матрица наблюдаемости имеет вид
,
и ее ранг rank2, то есть настоящая система полностью наблюдаема.
Подобные документы
Методика формирования математической модели в операторной форме, а также в форме дифференциального уравнения и в пространстве состояний. Построение графа системы. Оценка устойчивости, управляемости, наблюдаемости системы автоматического управления.
контрольная работа [200,4 K], добавлен 03.12.2012Критерий оптимальности и матрица ЭММ распределения и использования удобрений. Расчет технико-экономических коэффициентов и констант. Основные переменные в экономико-математической задаче. Математическая запись системы ограничений и системы переменных.
контрольная работа [402,9 K], добавлен 18.11.2012Двумерные автономные динамические системы. Классификация состояний равновесия динамических систем второго порядка. Определение автономной системы дифференциальных уравнений и матрицы линеаризации системы. Фазовый портрет системы Лотки–Вольтерра.
лабораторная работа [1,1 M], добавлен 22.12.2012Линеаризация математической модели регулирования. Исследование динамических характеристик объекта управления по математической модели. Исследование устойчивости замкнутой системы управления линейной системы. Определение устойчивости системы управления.
курсовая работа [1,6 M], добавлен 07.08.2013Понятие и критерии оценивания системы массового обслуживания, определение ее типа, всех возможных состояний. Построение размеченного графа состояний. Параметры, характеризующие ее работу, интерпретация полученных характеристик, эффективность работы.
контрольная работа [26,2 K], добавлен 01.11.2010Математическая модель установки, преобразование в пространство состояний, в дискретное время. Моделирование замкнутой системы, оценка качества переходных процессов. Преобразование регулятора в форму, отвечающую ее реализации в программном обеспечении.
курсовая работа [1,1 M], добавлен 25.10.2010Подсчет запасов устойчивости контуров по амплитуде и фазе в трактовке критерия Найквиста. Проверка устойчивости объекта по двум замкнутым контурам. Составление цифровой модели объекта для системы Simulink. Переходные характеристики объекта управления.
курсовая работа [748,6 K], добавлен 19.02.2012Структура многоуровневой системы. Математическая модель конфликтной ситуации с выбором описания и управляющих сил. Понятия стабильности и эффективности. Оценка конкурентоспособности производственного предприятия на основе статической модели олигополии.
дипломная работа [1,6 M], добавлен 23.09.2013Изучение математической теории, развивающей формальные методы для исследования взаимосвязей и отношений состояний знаний субъектов в определенной предметной области. Понятие карты навыков. Рассмотрение отношений между состояниями знаний и навыками.
дипломная работа [263,5 K], добавлен 12.10.2015Понятие и структура интеллектуальной системы. Математическая теория нечетких множеств. Причины распространения системы Fuzzy-управления. Предпосылки для внедрения нечетких систем управления. Принципы построения системы управления на базе нечеткой логики.
реферат [68,3 K], добавлен 31.10.2015