Основы эконометрики
Множественная корреляция и линейная регрессия. Оценка прогнозных качеств модели. Простейшие методы линеаризации. Вероятностный эксперимент, событие или вероятность. Фиктивные переменные в регрессионных моделях. Системы эконометрических уравнений.
Рубрика | Экономико-математическое моделирование |
Вид | курс лекций |
Язык | русский |
Дата добавления | 13.02.2014 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Также коэффициент линейной корреляции может быть близок (равен) нулю, когда между признаками есть связь, но она нелинейная (рис.2).
При оценке тесноты связи можно использовать следующую условную таблицу:
Теснота связи |
Величина коэффициента корреляции при наличии |
||
прямой связи (+) |
обратной связи (?) |
||
Связь отсутствует |
|||
Связь слабая |
|||
Связь умеренная |
|||
Связь сильная |
|||
Полная функциональная |
Заметим, что в числителе формулы для выборочного коэффициента линейной корреляции величин и с тоит их показатель ковариации:
Этот показатель, как и коэффициент корреляции характеризует степень линейной связи величин и . Если он больше нуля, то связь между величинами положительная, если меньше нуля, то связь - отрицательная, равен нулю - линейная связь отсутствует.
В отличие от коэффициента корреляции показатель ковариации нормирован - он имеет размерность, и его величина зависит от единиц измерения и . В статистическом анализе показатель ковариации обычно используется, как промежуточный элемент расчёта коэффициента линейной корреляции. Т.о. формула расчёта выборочного коэффициента корреляции приобретает вид:
3.2 Оценка значимости (достоверности) коэффициента корреляции
Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции, который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):
,
где - теоретический показатель ковариции, который вычисляется как математическое ожидание произведений отклонений СВ и от их математических ожиданий.
Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю не следует, что теоретический коэффициент также (т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.
Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.
Всегда существует ошибка коэффициента корреляции. Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:
при ; и при .
Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.
С этой целью проверяется нулевая гипотеза о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е. в генеральной совокупности отсутствует корреляция. Альтернативной является гипотеза .
Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:
.
Которая имеет распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента определяется критическое значение . Если рассчитанное значение критерия , то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью .
Если же , тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.
Пример 1. В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление .
10 |
12 |
11 |
12 |
14 |
15 |
17 |
20 |
||
7 |
8 |
8 |
10 |
11 |
12 |
14 |
16 |
Изучить и измерить тесноту взаимосвязи между заданными показателями.
4. Парная линейная регрессия. Метод наименьших квадратов
Коэффициент корреляции указывает на степень тесноты взаимосвязи между двумя признаками, но он не дает ответа на вопрос, как изменение одного признака на одну единицу его размерности влияет на изменение другого признака. Для того чтобы ответить на этот вопрос, пользуются методами регрессионного анализа.
Регрессионный анализ устанавливает форму зависимости между случайной величиной и значениями переменной величины , причем, значения считаются точно заданными.
Уравнение регрессии - это формула статистической связи между переменными.
Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией (нескольких переменных - множественной).
Выбор формулы зависимости называется спецификацией уравнения регрессии. Оценка значений параметров выбранной формулы называется параметризацией.
Как же оценить значения параметров и проверить надёжность сделанных оценок?
Рассмотрим рисунок
На графике (а) взаимосвязь х и у близка к линейной, прямая линия 1 здесь близка к точкам наблюдений и последние отклоняются от неё лишь в результате сравнительно небольших случайных воздействий.
· На графике (б) реальная взаимосвязь величин х и у описывается нелинейной функцией 2, и какую бы мы ни провели прямую линию (например, 1), отклонения точек от неё будут неслучайными.
· На графике (в) взаимосвязь между переменными х и у отсутствует, и результаты параметризации любой формулы зависимости будут неудачными.
Начальным пунктом эконометрического анализа зависимостей обычно является оценка линейной зависимости переменных. Всегда можно попытаться провести такую прямую линию, которая будет "ближайшей" к точкам наблюдений по их совокупности (например, на рисунке (в) лучшей будет прямая 1, чем прямая 2).
Теоретическое уравнение парной линейной регрессии имеет вид:
,
где называются теоретическими параметрами (теоретическими коэффициентами) регрессии; - случайным отклонением (случайной ошибкой).
В общем виде теоретическую модель будем представлять в виде:
.
Для определения значений теоретических коэффициентов регрессии необходимо знать все значения переменных Х и Y, т.е. всю генеральную совокупность, что практически невозможно.
Задача состоит в следующем: по имеющимся данным наблюдений , необходимо оценить значения параметров .
Пусть а - оценка параметра , b - оценка параметра .
Тогда оценённое уравнение регрессии имеет вид:,
где теоретические значения зависимой переменной y, - наблюдаемые значения ошибок . Это уравнение называется эмпирическим уравнением регрессии. Будем его записывать в виде .
В основе оценки параметров линейной регрессии лежит Метод Наименьших Квадратов (МНК) - это метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.
.
Функция Q является квадратичной функцией двух параметров a и b. Т.к. она непрерывна, выпукла и ограничена снизу (), поэтому она достигает минимума. Необходимым условием существования минимума является равенство нулю её частных производных по a и b:
.
Разделив оба уравнения системы на n, получим:
или
Иначе можно записать:
и средние квадратические отклонения значений тех же признаков.
Т.о. линия регрессии проходит через точку со средними значениями х и у , а коэффициент регрессии b пропорционален показателю ковариации и коэффициенту линейной корреляции.
Если кроме регрессии Y на X для тех же эмпирических значений найдено уравнение регрессии X на Y (, где ), то произведение коэффициентов :
.
Коэффициент регрессии это величина, показывающая, на сколько единиц размерности изменится величина при изменении величины на одну единицу ее размерности. Аналогично определяется коэффициент .
Как и коэффициент корреляции, коэффициент регрессии может принимать и положительные и отрицательные значения. Например, если коэффициент имеет знак "", то это означает, что при увеличении значения признака на единицу его размерности значение признака уменьшается на величину, равную .
Уравнения линейной регрессии являются уравнениями прямых линий в плоскости , проходящих внутри соответствующего корреляционного поля. Такие линии называются линиями регрессии.
Для того, чтобы полученные МНК оценки обладали желательными свойствами, сделаем следующие предпосылки об отклонениях :
1) величина является случайной переменной;
2) математическое ожидание равно нулю: ;
3) значения независимы между собой. Откуда вытекает, в частности, что
4) дисперсия постоянна: ;
5) ошибки подчиняются нормальному распределению ~ (это условие не является обязательным, но оно необходимо для проверки статистической значимости найденных оценок и определения для них доверительных интервалов).
Если условия 1)-4) выполняются, то оценки, сделанные с помощью МНК, обладают следующими свойствами:
1. Оценки являются несмещёнными (т.е. математическое ожидание каждого параметра равно его истинному значению ).
2. Оценки состоятельны (дисперсия оценок параметров при возрастании числа наблюдений стремится к нулю: ). Иначе говоря, надёжность оценки при возрастании выборки растёт. Если n велико, то почти наверняка a близко к , а b близко к .
3. Оценки эффективны, они имеют наименьшую дисперсию по сравнению с любыми другими оценками данного параметра, линейными относительно величин .
Пример 1.
По данным примера 1 оценить параметры уравнения линейной регрессии.
5. Оценка качества полученного уравнения (верификация)
Расчёт значений параметров уравнения регрессии - лишь первый шаг на пути решения проблемы количественного оценивания зависимости одной переменной от другой (других) переменных.
Следующим этапом решения этой проблемы является оценка качества построенного уравнения, вынесения суждения относительно его отдельных параметров и степени пригодности в целом.
Анализ качества оценённой зависимости включает статистическую и содержательную составляющие. Проверка статистического качества состоит из следующих элементов:
1. Проверка общего качества.
2. Проверка статистической значимости каждого коэффициента уравнения регрессии и всего уравнения в целом.
3. Проверка предпосылок, лежащих в основе МНК.
Под содержательной составляющей анализа качества понимается рассмотрение экономического смысла оценённого уравнения регрессии: действительно ли значимыми оказались объясняющие факторы, важные с точки зрения теории; положительны или отрицательны коэффициенты, показывающие направление действия этих факторов; попали ли оценки коэффициентов регрессии в предполагаемые из теоретических соображений интервалы.
5.1 Оценка общего качества уравнения регрессии
Для анализа общего качества полученного уравнения регрессии на количественном уровне используют коэффициент детерминации . Он рассчитывается по формуле:
.
В числителе вычитаемой из единицы дроби стоит сумма квадратов отклонений (СКО) выборочных значений зависимой переменной от теоретических, найденных с помощью уравнения регрессии . В знаменателе - СКО наблюдений зависимой переменной от среднего значения.
Коэффициент детерминации характеризует долю вариации (разброса) зависимой переменной, объяснённой с помощью данного уравнения.
Замечание. В случае парной линейной регрессии коэффициент детерминации равен квадрату коэффициента линейной корреляции.
Более точным является значение коэффициента детерминации с поправкой на число степеней свободы.
Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы:
- дисперсия, характеризующая общий разброс;
- остаточная дисперсия, где m - число независимых (объясняющих) переменных, в случае парной регрессии m =1 и формула имеет вид: .
Учитывая приведённые выше обозначения, формула коэффициента детерминации с поправкой на число степеней свободы будет иметь вид:
.
Значения коэффициента изменяются от 0 до +1 (в редких случаях значение может быть и отрицательным числом).
Близость коэффициента детерминации к +1 свидетельствует о том, что существует статистически значимая линейная связь между переменными, а уравнение имеет хорошее качество.
Близость к 0 говорит о том, что просто горизонтальная прямая является лучшей по сравнению с найденной регрессионной прямой.
Самостоятельную важность коэффициент детерминации приобретает только в случае множественной регрессии.
5.2 Оценка существенности параметров линейной регрессии и всего уравнения в целом
После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.
Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.
Проверка значимости производится на основе дисперсионного анализа.
Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части - объясненную и необъясненную:
или, соответственно:
Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.
В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид .
Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.
Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.
Число степеней свободы (df-degrees of freedom) - это число независимо варьируемых значений признака.
Для общей СКО требуется (n-1) независимых отклонений,
Факторная СКО имеет одну степень свободы, и
Таким образом, можем записать:
Из этого баланса определяем, что = n-2.
Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: - общая дисперсия, - факторная, - остаточная.
Анализ статистической значимости коэффициентов линейной регрессии
Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик.
Дисперсии коэффициентов рассчитываются по формулам:
Дисперсия коэффициента регрессии :
,
где - остаточная дисперсия на одну степень свободы.
Дисперсия параметра :
Отсюда стандартная ошибка коэффициента регрессии определяется по формуле:
,
Стандартная ошибка параметра определяется по формуле:
.
Далее рассчитываются t - статистики:
,
Они служат для проверки нулевых гипотез о том, что истинное значение коэффициента регрессии b или свободного члена a равно нулю: .
Альтернативная гипотеза имеет вид: .
t - статистики имеют t - распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости б и степенях свободы находят критическое значение .
Если , то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми.
Если , то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид , и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде ).
Интервальные оценки коэффициентов линейного уравнения регрессии:
Доверительный интервал для а: .
Доверительный интервал для b:
Это означает, что с заданной надёжностью (где - уровень значимости) истинные значения а, b находятся в указанных интервалах.
Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль.
Анализ статистической значимости уравнения в целом.
Распределение Фишера в регрессионном анализе
Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y ( или ).
Величина F - критерия связана с коэффициентом детерминации. В случае множественной регрессии:
,
где m - число независимых переменных.
В случае парной регрессии формула F - статистики принимает вид:
.
При нахождении табличного значения F- критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы: - в случае множественной регрессии, - для парной регрессии.
Если , то отклоняется и делается вывод о существенности статистической связи между y и x.
Если , то вероятность уравнение регрессии считается статистически незначимым, не отклоняется.
Замечание. В парной линейной регрессии . Кроме того, , поэтому . Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.
Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен , затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение , для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть , пусть небольшую, вариации зависимой переменной).
Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина
,
имеющая распределение Фишера с степенями свободы.
По таблицам распределения Фишера, при заданном уровне значимости, находят . И если , то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно.
Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных.
В этом случае рассчитывается F - статистика
,
имеющая распределение . И если она превышает критический уровень, то включение новых переменных объясняет существенную часть необъяснённой ранее дисперсии зависимой переменной (т.е. включение новых объясняющих переменных оправдано).
Замечания. 1. Включать новые переменные целесообразно по одной.
2. Для расчёта F - статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы.
F - статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений.
Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида . Пусть СКО от линии регрессии (т.е. ) равны для них, соответственно, .
Проверяется нулевая гипотеза : о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же.
Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО .
Тогда рассчитывается F - статистика по формуле:
Она имеет распределение Фишера с степенями свободы. F - статистика будет близкой к нулю, если уравнение для обеих выборок одинаково, т.к. в этом случае . Т.е. если , то нулевая гипотеза принимается.
Если же , то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя.
5.3 Проверка предпосылок, лежащих в основе МНК
Следующим этапом оценивания качества уравнения является проверка выполнения предпосылок, лежащих в основе метода расчёта параметров МНК.
Предпосылками МНК являются:
1. случайный характер ошибок регрессии;
2. нулевая средняя величина ошибок регрессии, не зависящая от значения объясняющих переменных;
3. независимость распределения ошибок для различных наблюдений; в случае оценки уравнения на временных рядах - отсутствие автокорреляции ошибок;
4. постоянство дисперсии ошибок, её независимость от значений объясняющих переменных - гомоскедастичность (если эта предпосылка не выполняется, то имеет место гетероскедастичность ошибок);
5. нормальность распределения ошибок регрессии.
Для проверки выполнения каждой из предпосылок применения МНК имеются специальные тесты. Реализация многих из этих тестов предполагает значительный объём исходных данных.
Если распределение случайных ошибок не соответствует некоторым предпосылкам МНК, то следует корректировать модель.
Проверка первой предпосылки МНК
Прежде всего, проверяется случайный характер остатков - первая предпосылка МНК. С этой целью стоится график зависимости остатков от теоретических значений результативного признака (рис. 1). Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, теоретические значения хорошо аппроксимируют фактические значения .
Рис. 1. Зависимость случайных остатков от теоретических значений .
Возможны следующие случаи, если зависит от то:
Рис. 2. Зависимость случайных остатков от теоретических значений .
В этих случаях необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.
Проверка второй предпосылки МНК
Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что (или ). Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных.
Вместе с тем, несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин , что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью наряду с изложенным графиком зависимости остатков от теоретических значений результативного признака строится график зависимости случайных остатков от факторов, включенных в регрессию (рис. 3).
Рис. .3. Зависимость величины остатков от величины фактора .
Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений . Если же график показывает наличие зависимости и , то модель неадекватна. Причины неадекватности могут быть разные. Возможно, что нарушена третья предпосылка МНК и дисперсия остатков не постоянна для каждого значения фактора . Может быть неправильна спецификация модели и в нее необходимо ввести дополнительные члены от , например . Скопление точек в определенных участках значений фактора говорит о наличии систематической погрешности модели.
Замечание. Предпосылка о нормальном распределении остатков (пятая предпосылка) позволяет проводить проверку параметров регрессии и корреляции с помощью - и -критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, т.е. при нарушении пятой предпосылки МНК.
Совершенно необходимым для получения по МНК состоятельных оценок параметров регрессии является соблюдение третьей и четвертой предпосылок.
Автокорреляция ошибок. Статистика Дарбина-Уотсона
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е. и, в частности, между соседними отклонениями .
Автокорреляция (последовательная корреляция) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко - в пространственных данных.
Возможны следующие случаи:
Эти случаи могут свидетельствовать о возможности улучшить уравнение путём оценивания новой нелинейной формулы или включения новой объясняющей переменной.
В экономических задачах значительно чаще встречается положительная автокорреляция, чем отрицательная автокорреляция.
Если же характер отклонений случаен, то можно предположить, что в половине случаев знаки соседних отклонений совпадают, а в половине - различны.
Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.
1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .
От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.
Для обнаружения автокорреляции используют либо графический метод. Либо статистические тесты.
Графический метод заключается в построении графика зависимости ошибок от времени (в случае временных рядов) или от объясняющих переменных и визуальном определении наличия или отсутствия автокорреляции. Наиболее известный критерий обнаружения автокорреляции первого порядка - критерий Дарбина-Уотсона. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели. Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . А затем рассчитывается статистика Дарбина-Уотсона по формуле:
.
Статистика DW изменяется от 0 до 4. DW=0 соответствует положительной автокорреляции, при отрицательной автокорреляции DW=4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW = 2. Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона (- нижняя граница признания положительной автокорреляции) и (-верхняя граница признания отсутствия положительной автокорреляции) для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:
- положительная автокорреляция, принимается ;
- зона неопределенности;
- автокорреляция отсутствует;
- зона неопределенности;
- отрицательная автокорреляция, принимается .
Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .
Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:
Связь выражается формулой:
.
Значения r изменяются от -1 (в случае отрицательной автокорреляции) до +1 (в случае положительной автокорреляции). Близость r к нулю свидетельствует об отсутствии автокорреляции.
При отсутствии таблиц критических значений DW можно использовать следующее "грубое" правило: при достаточном числе наблюдений (12-15), при 1-3 объясняющих переменных, если , то отклонения от линии регрессии можно считать взаимно независимыми.
Либо применить к данным уменьшающее автокорреляцию преобразование (например автокорреляционное преобразование или метод скользящих средних).
Существует несколько ограничений на применение критерия Дарбина-Уотсона.
Критерий DW применяется лишь для тех моделей, которые содержат свободный член.
Предполагается, что случайные отклонения определяются по итерационной схеме
,
называемой авторегрессионной схемой первого порядка AR(1). Здесь - случайный член.
Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).
Критерий Дарбина - Уотсона не применим к авторегрессионным моделям, которые содержат в числе факторов также зависимую переменную с временным лагом (запаздыванием) в один период.
Для авторегрессионных моделей предлагается h - статистика Дарбина
,
где - оценка коэффициента автокорреляции первого порядка, D(c) - выборочная дисперсия коэффициента при лаговой переменной yt-1, n - число наблюдений.
Обычно значение рассчитывается по формуле , а D(c) равна квадрату стандартной ошибки Sc оценки коэффициента с.
Методы устранения автокорреляции. Авторегрессионное преобразование
В случае наличия автокорреляции остатков полученная формула регрессии обычно считается неудовлетворительной. Автокорреляция ошибок первого порядка говорит о неверной спецификации модели. Поэтому следует попытаться скорректировать саму модель. Посмотрев на график ошибок, можно поискать другую (нелинейную) формулу зависимости, включить неучтённые до этого факторы, уточнить период проведения расчётов или разбить его на части.
Если все эти способы не помогают и автокорреляция вызвана какими-то внутренними свойствами ряда {ei}, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR(1). (Авторегрессией это преобазование называется потому, что значение ошибки определяется значением той же самой величины, но с запаздыванием. Т.к. максимальное запаздывание равно 1, то это авторегрессия первого порядка).
Формула AR(1) имеет вид:
.
Где -коэффициент автокорреляции первого порядка ошибок регрессии.
Рассмотрим AR(1) на примере парной регрессии:
.
Тогда соседним наблюдениям соответствует формула:
(1),
(2).
Умножим (2) на и вычтем из (1):
.
Сделаем замены переменных
получим с учетом
:
(6).
Это преобразование называется авторегрессионным (преобразованием Бокса-Дженкинса).
Поскольку случайные отклонения удовлетворяют предпосылкам МНК, оценки а* и b будут обладать свойствами наилучших линейных несмещенных оценок. По преобразованным значениям всех переменных с помощью обычного МНК вычисляются оценки параметров а* и b, которые затем можно использовать в регрессии.
Т.о. если остатки по исходному уравнению регрессии автокоррелированы, то для оценки параметров уравнения используют следующие преобразования:
1) Преобразовать исходные переменные у и х к виду (3), (4).
2) Обычным МНК для уравнения (6) определить оценки а* и b.
3) Рассчитать параметр а исходного уравнения из соотношения (4).
4) Записать исходное уравнение (1) с параметрами а и b (где а - из п.3, а b берётся непосредственно из уравнения (6)).
Авторегрессионное преобразование может быть обобщено на произвольное число объясняющих переменных, т.е. использовано для уравнения множественной регрессии.
Для преобразования AR(1) важно оценить коэффициент автокорреляции с. Это делается несколькими способами. Самое простое - оценить с на основе статистики DW:
,
где r берется в качестве оценки с. Этот метод хорошо работает при большом числе наблюдений.
В случае, когда есть основания считать, что положительная автокорреляция отклонений очень велика (), можно использовать метод первых разностей (метод исключения тенденции), уравнение принимает вид
.
Из уравнения по МНК оценивается коэффициент b. Параметр а здесь не определяется непосредственно, однако из МНК известно, что .
В случае полной отрицательной автокорреляции отклонений ()
,
получаем уравнение регрессии:
или .
Вычисляются средние за 2 периода, а затем по ним рассчитывают а и b. Данная модель называется моделью регрессии по скользящим средним.
Проверка гомоскедастичности дисперсии ошибок
В соответствии с четвёртой предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию . Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность.
В качестве примера реальной гетероскедастичности можно привести то, что люди с большим доходом не только тратят в среднем больше, чем люди с меньшим доходом, но и разброс в их потреблении также больше, поскольку они имеют больше простора для распределения дохода.
Наличие гетероскедастичности можно наглядно видеть из поля корреляции (- графический метод обнаружения гетероскедастичности).
Наличие гомоскедастичности или гетероскедастичности можно видеть и по рассмотренному выше графику зависимости остатков от теоретических значений результативного признака .
Для множественной регрессии данный вид графиков является наиболее приемлемым визуальным способом изучения гомо- и гетероскедастичности.
При нарушении гомоскедастичности имеем неравенства: , где - постоянная дисперсия ошибки при соблюдении предпосылки. Т.е. можно записать, что дисперсия ошибки при наблюдении пропорциональна постоянной дисперсии: .
- коэффициент пропорциональности. Он меняется при переходе от одного значения фактора к другому.
Задача состоит в том, чтобы определить величину и внести поправку в исходные переменные. При этом используют обобщённый МНК, который эквивалентен обычному МНК, применённому к преобразованным данным.
Чтобы убедиться в обоснованности использования обобщённого МНК проводят эмпирическое подтверждение наличия гетероскедастичности.
При малом объёме выборки, что наиболее характерно для эмпирических исследований, для оценки гетероскедастичности может использоваться метод Гольдфельда-Квандта (в 1965 г. они рассмотрели модель парной линейной регрессии, в которой дисперсия ошибок пропорциональна квадрату фактора). Пусть рассматривается модель, в которой дисперсия пропорциональна квадрату фактора: , . А также остатки имеют нормальное распределение и отсутствует автокорреляция остатков.
Параметрический тест (критерий) Гольдфельда - Квандта:
1. Все n наблюдений в выборке упорядочиваются по величине x.
2. Вся упорядоченная выборка разбивается на три подвыборки (объёмом k, С, k.)
.
Исключаются из рассмотрения С центральных наблюдений. (По рекомендациям специалистов, объём исключаемых данных С должен быть примерно равен четверти общего объёма выборки n, в частности, при n =20, С=4; при n =30, С = 8; при n =60, С=16).
3. Оцениваются отдельные регрессии для первой подвыборки (k первых наблюдений) и для последней подвыборки (k последних наблюдений).
4. Определяются остаточные суммы квадратов для первой и второй групп. Если предположение о пропорциональности дисперсий отклонений значениям x верно, то .
5. Выдвигается нулевая гипотеза которая предполагает отсутствие гетероскедастичности.
Для проверки этой гипотезы рассчитывается отношение
,
которое имеет распределение Фишера с степеней свободы (здесь m - число объясняющих переменных).
Если , то гипотеза об отсутствии гетероскедастичности отклоняется при уровне значимости б.
Этот же тест может быть использован и при предположении об обратной пропорциональности между дисперсией и значениями объясняющей переменной . В этом случае статистика Фишера принимает вид:
.
При установлении гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Вид преобразования зависит от того, известны или нет дисперсии отклонений . Обобщенный метод наименьших квадратов (ОМНК)
При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов заменять обобщенным методом наименьших квадратов (ОМНК).
Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности. Рассмотрим ОМНК для корректировки гетероскедастичности. Будем предполагать, что среднее значение остаточных величин равно нулю , а дисперсия пропорциональна величине .
,
где - дисперсия ошибки при конкретном -м значении фактора; - постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; - коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.
При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.
В общем виде для уравнения модель примет вид:
.
В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе -го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .
Иными словами, от регрессии по мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:
,
а исходные данные для данного уравнения будут иметь вид:
,.
По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные и взяты с весами .
Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида
.
Соответственно получим следующую систему нормальных уравнений:
,
Т.е. коэффициент регрессии при использовании обобщенного МНК с целью корректировки гетероскедастичности представляет собой взвешенную величину по отношению к обычному МНК с весом .
Если преобразованные переменные и взять в отклонениях от средних уровней, то коэффициент регрессии можно определить как
.
При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии определяется по формуле:.
Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии.
Для применения ОМНК необходимо знать фактические значения дисперсий отклонений . На практике такие значения известны крайне редко. Поэтому, чтобы применить ВНК, необходимо сделать реалистические предположения о значениях . В эконометрических исследованиях чаще всего предполагается, что дисперсии отклонений пропорциональны или значениям xi, или значениям , т.е или .
Если предположить, что дисперсии пропорциональны значениям фактора x, т.е. , тогда уравнение парной регрессии преобразуется делением его левой и правой частей на :
.
Здесь для случайных отклонений выполняется условие гомоскедастичности. Следовательно, для регрессии применим обычный МНК. Следует отметить, что новая регрессия не имеет свободного члена, но зависит от двух факторов. Оценив для неё по МНК коэффициенты а и b, возвращаемся к исходному уравнению регрессии.
Если предположить, что дисперсии , то соответствующим преобразованием будет деление уравнения парной регрессии на xi:
или, если переобозначить остатки как :
.
Здесь для отклонений vi также выполняется условие гомоскедастичности.
В полученной регрессии по сравнению с исходным уравнением параметры поменялись ролями: свободный член а стал коэффициентом, а коэффициент b - свободным членом. Применяя обычный МНК в преобразованных переменных
,
получим оценки параметров, после чего возвращаемся к исходному уравнению.
Пример. Рассматривая зависимость сбережений от дохода , по первоначальным данным было получено уравнение регрессии
.
Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:
.
Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 - оценки параметра зависимости сбережений от дохода.
В случае множественной регрессии ,
Если предположить (т.е. дисперсия ошибок пропорциональна квадрату первой объясняющей переменной), то в этом случае обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:
.
Следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.
Пример. Пусть - издержки производства, - объем продукции, - основные производственные фонды, - численность работников, тогда уравнение
является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результативного признака затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид
,
где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.
Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида
.
В нем новые переменные: - затраты на единицу (или на 1 руб. продукции), - фондоемкость продукции, - трудоемкость продукции.
В заключение следует отметить, что обнаружении гетероскедастичности и её корректировка являются весьма серьёзной и трудоёмкой проблемой. В случае применения обобщённого (взвешенного) МНК необходима определённая информация или обоснованные предположения о величинах .
корреляция линеаризация регрессионный эконометрический
6. Множественная корреляция и линейная регрессия
Значения экономических переменных обычно определяется влиянием не одного, а нескольких факторов. Например, спрос на некоторое благо определяется не только ценой данного блага, но и ценами на замещающие и дополняющие блага, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии рассматривается множественная регрессия , где - зависимая переменная (результативный признак), - независимые, или объясняющие, переменные (признаки-факторы).
Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
6.1 Спецификация модели. Отбор факторов при построении уравнения множественной регрессии
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.
Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.
1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
2. Факторы не должны быть интеркоррелированы (интеркорреляция - корреляция между объясняющими переменными) и тем более находиться в точной функциональной связи.
Включение в модель факторов с высокой интеркорреляцией, может привести к нежелательным последствиям - система нормальных уравнений может оказаться плохо обусловленной и повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.
Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.
Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией .
При дополнительном включении в регрессию фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:
и.
Если же этого не происходит и данные показатели практически не отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором.
Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по критерию Стьюдента.
Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют статистики для параметров регрессии.
Коэффициенты интеркорреляции позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.
Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:
Таблица
1 |
0,8 |
0,7 |
0,6 |
||
0,8 |
1 |
0,8 |
0,5 |
||
0,7 |
0,8 |
1 |
0,2 |
||
0,6 |
0,5 |
0,2 |
1 |
Очевидно, что факторы и дублируют друг друга. В анализ целесообразно включить фактор , а не , хотя корреляция с результатом слабее, чем корреляция фактора с , но зато значительно слабее межфакторная корреляция . Поэтому в данном случае в уравнение множественной регрессии включаются факторы , .
По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности.
Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:
1. Затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в "чистом" виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл.
2. Оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.
Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных
матрица коэффициентов корреляции между факторами имела бы определитель, равный единице:
.
Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:
.
Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.
Существует ряд подходов преодоления сильной межфакторной корреляции. Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.
Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если , то возможно построение следующего совмещенного уравнения:
.
Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по -критерию Фишера, но, как правило, взаимодействия третьего и более высоких порядков оказываются статистически незначимыми.
Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.
Подобные документы
Множественная линейная регрессия: спецификация модели, оценка параметров. Отбор факторов на основе качественного теоретико-экономического анализа. Коэффициент регрессии при фиктивной переменной. Проблемы верификации модели. Коэффициент детерминации.
контрольная работа [88,0 K], добавлен 08.09.2014Взаимосвязи экономических переменных. Понятие эконометрической модели. Коэффициент корреляции и его свойства. Линейная парная регрессия. Метод наименьших квадратов. Основные предпосылки и принципы регрессионного анализа. Статистика Дарбина-Уотсона.
шпаргалка [142,4 K], добавлен 22.12.2011Суть эконометрики как научной дисциплины, ее предмет и метод. Парная и множественная регрессия в экономических исследованиях. Регрессионные модели с переменной структурой. Обобщенный метод наименьших квадратов. Анализ систем экономических уравнений.
реферат [279,2 K], добавлен 11.09.2013Методика расчета линейной регрессии и корреляции, оценка их значимости. Порядок построения нелинейных регрессионных моделей в MS Exсel. Оценка надежности результатов множественной регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [3,6 M], добавлен 29.05.2010Построение уравнения регрессии. Эластичность степенной модели. Уравнение равносторонней гиперболы. Оценка тесноты связи, качества и точности модели. Индекс корреляции и коэффициент детерминации. Оценка статистической значимости регрессионных уравнений.
курсовая работа [1,3 M], добавлен 25.03.2015Зависимость объема выпуска продукции от объема капиталовложений. Оценка параметров регрессий. Линейный коэффициент парной корреляции. Прогнозные значения результативного признака. Построение интервального прогноза. Ширина доверительного интервала.
контрольная работа [192,8 K], добавлен 25.10.2011Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.
контрольная работа [176,4 K], добавлен 17.10.2014Основные этапы эконометрического исследования. Система совместных, одновременных уравнений. Понятие эконометрических уравнений. Система независимых уравнений. Пример модели авторегрессии. Система линейных одновременных эконометрических уравнений.
курсовая работа [41,2 K], добавлен 17.09.2009Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.
контрольная работа [136,3 K], добавлен 25.09.2014