Комплексный анализ рыбной отрасли

Характеристика рыбоперерабатывающей отрасли РФ. Эконометрический анализ выпуска рыбной продукции. Построение производственных функций. Построение статистической и динамической модели Леонтьева. Учет инфляции в этой модели. Построение модели Солоу.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 06.03.2008
Размер файла 628,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

734563

Эта модель довольно упрощенная, так как мы приняли такую схему экономики, как будто в ней присутствуют только 5 интересующих нас отраслей. На самом деле количество отраслей можно выделять до бесконечности. В основном его принимают равным 112 (в мировой практике). В упрощенном случае, суммы коэффициентов прямых затрат по горизонтали (то есть для конкретной отрасли-производителя равно 1). Произведение коэффициентов прямых затрат попарно на разницу валового выпуска и конечной продукции в сумме с конечной продукцией дает валовой выпуск.

Коэффициенты прямых затрат, расположенные по диагонали, показывают, какая часть выпуска отрасли идет на воспроизводство её же. В этом случае лидирует судоремонтная. А на последнем месте - рыбная.

2.4. Построение динамической модели Леонтьева

Любой процесс, в частности, процесс капи-тального строительства (или наращивания ОПФ), протекает во времени.

По этой причине датируем все экономические переменные рассмотренных символом

будем обозначать вектор валовых выпусков на текущий момент времени /; соот-ветствующий смысл имеют векторы и .

Очевидно, источником капитального строительства могут быть только конеч-ные продукции , отраслей производственного сектора. Иными словами, неотри-цательное слагаемое вектора , которое обозначим , называемое инвестиция-ми, может служить источником капитального строительства. Это соображение индуцирует разложение вектора на сумму двух слагаемых:

где -- вектор потребления и непроизводственного накопления. По сути, и будет теперь конечным спросом.

Итак, вектор инвестиций, вложенных в момент t в капитальное строитель-ство, позволяет увеличить на некоторую величину Д ОПФ; здесь

Д=-

приращение ОПФ на интервале времени [t, t + 1]. Связь векторов Д, и пола-гаем линейной

= D*?

где D = (dij) -- квадратная матрица; экономический смысл ее коэффициентов (dy) определим из подробной записи равенства:

Следовательно, коэффициент dij матрицы D равен количе-ству продукции отрасли i, необходимой для увеличения на единицу (в стоимост-ном выражении) фонда отрасли j. Коэффициенты dij именуются ко-эффициентами капиталоемкости приростов ОПФ.

Из баланса ОПФ следует связь прироста ДОПФ с при-ростом

Дхt = - валовых выпусков:

Комбинируя выражения, получим модель связи инвестиций с приростом валовых выпусков:

Где K - матрица так называемых коэффициентов капитальных затрат или капи-тальных коэффициентов. Капитальный коэффициент кij представляет «определяемый технологией запас особого типа благ -- машин, механических ин-струментов, промышленных зданий и сооружений, первичных и промежуточных материалов, производимых отраслью i, который используется в отрасли j для про-изводства единицы ее продукции». Другими словами, кij -- созданный в отрасли i основной капитал (в стоимостном выражении), который используется отраслью у при выпуске единицы (в стоимостном выражении) ее продукции.

Полная структурная форма ДММБ Леонтьева выглядит следующим образом:

Эта модель построена для определения та-кого вектора валовых выпусков, который, с одной стороны, был бы обеспечен необходимыми ОПФ, а с другой стороны, сам бы обеспечил желаемый уровень конечного спроса.

Порядок работы с моделью

Пусть t = 0. Из первого равенства находим

1)

2) из второго равенства определяем объем инвестиций в момент t = 0

3) соответствующие этим инвестициям приросты

основного капитала, приводящие к его запасу

который позволит в следующий момент времени t=1 осуществить валовые выпуски продукций

4) Подчеркнем, что при t= 0 суммарный вектор конечного потребления и инвестиции равен

а прирост валовых выпусков индуцирует в следующий момент t+1 = 1 при-рост

и, следовательно, его новое значение

Заметим, что продуктивность матрицы А (в ситуации прямой или косвенной зависимости каждой пары (i,j) отраслей производственного сектора.

Перед началом работы определим все 5*6 величин, характеризующих изменения валового выпуска 5 отраслей по 7 временным интервалам.

Рыбная

-25056

-46023

-27579

-9222

18357

-22098

-79866

Логистика

101607

-1499

56461

8932

226650

-181033

-583399

Судоремонтная

-7076

29510

9728

55934

-35028

15280

-432869

Пищевая

10100

11822

39809

-54373

12350

35889

-532456

Машино и приборо-строение

11706

2156

16085

-97206

36989

9201

-543768

Теперь воспроизведем матрицу D. Коэффициент dij матрицы D равен количе-ству продукции отрасли i, необходимой для увеличения на единицу (в стоимост-ном выражении) фонда отрасли j. Коэффициенты dij именуются ко-эффициентами капиталоемкости приростов ОПФ.

Производство продукции, B

Потребление продукции

Конечная продукция Y

 

Валовой выпуск

 

Рыбная

Логистика

Судоремонтная

Пищевая

Машино и приборо-строение

Рыбная

1

5,5

1,5

5

6

56700

101964

Логистика

6

1

5

4,5

3

56430

204324

Судоремонтная

4,5

5

1

6

6

390860

508326

Пищевая

5

5

5

1

6

787890

1289754

Машино и приборо-строение

4

4

5

4

1

323630

734563

Отрасль

при t=1

Рыбная

-25056

Логистика

101607

Судоремонтная

-7076

Пищевая

10100

Машино и приборо-строение

11706

Построим матрицу К коэффициентов капитальных затрат или капи-тальных коэффициентов.

Производство продукции, B

Потребление продукции

Конечная продукция Y

Валовой выпуск

Рыбная

Логистика

Судоремонтная

Пищевая

Машино и приборо-строение

Рыбная

0,8

4,4

1,2

4

4,8

56700

101964

Логистика

4,8

0,8

4

3,6

2,4

56430

204324

Судоремонтная

3,6

4

0,8

4,8

4,8

390860

508326

Пищевая

4

4

4

0,8

4,8

787890

1289754

Машино и приборо-строение

3,2

3,2

4

3,2

0,8

323630

734563

Теперь определим

Отрасль

при t=1

Рыбная

5,151*10^5

Логистика

-2,833*10^3

Судоремонтная

4,152*10^5

Пищевая

3,422*10^5

Машино и приборо-строение

2,583*10^5

Пусть Ф0 =0,

Отрасль

Ф при t=1

Рыбная

-20044,8

Логистика

81285,6

Судоремонтная

-5660,8

Пищевая

8080

Машино и приборо-строение

9364,8

Отрасль

y при t=1

Рыбная

-3,601*10^4

Логистика

7,575*10^4

Судоремонтная

2,697*10^3

Пищевая

1,824*10^4

Машино и приборо-строение

-8,428*10^3

Итак, мы имеем первый вектор

Отрасль

x при t=1

Ф при t=1

y при t=1

Рыбная

191487

-20044,8

-3,601*10^4

Логистика

372281

81285,6

7,575*10^4

Судоремонтная

364521

-5660,8

2,697*10^3

Пищевая

476859

8080

1,824*10^4

Машино и приборо-строение

564837

9364,8

-8,428*10^3

Аналогичным образом получаются таблицы для t = 2, 3, 4, 5, 6.

Отрасль

x при t=2

Ф при t=2

y при t=2

Рыбная

166431

-56863,2

-6,808*10^4

Логистика

473888

80086,4

-6,632*10^3

Судоремонтная

357445

17947,2

2,495*10^4

Пищевая

486959

17537,6

2,816*10^4

Машино и приборо-строение

576543

11089,6

5,698*10^3

Отрасль

x при t=3

Ф при t=3

y при t=3

Рыбная

120408

-78926,4

-4,702*10^4

Логистика

472389

125255,2

2,757*10^4

Судоремонтная

386955

25729,6

8,966*10^3

Пищевая

498781

49384,8

3,867*10^4

Машино и приборо-строение

578699

23957,6

-3,451*10^3

Отрасль

x при t=4

Ф при t=4

y при t=4

Рыбная

92829

-86304

-4,489*10^4

Логистика

528850

132400,8

5,323*10^4

Судоремонтная

396683

70476,8

3,166*10^4

Пищевая

538590

5886,4

-3,038*10^4

Машино и приборо-строение

594784

-53807,2

-6,271*10^4

Отрасль

x при t=5

Ф при t=5

y при t=5

Рыбная

83607

-71618,4

8,141*10^3

Логистика

537782

313720,8

1,671*10^5

Судоремонтная

452617

42454,4

-2,388*10^4

Пищевая

484217

15766,4

-2,626*10^3

Машино и приборо-строение

497578

-24216

-2,208*10^4

Отрасль

x при t=6

Ф при t=6

y при t=6

Рыбная

101964

-89296,8

-9,557*10^3

Логистика

764432

168894,4

-1,595*10^5

Судоремонтная

417589

54678,4

1,239*10^4

Пищевая

496567

44477,6

3,563*10^4

Машино и приборо-строение

534567

-16855,2

3,836*10^4

2.5. Учет инфляции в модели Леонтьева

Про учет инфляции можно сказать следующее. На основные производственные фонды она не повлияет в силу их физического выражения. На спрос потребителей инфляция, конечно, повлияет (потребление рыбы будет повышаться как предмета первой необходимости, а еще вследствие снижения уровня жизни, ухудшения здоровья). Но это уже аспект не только экономики, но и других сфер деятельности человека, поэтому сказать что-то определенное относительно изменения объема спроса сложно. А вот изменение выпуска вполне предсказуемо. Спрос порождает предложение, следовательно, так при инфляции деньги обесцениваются, спрос повысится, что вызовет снижение объема предложения при более высокой цене. Еще, конечно, необходимо учесть повышение цен на ресурсы производства для производителя. Упрощая схему, можно предположить, что реальный объем предложения будет равен в момент времени t: , где i - годовой рост инфляции. Тогда таблица измененных объемов выпусков будет выглядеть следующим образом по годам:

Отрасль

x при t=1

x при t=2

x при t=3

x при t=4

x при t=5

x при t=6

Рыбная

137821,51

90735,98

63657,45

52173,46

57902,22

137821,51

Логистика

392426,65

355978,65

362658,68

335593,26

434097,43

392426,65

Судоремонтная

296000,20

291598,07

272025,21

282447,56

237135,95

296000,20

Пищевая

403250,75

375866,90

369337,88

302166,97

281985,13

403250,75

Машино и приборо-строение

477435,26

436090,78

407872,90

310504,67

303564,16

477435,26

2.6. Построение магистральной модели

Модели межотраслевого баланса Леонтьева позво-ляют планировать траекторию функционирования производствен-ного сектора экономики. Так, в рамках динамической модели Леонтьева синхронно с траекторией валовых выпусков строятся сопутствующие траектории основных про-изводственных фондов и конечных спросов .

С научной и практической точки зрения важно существование в рамках модели сбалансированной траектории, такой, что

при t = 0, 1, 2, ...

? - const, ? > 1.

При этом траектории и , сопутствующие сбалансированной траектории, тоже являются сбалансированными и обладают тем же темпом роста ?, то есть

Возникают два вопроса:

1) Существует ли в СММБ и ДММБ сба-лансированная траектория , темп роста ?, которой максимален?

2) Если ответ на первый вопрос положителен, то чем траектория лучше любой другой «хорошей» (в некотором смысле) траектории?

Ответ на первый вопрос применительно к ДММБ несложно дать тотчас: константа ? в сбалансированной траектории единственна (это следует из ме-тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь-ным темпом роста ?. Уравнение элементов этой траектории выглядит так:

Сложнее обстоит дело с ответом на второй вопрос, поскольку этот ответ ба-зируется на специальной теории, развитой в рамках математической экономики для исследования производственного сектора при помощи общих теоретико-аналитических моделей «затраты-выпуск». Знакомство с важнейшими поня-тиями и моделями этой теории составляет содержание данного пункта. В итоге будет получен ответ на второй вопрос в форме точного математического утвер-ждения. Качественно же суть этого утверждения такова: при определенных условиях любая «хорошая» (в некотором смысле) траектория

экономики лишь только на начальном и конечном временном интервале, возможно, отклоняется от магистрали . Именно данное свойство магистралей обусловливает интерес к тем моделям «затраты-выпуск», в которых магистрали существуют. Модели «затраты-выпуск», в которых существуют магистрали, принято называть магистральными.

Первую магистральную модель построил в 30-х годах 20-го века выдаю-щийся американский математик Дж. фон Нейман. Эта модель, которую называ-ют моделью расширяющейся экономики фон Неймана, отказала глубокое воздействие на математическую экономику. Под-черкнем, что СММБ Леонтьева суть частный случай модели фон Неймана.

При обсуждении модели потребуется формализация понятий производства и производственного процесса.

Под производством понимается преобразование конкрет-ных количеств затрачиваемых продуктов в некоторые конкретные количества выпускаемых продуктов. Такое преобразование осуществляется при помощи заданной технологии Т. Технологическим (или производственным) процессом называется пара (, ), состоящая из конкретного вектора затрат и конкретно-го вектора выпусков.

Рассмотрим некоторый технологический процесс (ТП) (, ). Чтобы под-черкнуть, что его компоненты и связаны технологией Т, будем, при необ-ходимости, обозначать ТП еще и так: (Т).

Пусть Т - какая-то заданная технология. В общем случае она позволяет реа-лизовать некоторое множество М конкретных и различных ТП, как-то: (, ), (, ), ... Все эти ТП, собранные в множество М, принято именовать технологи-ческим множеством (ТМ) производственного сектора экономики. Так что

Модель Гейла

Моделью Гейла называется ТМ, элементы которого удовлетво-ряют 4-м условиям, как то:

1. Если , то =0 . Это естественное свойство принято называть не-осуществимостью «рога изобилия».

2. М представляет собой выпуклый конус в .

3. Для каждого номера i=1,2, ..., n, где n -- количество компонент векторов и , существует ТП такой, что компонента вектора положительна. Другими словами, свойство 3 означает, что каждый из n про-дуктов может быть произведен, так что невоспроизводимые ресурсы продуктами в модели Гейла не являются.

4. Множество М замкнуто в . Это свойство, означающее, что множество М содержит все свои предельные точки, имеет сугубо математическую подоплеку, доставляющую удобство в аналитических исследованиях.

Пусть М -- модель Гейла. В рамках модели М естественно задается динамика развития экономики. Пусть ; будем полагать, что вектор потребля-ется (в процессе производства) в текущий момент времени t, а вектор произ-водится в следующий момент (t+1). Тогда характеризует состояние экономики (в смысле запаса продуктов) в текущий момент t. Аналогично, вектор характеризует состояние экономики в следующий момент (t + 1), причем пара . Далее, вектор будет потребляться в мо-мент (t + 1), а в момент (t + 2) окажется произведенным вектор и т.д. Та-ким образом, осуществляется динамическое движение экономики

Это движение самоподдерживающееся, поскольку какой-либо приток извне, полагаем, отсутствует.

Последовательность называется допусти-мой траекторией в модели Гейла М на конечном интервале времени Т, если при t = 0, 1, 2, ..., T-1 справедливо отношение . Если Т бесконечно, то тра-ектория допустима на бесконечном интервале времени. Не равная тождественно нулю допустимая траектория называется траекторией сба-лансированного роста, если при t = 0, 1, 2,... справедливо равенство

,

в котором ? - положительная константа, темп роста сбалансированной траекто-рии. Сбалансированная траектория называется магистралью, если ее темп роста ? максимален.

Как следует из данного определения, магистраль, если она существует, принадлежит при всех t = 0, 1,2,... лучу

.

Этот луч принято называть неймановским лучом.

Понятие темпа роста определено выражением применительно к сба-лансированным траекториям модели Гейла.

Рассмотрим сначала специальное подмножество МоМ тривиальных ТП мо-дели Гейла, то есть таких процессов , у которых . Можно пока-зать (см. задачу 18 в конце гл. 9), пользуясь определением модели Гейла, что подмножество Мо состоит из одного элемента (,). Его темп роста определяем следующим образом

?(,) = 0.

Пусть теперь - любой нетривиальный ТП; его темп роста определяется так:

В правой части последнего равенства минимум берется по всем положитель-ным компонентам вектора .

Рассмотрим 2 последних выражения (9.6.16)-(9.6.17), задающих определение темпа роста любого ТП , или говоря иначе, определяющие на множестве М скалярную неотрицательную функцию . Каковы свойства этой функции? Отметим три из них.

1. Функция является положительно однородной функцией нулевой степени, то есть

,

при любом (> 0).

2. Значение функции удовлетворяет неравенству

3. В множестве М существует такой ТП , что

причем справедливо неравенство

.

Итак, для фармацевтической отрасли представлены данные по валовому выпуску и осуществленным соответствующим затратам для семи лет. Сведем эти данные в таблицу:

 

Материальные затраты, x

Выпуск, y

1

87573

101964

2

95515,9

191487

3

109837,86

166431

4

71931

120408

5

75687,8

92829

6

72835,49

83607

7

80921,5

101964

Графически это будет представлено так:

Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.

Тогда из представленного соотношения найдем темп роста экономики:

Константа ? в сбалансированной траектории единственна (это следует из ме-тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь-ным темпом роста ?. Уравнение элементов этой траектории выглядит так:

Тогда сбалансированная траектория выглядит следующим образом:

 

Материальные затраты, x

Сбал. выпуск, y

1

87573

100524,0139

2

95515,9

109641,5752

3

109837,86

126081,5841

4

71931

82568,7466

5

75687,8

86881,13301

6

72835,49

83607

7

80921,5

92888,83552

Глава 3

3.1. Доработки модели Леонтьева

Статистическая таблица модели Леонтьева, построенная с помощью коэффициентов прямых затрат выглядит следующим образом:

Производство продукции, B

Потребление продукции

Конечная продукция Y

 

Валовой выпуск

 

Рыбная

Логистика

Судоремонтная

Пищевая

Машино и приборо-строение

Рыбная

0,01

0,15

0,73

0,1

0,01

56700

101964

Логистика

0,04

0,2

0,1

0,3

0,36

56430

204324

Судоремонтная

0,3

0,01

0,6

0,05

0,04

390860

508326

Пищевая

0,5

0,01

0,1

0,3

0,09

787890

1289754

Машино и приборо-строение

0,2

0,2

0,1

0,2

0,3

323630

734563

Что можно сказать о полученных коэффициентах прямых затрат для фармацевтической отрасли. Как видно из таблицы, наиболее крупным потребителем продукции рыбной отрасли является судостроение, что не удивительно, так как большая часть рыбной продукции препаратов поступает по государственным программам. Если рассматривать рыбную отрасль как потребителя, то по предложенному разбиению на отрасли, видно, что пищевая промышленность поставляет большую часть продукции в качестве рыбной отрасли. В качестве предложений по усовершенствованию функционирования экономики в рамках модели Леонтьева можно представить следующее: увеличить коэффициент прямых затрат отрасли приборо- и машиностроения с 0,2 до 0,5, а, логистики, хотя бы до 0,1, что позволит автоматизировать производство лекарственных препаратов, проверку их качества, а также усовершенствовать каналы сбыта и скорость движения продукции.

3.2. Доработки магистральной модели

Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.

Как видно из графика, Неймановский луч, определяемый как луч с наименьшим тангенсом угла, соответствует всего двум точкам, характеризующим равновесию производственных затрат и валового выпуска во времени. Это говорит о том, что существует возможность сделать модель более сбалансированной путем обеспечения постоянного во времени темпа роста выпуска продукции рыбной отрасли, зависящего от материальных затрат.

Глава 4

4.1. Построение модели Солоу

Для удобства исследования моделей экономической динамики рассматривают модели с агрегированными переменными. К ним относятся односекторные модели, в которых экономика на длительном периоде [О, Т] в каждой момент времени t [О, Т] характеризуется набором переменных X, Y, К, L, I и С, выражающих со-ответственно объемы валовой продукции, конечной продукции, ОПФ, рабочей си-лы, инвестиций и непроизводственного потребления (без учета государственных расходов). Они связаны балансовыми соотношениями:

где a, 0 < a < 1, -- коэффициент амортизационных затрат.

Подставляя последние соотношения в первое, получим односекторную модель экономической динамики

t [О, Т]

Если t принимает дискретные значения t = 0, 1, ..., Т, то уравнение модели запи-сывается в виде

Аналогом дискретной модели для непрерывного времени t [О, Т]

явля-ется модель

где K = dK/dt. При этом переменную t обычно не записывают.

Уравнение связывает 3 переменных: X, К и С. Дальнейшие преобразования уравнения связаны с уменьшением числа переменных.

1) Пусть ?= 0, т.е. все инвестиции I полностью идут на прирост ОПФ без расходов на амортизацию. Если считать, что

то есть капитальные вложения пропорциональны приросту выпуска валовой про-дукции, где q > 0 называется капиталоемкостью прироста валовой продукции, то из получим односекторную динамическую модель Леонтьева

2) Пусть в модели переменная X определяется с помощью производст-венной функции, то есть X=F(K,L) с выполнением для F всех требований для произ-водственных функций, a L - экзогенная (управляющая) переменная с постоянным темпом роста.

Отсюда следует, что , где Lo = L{0).

Для удобства изучения модели перейдем к относительным переменным:

x=X/L

-- производительность труда;

k = K/L

-- фондовооруженность;

с=С/L

-- удельное потребление.

Все эти величины являются функциями времени t. Подставляя эти выражения, получим

Сокращая все слагаемые на L, найдем

Далее, считая X=F(K,L) линейной однородной функцией, получим

или x=f(k).

При этом f(k) удовлетворяет следующим условиям:

1) f(0)=0;

2) f”(k)>0;

3) f”(k)<0;

4) f(k)>0 при k>0;

Например, этим условиям удовлетворяет степен-ная функция вида Кобба-Дугласа (b>0, 0<?<1).

Неоклассическая производственная функция.

Подставляя x=f(k) в , получим открытую динамическую модель Р. Солоу

в форме дифференциального уравнения 1-го порядка со свободной (управляющей) переменной С.

Преобразуем открытую модель Солоу в замкнутую, исключив переменную С. Для этого зададим постоянную норму (долю) накопления s = I/Y и обозначим через u= С/У норму (долю) потребления, связанную с s зависимостью s + u = 1, что следует из . Отсюда следует

Получим замкнутую динамическую модель Солоу

в форме дифференциального уравнения 1-го порядка с управляющей переменной s. Так как правая часть уравнения непрерывна, то решение k(t) уравнения существует.

Если из уравнения найти k(t), то задав L(t), найдем

, , ,

и ,

то есть получим все переменные, характеризующие экономический процесс.

Приступим к построению динамической модели Солоу. Для начала определим экзогенные переменные.

Это Lo=14600.

Тогда, при условия постоянного темпа роста, можно составить таблицу:

Год

L

1

314

2

362

3

418

4

482

5

556

6

642

7

740

Следующая переменная, которую можно вычислить по формуле: k=K/L - это фондовооруженность.

Год

k

1

55

2

55,32

3

136,04

4

163,69

5

155,17

6

111,62

7

120,65

Следующая переменная, которую можно вычислить по формуле: x=X/L

- это производительность труда;

Год

x

1

324,62

2

528,48

3

398,18

4

249,72

5

166,90

6

130,31

7

137,76

Следующая переменная, которую можно вычислить по формуле: с=С/L

- удельное потребление.

Год

c

1

180,52

2

99,38

3

162,88

4

97,52

5

80,71

6

12,69

7

12,91

Параметр a -- коэффициент амортизационных затрат, 0 < a < 1, примем равным 0,1.

Найдем параметры функции x=f(k):

k

x

55,00

324,62

55,32

528,48

136,04

398,18

163,69

249,72

155,17

166,90

111,62

130,31

120,65

137,76

x=f(k)= 4740,2*k^(-0,637).

Постоянная норма (доля) накопления s = I/Y. s=0,07.

Из уравнения найдем параметр ?. ?=0,09.

Итак, для построения замкнутой динамической модели развития экономики Солоу известны все параметры. Формула модели выглядит следующим образом:

С помощью этой формулы дифференциального уравнения 1-го порядка с управляющей переменной s можно задавать различные периоды времени и смотреть, как поведет себя при этом рыбная отрасль.

Заключение

Таким образом, мы выполнили поставленную цель курсовой работы, то есть изучили рыбную отрасль Российской Федерации с применением соответствующих разноаспектных методов.

Для реализации данной цели выполнили следующие задачи: провели анализ соответствующей литературы, выявили, какие изученные ранее экономические и математические модели могут быть пригодны для комплексного рассмотрения рыбной отрасли. Рассмотрели сильные и слабые стороны применения факторного анализа в эконометрике, а также возможности комплексных коллективных исследований, таких как метод “комиссий”, метод “Дельфи” или метод “коллективной генерации идей”.

Выявили характеристики отрасли, её особенности, которые помогли нам определиться с выбором модели для анализа. Описали технологический процесс развития рынка рыбной продукции лекарственных препаратов с 1999 по 2005 год, выявили факторы, влияющие на этот процесс, и построили многофакторную эконометрическую модель рынка лекарственных препаратов, которая выглядит следующим образом: y = 287,265 +2,86*х1 -0,145*х5. Из полученного уравнения видно, что на производство рыбной продукции, тыс. тонн (фактор у) в большей степени влияют такие факторы как численность населения, на тыс. человек (фактор х1) и денежные доходы, млн. руб. (фактор х5). Причем при увеличении численности населения на тыс. человек на единицу производство рыбной продукции увеличится на 2,86 тонн, а при увеличении денежных доходов на 1 млрд руб. - уменьшится на 0,009 тонн. Получили производственные функции для рыбной продукции РФ. Выяснили, что наиболее точно производственный процесс выпуска рыбной продукции описывает линейная производственная функция, имеющая вид: F(K,L)=-9652+1,223K+28,676L.

Построили статистическую и динамическую модели Леонтьева для рыбной отрасли РФ. Для динамической модели Леонтьева учли фактор инфляции за соответствующий период. Построили магистральную модель для рыбной отрасли РФ. Провели доработку модели Леонтьева и магистральной модели, используя выявленные ранее особенности рыбной отрасли РФ. В качестве предложений по усовершенствованию функционирования экономики в рамках модели Леонтьева можно представить следующее: увеличить коэффициент прямых затрат отрасли приборо- и машиностроения с 0,2 до 0,5, а, логистики, хотя бы до 0,1, что позволит автоматизировать производство рыбной продукции, проверку их качества, а также усовершенствовать каналы сбыта и скорость движения продукции. А предложением для магистральной модели - сделать модель более сбалансированной путем обеспечения постоянного во времени темпа роста выпуска рыбной продукции, зависящего от материальных затрат. Также мы получили модель Солоу для рыбной отрасли РФ, выявив в ней экзогенные переменные.

Российская рыбная промышленность остро нуждается в привлечении иностранных инвестиций в комплексе с технологией и навыками современного управления. Рыбное производство России имеет перспективы привлечения иностранных инвесторов, однако необходимо активизировать этот процесс. Внедрение в отечественную рыбную промышленность гармонизированных с мировым сообществом правил GMP явится важным фактором содействия привлечению иностранных инвестиций. В России сделано уже многое для согласования требований к Рыбному производству с международными. Вместе с тем эту работу необходимо продолжить. Целесообразно шире использовать возможности международных организаций в этой сфере. Реализация изложенных предложений не требует ни капитальных затрат, ни объемных текущих расходов.

Список литературы:

1. Абланская Л.В. Экономико-математическое моделирование: учебник/под общ. ред. И.Н. Дрогобыцкого. - 2-е изд., стереотип. - М.: Издательство «Экзамен», 2006. - 798 [2] с. (Серия «Учебник для вузов»).

2. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник.- М.:ЮНИТИ,1998.

3. Елисеева И. И. Социальная статистика - Москва, Финансы и статистика, 1997 год

4. Елисеева И.И., Курышева С.В., Костеева Т.В. Эконометрика. Учебник, М.: Финансы и статистика, 2001 г.

5. Кундышева Е.С. Математическое моделирование в экономике: Учебное пособие / Под науч. Ред. проф. Б.А. Суслакова. - М.: Издательско-торговая корпорация «Дашков и К», 2004. - 352 с.

6. Кундышева Е.С. Математическое моделирование в экономике: Учебное пособие/ Под науч. ред. проф. Б.А. Суслакова. - М.: Издательско-торговая корпорация «Дашков и Ко», 2004. - 352 с.

7. Кэмпбелл Р. Макконнелл, Стенли Л. Брю Экономикс, принципы, проблемы и политика, М.: Республика, 1995

8. Мажутин В.И., Королева О.Н. Математическое моделирование в экономике: Часть III. Экономические приложения: Учебное пособие/В.И. Мажутин: - М.: Флинта: МГУ, 2004. - 176с.: ил.

9. Практикум по эконометрике: Учеб. Пособие/ И.И. Елисеева, С.В.Курышева, Н.М.Гордеенко и др.; Под ред. И.И.Елисеевой. М.: Финансы и статистика, 2002.

10. Эконометрика: Учебник/И.И. Елисеева, С.В. Курышева, Т.В. Костеева и др.; Под ред. И.И. Елисеевой. - 2-е изд., перераб. И доп. - М.: Финансы и статистика, 2005. - 576 с.: ил.


Подобные документы

  • Построение уравнения регрессии, учитывающего взаимодействия факторов, проверка полученной модели на адекватность. Построение математической модели и нахождение численных значений параметров этой модели. Вычисление коэффициентов линейной модели.

    курсовая работа [1005,0 K], добавлен 07.08.2013

  • Построение и анализ однофакторной и многофакторной эконометрической модели. Вычисление парных и частичных коэффициентов корреляции. Проверка адекватности модели по критерию Фишера. Исследование наличия мультиколлениарности по алгоритму Феррара-Глобера.

    контрольная работа [172,4 K], добавлен 28.05.2010

  • Построение эконометрической модели, описывающей линейную зависимость результативного признака факторов, входящих в нее, методом матрицы. Проверка ее на адекватность по критерию Фишера. Определение дисперсии, ковариации, корреляции и детерминации.

    контрольная работа [180,5 K], добавлен 03.12.2014

  • Построение имитационной схемы для модели Солоу и прослеживание ее динамики на протяжении 30 лет. Вычисление стационарного значения фондовооруженности. Проверка "золотого правила накопления". Изучение поведения модели при смене некоторых параметров.

    лабораторная работа [722,3 K], добавлен 11.12.2012

  • Выбор факторных признаков для построения регрессионной модели неоднородных экономических процессов. Построение диаграммы рассеяния. Анализ матрицы коэффициентов парной корреляции. Определение коэффициентов детерминации и средних ошибок аппроксимации.

    контрольная работа [547,6 K], добавлен 21.03.2015

  • Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.

    контрольная работа [73,9 K], добавлен 23.01.2009

  • Понятие и сущность инвестиционной активности. Построение регрессионной модели и анализ деревообрабатывающей отрасли. Корректировка вида модели за счет выявленных особенностей. Статистический и описательный анализ выборки и эмпирическое моделирование.

    дипломная работа [1,9 M], добавлен 22.01.2016

  • Эконометрическое исследование признаков деятельности предприятий: доля расходов на закупку товаров, среднедневная заработная плата одного работающего. Построение линейного графика регрессионной зависимости между показателями, оценка адекватности модели.

    контрольная работа [93,3 K], добавлен 14.12.2011

  • Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа [243,1 K], добавлен 17.01.2016

  • Описание деятельности предприятия ОАО "КГОК". Корреляционно-регрессионный анализ и построение однофакторной модели отгрузки продукции с использованием программного продукта CurveExpert 1.4. Прогноз количественных показателей отгрузки на будущие периоды.

    курсовая работа [148,4 K], добавлен 08.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.