Незбалансовані попит і пропозиція. Розрахунок оптимальної кількості запасів

Дослідження пропозиції і попиту на певні деталі мобільних телефонів (Apple, BlackBerry, Sony). Побудова графіку розподілу ймовірностей для попиту. Визначення рівня збитків за надлишкову одиницю і одиницю, яка в дефіциті. Математичне очікування збитків.

Рубрика Экономико-математическое моделирование
Вид задача
Язык украинский
Дата добавления 10.06.2013
Размер файла 984,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Міністерство освіти і науки України

Національний технічний університет України

"Київський Політехнічний Інститут"

Звіт про виконання лабораторної роботи

З курсу "Математичне моделювання систем та процесів"

Тема: Незбалансовані попит і пропозиція. Розрахунок оптимальної кількості запасів

Виконав:

Студент V-го курсу ФЕЛ

Групи ДКм-81

Дрозд В.П.

Київ - 2013

1. Умова завдання

В таблиці 1 результати визначення попиту і частоти запитів, що і є вихідними даними для виконання роботи. Визначити оптимальний запас.

Таблиця 1. - Умова завдання

Попит на r одиниць

Частота запитів r

4

2

5

3

6

3

7

5

8

5

9

10

10

15

11

20

12

25

13

35

14

43

15

52

16

60

17

66

18

70

19

73

20

71

21

68

22

60

23

52

24

45

25

35

26

27

27

20

28

14

29

8

30

7

31

4

32

2

33

1

Необхідно виконати два завдання:

1) Визначити оптимальний запас за інтервал T = 1 місяць

2) Визначити оптимальний запас за інтервал T = 2 місяці

Актуальність роботи:

Об'єктом дослідження є фірма по ремонту ексклюзивних мобільних телефонів (телефони виробництва Apple, BlackBerry, Sony…). В основному ремонту потребує дисплей телефону, оскільки за статистикою він є найбільш схильним до поломок.

Оскільки зараз дуже стрімко створюються все нові та нові моделі мобільних телефонів, а давніші виходять з "моди", потрібно завжди бути напоготові ремонтувати будь які моделі, і мати необхідну кількість деталей, в інакшому ж випадку користувачі підуть в іншу майстерню. Для невеликих компаній невигідно закуповувати і зберігати на складі велику кількість товарів, а особливо в даному випадку, оскільки часто буде ставатися їх "старіння" і вони просто стануть непотрібними. Але разом із тим, при відсутності необхідної деталі її потрібно терміново закупити, а оскільки купівля буде проходити не в оптовому замовленні і терміново, ціни можуть дуже зростати, і прибуток від ремонту буде стрімко зменшуватися, а то і виходити в збитки. Тому, бажано розраховувати оптимальні запаси товарів, щоб отримувати максимум прибутку від виробництва.

Підсумовуючи все вищесказане, можна стверджувати, що дослідження пропозиції і попиту на певні деталі і визначення оптимальної кількості запасів є досить актуальним.

Завдання 1

1.1 Оскільки функція розподілу ймовірностей невідома, визначимо її виходячи з відомої частоти запитів

Запит n одиниць - це подія. Для кожного n розрахуємо імовірність появи події за формулою:

Результати розрахунків запишемо до таблиці 2. Проілюструємо розподіл ймовірностей на рисунку 1.

Рис. 1. - Розподіл ймовірностей.

Як бачимо із графіку (на рис.1), ймовірність для попиту в розмірі 19 одиниць найбільша. Але скоріше за все, значення s = 19 не буде оптимальним розміром запасу, враховуючи різну величину збитків за надлишкову одиницю і за дефіцитну одиницю.

1.2 Визначимо рівень збитків за надлишкову одиницю і одиницю, яка в дефіциті

Якщо попит нижче рівня запасів s, то надлишок продається зі збитками С1, якщо ж попит вище рівня запасу, то недостачу потрібно компенсувати, що витікає в збитки С2 на одну одиницю (виробу/товару). Значення С1 і С2 беремо згідно до умови завдання.

пропозиція попит збитки дефіцит

Згідно до умови, затрати на зберігання малі, відносно С1 та С2, а отже, можна не брати до уваги час перебування деталі на складі.

1.3 Математичне очікування збитків описується формулою

(1)

Користуючись нею можна показати, що мінімум функції Г(S) буде при значенні

, (2) де

Розрахуємо значення і запишемо до таблиці 2.

Таблиця 2. Результати обчислень

Попит на r одиниць

Частота запитів r

p

p(r <= s)

4

2

0.0022

0.0022

5

3

0.0033

0.0055

6

3

0.0033

0.0089

7

5

0.0055

0.0144

8

5

0.0055

0.0200

9

10

0.0111

0.0311

10

15

0.0166

0.0477

11

20

0.0222

0.0699

12

25

0.0277

0.0977

13

35

0.0388

0.1365

14

43

0.0477

0.1842

15

52

0.0577

0.2420

16

60

0.0666

0.3085

17

66

0.0733

0.3818

18

70

0.0777

0.4595

19

73

0.0810

0.5405

20

71

0.0788

0.6193

21

68

0.0755

0.6948

22

60

0.0666

0.7614

23

52

0.0577

0.8191

24

45

0.0499

0.8690

25

35

0.0388

0.9079

26

27

0.0300

0.9378

27

20

0.0222

0.9600

28

14

0.0155

0.9756

29

8

0.0089

0.9845

30

7

0.0078

0.9922

31

4

0.0044

0.9967

32

2

0.0022

0.9989

33

1

0.0011

1.0000

1.4 Розрахуємо значення с, що задовольняє нерівності

Приймемо значення

1.5 Знайдемо розмір запасу, оптимальний при

З таблиці 2 знайдемо найменше значення , яке більше с = 0,909. Це значення 0, 9378, якому відповідають 26 одиниць.

1.6 За формулою (1) розрахуємо математичне очікування збитків при s = 26

1.7 Повторимо розрахунки для

Таблиця 3. Результати обчислень

С2

с

s0

Г(s0)

500

0.909

26

438.24

1000

0.952

27

500.11

1500

0.967

28

534.24

2000

0.975

29

560.27

Як бачимо, при зміні С2 оптимальне значення запасу змінюється.

Розрахуємо залежність математичного очікування збитків від значень :

Таблиця 4. Результати обчислень

S

C2

500

1000

1500

2000

21

709.54

1260.60

1811.65

2362.71

22

591.68

990.12

1388.57

1787.01

23

510.43

789.57

1068.70

1347.84

24

460.93

649.61

838.29

1026.97

25

438.90

562.10

685.29

808.49

26

438.24

515.37

592.51

669.64

27

454.05

500.11

546.17

592.23

28

482.08

508.16

534.24

560.32

29

518.65

532.52

546.39

560.27

30

560.10

566.20

572.31

578.41

31

605.83

608.05

610.27

612.49

Побудуємо залежність, описану в таблиці 4. (рис. 2).

Рис. 2. - Залежність математичного очікування збитків від С2 та S.

Завдання 2

2.1 Розрахунок функції попиту на інтервалі в 2 місяці

Для того, щоб розрахувати ймовірність попиту на вдвічі більшому інтервалі, варто припустити, що функція попиту за однакові проміжки часу однакова.

З таблиці 1 робимо висновок, що менше ніж на 4 одиниці товару за проміжок часу 1 місяць в нас не буває. Іншими словами, ймовірність попиту менше ніж 4 одиниці дорівнює нулю.

Для знаходження функції попиту скористаємось формулою:

З (3) та (4) випливає, що

Розрахуємо значення для r = 8:

Аналогічним чином розрахуємо значення для всіх інших можливих значень попиту (до r = 66). Результат подано в таблиці 5.

Розрахована функція розподілу попиту за період рівний 2Т зображена на рисунку 3.

Рис. 3. - Розподіл ймовірностей за інтервал Т = 2 місяці.

2.2 Розрахуємо оптимальну кількість запасів за термін 2Т

Нехай ми можемо замовляти новий товар лише раз на 2 місяці. Тоді потрібно знайти такий запас товару на складі, який мінімізує збитки.

З завдання 1 візьмемо С1 = 50 (витрати на зберігання одиниці товару), С2 = 500 (1000, 1500, 2000) (збитки за недостачу товару). Користуючись методикою з попереднього завдання знайдемо оптимальний запас. Всі результати розрахунків наведені в таблиці 5.

Таблиця 5. Результати обрахунків

Попит на r одиниць

p

p(r <= s)

Збитки при С1 = 50

C2 = 500

C2 = 1000

C2 = 1500

C2 = 2000

8

4.93E-06

4.93E-06

14932.3

29864.59

44796.89

59729.19

9

1.48E-05

1.97E-05

14432.3

28864.6

43296.9

57729.2

10

2.59E-05

4.56E-05

13932.31

27864.62

41796.93

55729.24

11

4.68E-05

9.24E-05

13432.34

26864.67

40297

53729.33

12

7.27E-05

1.65E-04

12932.39

25864.77

38797.14

51729.52

13

0.000123

2.88E-04

12432.48

24864.94

37297.4

49729.86

14

0.000216

5.04E-04

11932.64

23865.24

35797.85

47730.45

15

0.000345

8.49E-04

11432.91

22865.77

34298.63

45731.49

16

0.000536

1.38E-03

10933.38

21866.66

32799.94

43733.23

17

0.000813

2.20E-03

10434.14

20868.12

31302.09

41736.06

18

0.00121

3.41E-03

9935.35

19870.42

29805.5

39740.57

19

0.001757

5.16E-03

9437.224

18874

28310.78

37747.55

20

0.002507

7.67E-03

8940.064

17879.42

26818.78

35758.14

21

0.003469

1.11E-02

8444.283

16887.48

25330.67

33773.86

22

0.004725

1.59E-02

7950.41

15899.17

23847.94

31796.7

23

0.006329

2.22E-02

7459.135

14915.83

22372.53

29829.22

24

0.008323

3.05E-02

6971.342

13939.13

20906.93

27874.72

25

0.010749

4.13E-02

6488.127

12971.18

19454.23

25937.28

26

0.013647

5.49E-02

6010.823

12014.51

18018.19

24021.88

27

0.017007

7.19E-02

5541.026

11072.17

16603.31

22134.45

28

0.020856

9.28E-02

5080.582

10147.68

15214.78

20281.89

29

0.02511

1.18E-01

4631.609

9245.098

13858.59

18472.08

30

0.02969

1.48E-01

4196.446

8368.879

12541.31

16713.74

31

0.034452

1.82E-01

3777.613

7523.833

11270.05

15016.27

32

0.039224

2.21E-01

3377.728

6714.962

10052.2

13389.43

33

0.043809

2.65E-01

2999.416

5947.276

8895.136

11843

34

0.048009

3.13E-01

2645.199

5225.589

7805.979

10386.37

35

0.051574

3.65E-01

2317.387

4554.312

6791.236

9028.16

36

0.054301

4.19E-01

2017.941

3937.187

5856.434

7775.68

37

0.056065

4.75E-01

1748.361

3377.08

5005.798

6634.517

38

0.056702

5.32E-01

1509.617

2875.841

4242.065

5608.289

39

0.056211

5.88E-01

1302.059

2434.139

3566.219

4698.3

40

0.054613

6.43E-01

1125.417

2051.459

2977.501

3903.543

41

0.051976

6.95E-01

978.8119

1726.123

2473.433

3220.744

42

0.048448

7.43E-01

860.7938

1455.361

2049.928

2644.495

43

0.04425

7.87E-01

769.4221

1235.469

1701.516

2167.563

44

0.039574

8.27E-01

702.3877

1062.04

1421.692

1781.344

45

0.034666

8.61E-01

657.1188

930.1629

1203.207

1476.251

46

0.029726

8.91E-01

630.9163

834.6855

1038.455

1242.224

47

0.024949

9.16E-01

621.0634

770.4208

919.7782

1069.136

48

0.020489

9.37E-01

624.9327

732.3531

839.7735

947.194

49

0.016462

9.53E-01

640.071

715.7989

791.5268

867.2547

50

0.012926

9.66E-01

664.2634

716.5299

768.7964

821.0629

51

0.009926

9.76E-01

695.5649

730.8328

766.1007

801.3686

52

0.007434

9.83E-01

732.3258

755.5581

778.7904

802.0227

53

0.005423

9.89E-01

773.1754

788.0891

803.0029

817.9166

54

0.003865

9.93E-01

817.0074

826.3138

835.6203

844.9268

55

0.002673

9.95E-01

862.9654

868.5973

874.2292

879.8611

56

0.001796

9.97E-01

910.3936

913.6875

916.9814

920.2753

57

0.00117

9.98E-01

958.8095

960.6635

962.5174

964.3713

58

0.000737

9.99E-01

1007.869

1008.868

1009.867

1010.866

59

0.000441

9.99E-01

1057.334

1057.846

1058.359

1058.871

60

0.000257

1.00E+00

1107.041

1107.288

1107.534

1107.78

61

0.000143

1.00E+00

1156.89

1156.999

1157.108

1157.217

62

7.39E-05

1.00E+00

1206.818

1206.861

1206.904

1206.947

63

3.70E-05

1.00E+00

1256.786

1256.8

1256.814

1256.828

64

1.48E-05

1.00E+00

1306.774

1306.778

1306.782

1306.785

65

4.93E-06

1.00E+00

1356.771

1356.772

1356.772

1356.773

66

1.23E-06

1.00E+00

1406.77

1406.77

1406.77

1406.77

Оптимальне значення запасів за період часу 2Т і сума збитків, які понесемо при цьому, наведені в наступній таблиці:

Таблиця 6. Оптимальні значення запасів

С2

с

s0

Г(s0)

500

0.909

47

621.06

1000

0.952

49

715.8

1500

0.967

51

766.1

2000

0.975

51

801.37

Побудуємо залежність, описану в таблиці 5. (рис. 4).

Рис. 4. - Залежність математичного очікування збитків від С2 та S

Висновок

В роботі досліджена проблема вирішення задачі про оптимальні запаси на складі. На основі даних про пропозицію та попит на товари, виміряних протягом одного місяці, визначено оптимальну кількість товарів на складі в залежності від різної ціни збитків за надлишок та нестачу. Також визначено оптимальні запаси на час тривалістю два місяці.

Проаналізувавши результати бачимо, що зазвичай величина оптимальних запасів дещо більша ніж оптимум функції розподілу ймовірностей, що пояснюється великими збитками за недостачу товару.

Як бачимо, вибрана математична модель є адекватною і в дозволяє в повній мірі визначити величину оптимальних запасів.

Размещено на Allbest.ru


Подобные документы

  • Теоретичні аспекти дослідження ID-IS моделей. Попит та пропозиція як економічні категорії. Особливості моделей перехідної економіки. Аналіз підходів щодо моделювання сукупного попиту та пропозиції. Процес досягнення рівноваги та прогнозування ціни.

    курсовая работа [639,7 K], добавлен 15.11.2010

  • Поняття ринку нерухомості та його основні риси. Визначення попиту та пропозиції на ринку нерухомості та чинників, що на нього впливають. Аналіз основних моделей дослідження попиту. Авторегресійні моделі та й моделі експоненціального згладжування.

    дипломная работа [1,6 M], добавлен 20.11.2013

  • Аналіз споживчого вибору між двома благами. Формула бюджетного обмеження. Витрати споживання або вартість даної кількості блага. Математичне дослідження моделі попиту. Зміна обсягу і умов попиту. Взаємозв’язок ціни товару, еластичності і виторгу продавця.

    реферат [241,1 K], добавлен 27.11.2008

  • Аналіз діяльності підприємства громадського харчування: формування витрат, товарна політика. Сутність економіко-математичного та інформаційно-логічного моделювання. Моделювання сукупного попиту та пропозиції. Побудова прототипу системи автоматизації.

    дипломная работа [2,8 M], добавлен 14.05.2012

  • Розгляд організаційної структури МКВП "Дніпроводоканал". Аналіз ліквідності, рентабельності і ділової активності підприємства. Розробка економіко-математичних моделей оптимального розподілу коштів та платоспроможного попиту споживачів комунальних послуг.

    дипломная работа [390,5 K], добавлен 28.02.2010

  • Основні причини виникнення інфляційних процесів та її наслідки, роль попиту та пропозиції. Методологічні підходи до моделювання інфляційних процесів. Моделювання та аналіз інфляції в Україні. Особливості структури моделей та методики їх застосування.

    курсовая работа [1,8 M], добавлен 28.12.2013

  • Поняття "моделі" та роль економетричних моделей. Формування сукупності спостережень та поняття однорідності. Принципи побудови лінійних, нелінійних економетричних моделей попиту, пропозиції. Відбір факторів і показників для побудови функції споживання.

    курсовая работа [308,9 K], добавлен 09.07.2012

  • Фінансовий аналіз підприємства. Завдання оптимізації номенклатури товару за допомогою математичної моделі, враховуючої як відхилення від оптимального попиту, так і мінімізацію часу знаходження товару на складі. Шляхи поліпшення діяльності підприємства.

    дипломная работа [3,3 M], добавлен 21.10.2009

  • Застосування методу найменших квадратів для оцінки невідомих параметрів рівняння пропозиції грошей. Побудування діаграми розсіювання, обчислення числових характеристик показника і фактора дисперсії. Визначення функції попиту та коефіцієнта детермінації.

    контрольная работа [276,4 K], добавлен 22.07.2010

  • Правове становище страхування в Україні. Аналіз проблем моделювання у страхуванні. Математичні методи формування попиту на страхові послуги. Когнітивна модель і модель формування попиту на послуги медичного страхування за принципами нечіткої логіки.

    дипломная работа [953,1 K], добавлен 25.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.