The manager as a teacher: selected aspects of stimulation of scientsfsc thinking

Selected aspects of stimulation of scientific thinking. Meta-skills. Methods of critical and creative thinking. Analysis of the decision-making methods without use of numerical values of probability (exemplificative of the investment projects).

196,7 K

. ,

, , , , .

Self-training control block. No brain is able to hold enormous knowledge bases on all possible conditions of the entire world around. Therefore, one of the reasons why each species of animals occupies corresponding biosphere niche is the necessity to limit the volume of knowledge base. Antelope knows what the seal does not, and vice versa. In each separate ecological niche the quantity of possible situations is much less, than in all ecological niches all together. Therefore, relatively small volume of necessary knowledge is required in separate ecological niches. However, if one tries to somehow input /in the brain/ all the information currently available on all the situations which have already been occurring in the world, it would not help either, because the world alters continually and many situations have never ever arose. The knowledge base basically may not have information on what has not yet happened in the world. Naturally, the base of decisions cannot contain all the possible options of decisions either. Genetic knowledge contains only what the ancestors of animals have experienced. They materially cannot have knowledge of what is going to happen. When new situation arises, the system cannot identify, classify it and make decision on it. Even if this situation will occur repeatedly, if the system is unable of self-training it will every time fail to correctly identify a situation because such situations are not contained in its knowledge base. The ant runs along the fence, going up and down, and cannot guess that it is possible to easily bypass the fence. Millions years ago, when its genetically input knowledge base was formed the fences were non-existent. If one tries to sink a thread on the web the spider will leave this web and will weave a new one because it is not familiar with such situation and it does not know and cannot learn that it is possible to make a hole in a web so that the thread does not interfere. All this is due to the fact that insects as a class of animals are not capable of learning anything. They may be perfect builders amazing us with their sophisticated and fine webs, nests and other creations of their work. But they can only build based on their innate knowledge. They do have knowledge base (instincts), but they do not have cerebral structures (elements of control block) capable of supplementing their own knowledge base with new existential situations. They do not have reflexes on new stimuli/exciters/. To be able to identify and classify new situations the control block should be able to enter the descriptions of these situations in its knowledge base. But at first it should be able to identify that it is a completely new situation, for example, by comparing it to what already exists in its knowledge base. Then it should identify the importance (the value worth) of this particular situation for the achievement of its goal. If there is no any correlation between the new situation and the fulfillment of the goal of the system, there is no sense in remembering this situation, otherwise the brain will be crammed with trash. By singling out and classifying external situations (identifying them) and finding interrelation (correlation) between these situations, by decisions made and the achievement of the goal of the system the control block learns to develop appropriate decisions. Thus, the self-training decision-making block continually supplements its knowledge base and base of decisions. But under the conservation law nothing occurs by itself. In order for the control block to be able to perform the above actions it should have appropriate elements. The major element of the kind is the analyzer-correlator. It is the basis whereon reflex on new stimulus/exciter or a new situation may emerge. Its task is to detect a new situation, identify that it is new, determine the degree of correlation between this situation and its own goal. If there is no correlation between this new situation and implementation of the goal by the system, there is no sense in remembering and loading its limited database memory. If the degree of correlation is high it is necessary to enter this situation in the knowledge base and develop a decision on the choice of own actions for the achievement of its own goal and thereafter to define whether there is correlation between the decision made and the achievement of the goal. If there is no correlation between the decision made and the fulfillment of the goal by the system it is necessary to arrive at other solution and again determine the correlation between the decision made and the achievement of the goal. And it should be repeated in that way until sufficiently high correlation between the decision made and the achievement of goal is obtained. Only afterwards the correct computed decision should be entered into the base of decisions. This is the essence of self-training. Only the analyzer-correlator enables self-training process. As a matter of fact, the system's self-training means the emergence of reflexes to new stimuli/exciters or situations. Consequently, these are only possible when the control block contains analyzer-correlator. Biological analogue of the analyzer-correlator is the cerebral cortex. The presence of cortex determines the possibility of emergence of reflexes to new situations. Cerebral cortex is only present in animals which represent sufficiently high level of development. Non-biological analogues of systems with such self-training control block are unknown to us. Computer self-training systems are built by man and the process of self-training at the end of the day always involves human cerebral cortex. There exist various so-called intellectual systems, but full-fledged intelligence is only inherent in human being. Let us specify that there are no self-training systems, but there are their self-training control blocks, because executive elements cannot be trained in anything. There may be systems with simple executive elements, but with control blocks of varying complexity. In order for the control block to be a self-training structure it should contain three types of analyzers: the analyzer-informant with database; the analyzer-classifier with the knowledge base and base of decisions (which is able of classifying external situation on the basis of the information from the C informant); the analyzer-correlator (able of identifying the interrelation - correlation between various external situations and the results of actions of the given system and transferring the knowledge obtained and decisions to the analyzer-classifier to enter them in the knowledge base and the base of decisions). Thus, the system with self-training control block is an object which can learn to distinguish new external influences and situations in which such influence may be exerted. For this purpose it has the analyzer-correlator. In other respects it is similar to the systems with complex control block. It can respond to specific external influence and external situation and its reaction would be stipulated by type and number of its SFU. The result of action of the system is also graduated. The number of gradations is determined by the number of executive SFU in the system. It also has analyzer-qualifier with knowledge base and base of decisions and the analyzer-informant with database, DPC (the X informant) and NF (the Y informant), which operate the system through the stimulator (efferent paths). In inorganic/inanimate nature there are no analogues of systems with self-training control blocks. Biological analogues of systems with complex control block are all animals with sufficiently developed nervous system in which it is possible to develop reflexes to new situations (should not be confused with conditioned reflexes). The analogue of analyzer-correlator is only the cerebral cortex.

Signaling systems. The appearance in the control block of the analyzer-correlator enabled the possibility to enhance its personal experience by self-training and continually update its knowledge base and base of decisions. But it cannot transfer its experience to other systems. Personal experience is limited howsoever an individual would try to expand it. In any case collective experience is much broader than that of an individual. In order for one individual to be able to transfer his/her experience to other individual separate device is needed enabling downloading the information from one knowledge base to another. For example, the antelope knows that the cheetah is very dangerous because it feeds on antelopes and wishes to transfer this knowledge to its calf. How can it be done? For example, the antelope can simulate a situation playing a performance in which all characters are real objects, i.e. it should expose itself to cheetah so that the calf could see it to gain its own experience by the example of its mum. The calf will see the situation and new reflex to new situation will be developed and the calf will be on its guard against the cheetahs. Of course, it is an absurd way as it does not solve the problem of survival. Anyway, only one out of the two antelopes will survive. So, what can be done in principle? How one self-training system can transfer its individual experience to other self-training system? It is necessary to simulate a situation by making a show in which all characters are abstract objects and replace real objects with others, which are conferred conventional connection/link between them and the real objects (abstracting of objects). Such abstract objects are prearranged signals. The systems agree (stipulate a condition) that if such-and-such signal occurs, it will speak of something agreed upon. It is the development of conditioned reflex that represents replacement of real influence for abstract influence. It is a so-called first signaling system which is based on conditioned reflexes. The appearance of cheetah causes producing a panic sound by an antelope. Consequently such sound is associated with the appearance of cheetah and it becomes an abstract substitute of cheetah itself, i.e. prearranged signal. Any motional signal may be an abstract substitute of danger, i.e. raising or dropping of tail, special jumps, producing special sounds, mimicry, etc. These motional signals affect the systems in the herd and based on this signal they may know about a danger nearby. In other words, there was a replacement of real external influence by some abstract thing associated with this object. Abstracting of real action by its symbol (vocal, motional, etc) took place. For such abstracting the control block needs to have an additional device - the analyzer-abstractor which should contain the base of abstraction (base of prearranged signals). The base of abstraction contains a set of descriptions of certain signals which are perceived as conditional situations and correspond to other certain situations. A prearranged signal is the appearance of some object or movement (situational signal) which usually does not appear in common routine situation. The occurrence of prearranged signal does not in itself affect in any way the achievement of the goals by the systems. For example, raising and fluffing out a tail does not influence in any way neither food intake, nor running, etc. But the occurrence of a signal is connected with the occurrence of such situation which can affect the achievement of goals by the systems. Given the ability to abstract from concrete situations, then not even seeing a cheetah, but having seen the lifted tails, may be conducive to guessing that a cheetah is nearby. Abstracting of real external influence by vocal or motional symbol is performed by the first signaling system. It supplements the analyzer-correlator and operates similarly to it, i.e. is self-training. Unlike the knowledge base the base of abstraction of a newly born system is empty. It is being filled out during the system's lifetime on account of possibility of self-training, and the newly obtained knowledge is then downloaded in the knowledge base. Sometimes behavior of animals seems to be indicative of their possibility to transfer the information from one to another even before the occurrence of the respective situation. For example, some lions go to an ambush, others start driving the antelopes, so they kind of foresee the situation. But they only know about ambush possibilities based on their own experience. They do not have other means of transfer of such information to their younger generation except for demonstrating this situation to them. A new way for the development of systems (or rather their control blocks) is being opened at this point, the way of socialization - associations of animals in groups for the enhancement of their own experience because prearranged signals are only intended for an information transfer from one system (subject) to another. There are probably several levels of such analyzer-abstractor and the degree of abstraction which may be attained by this or other subject depends on the number of these levels. One may abstract external influences, external situations, real objects and even process of self-training proper. But in any case one should be able to abstract and understand abstract symbols. This is what analyzer-abstractor does. Abstracting of real external influence, object or situation by means of situational prearranged signal (a pose, a sound, a movement, some kind of action) may be performed by the first signaling system. Abstracting of real external influence, an object or a situation by means of sign /emblematic/ prearranged signal (symbol) can only be performed by second signaling system. Control block having the second signaling system is an intellectual control block. Intelligence depends on the presence and the degree of development (number of levels) of analyzer-abstractor. In animals the second signaling system is very poorly developed or undeveloped at all. If the horse dashes aside from a whip, it is not even the first signaling system that works in this case, but rather a reflex on the new situation which the horse has learnt when it first encountered a whip. If the horse is coarsely shouted at even without showing a whip to it, it will draw necessary conclusions. That's the point at which the first signaling system takes effect. But if the horse is shown an inscription which reads that it now will be beaten, the animal will not react to in any way because it cannot and will never be able to read since it does not have second signaling system. There are animals which apparently are capable of speaking and understanding words, written symbols and even making elementary arithmetic operations. But the second signaling system is very poorly developed in them and is literally in embryo condition. When the trainer demonstrates the dog's counting up to five, he bluffs in a way as in fact the dog picks up some motional signals from him, i.e. the second rather than the first signaling system takes effect. The second signaling system is developed to the utmost extent only in human beings. In human beings it is developed to the extent that it makes it possible to transfer all necessary information on our further actions to us in the nearest or even quite a distant future only by means of sign symbols. We can read a book containing just mere squiggles only, however such a full-blown and colorful pictures are open before us that we forget about everything on earth. Your dog for sure is surprised that its master looks for hours at a strange subject (the book) and does not move, run or make any sounds. And even if you try to explain to it that it is a book the dog will not understand it anyway, because it has not yet matured, it does not have second signaling system. Thus, the system with self-training control block containing the first signaling system is an object which can abstract external influences and situations by means of abstract situational prearranged signal. For this purpose it has an analyzer-abstractor of the first order. But it can inform of the presence of such action or situation only at the moment of their occurrence. It may transfer its experience to other systems only with the help of the situational prearranged signal which possibilities are limited. Such block has the knowledge base and base of abstraction which it accumulates in its brain within the lifespan. In the communities of systems with first signaling system accumulation of personal knowledge is possible, whereas accumulation of social knowledge is impossible because this knowledge is accumulated only in the control block (cerebrum) which possibilities are limited. The system which has self-training control block containing the second signaling system is an object which can abstract external influences and situations by means of abstract sign /symbolic/ prearranged signal. For this purpose it has an analyzer-abstractor of Z-order. It can transfer its experience to other systems by transfer of information to them in the form of conventional signs. Such blocks accumulate knowledge base outside its cerebrum in the form of script thanks to the developed base of abstraction. It gives an opportunity to absolve from dependence of accumulation of knowledge on the lifespan of an individual subject. In communities of systems with the second signaling system accumulation of social knowledge is possible and it strengthens the accumulation of individual knowledge. In other respects the control block with signaling systems is similar to the self-training control block examined above. It can react to definite external influence and learn to react to new external influence and an external situation, and its reaction is determined by type and number of its SFU. The result of action of the system is also graduated. The number of gradations is determined by the number of executive SFU in the system. It also has the analyzer-correlator, the analyzer-classifier with knowledge base and base of decisions, the analyzer-informant with the database, DPC (with the Ք informant) and NF (the Y informant) which through a stimulator (efferent paths) operate the system. In an inanimate/inorganic nature there are no analogues of systems with control block having signaling systems. Biological analogues of systems with control block containing the first signaling system are all animals with sufficiently developed nervous system in which conditioned reflexes may be developed. As a rule such animals do already have social relations (flocks, herds and other social groups), as signals are transferred from one animal to another. Biological analogue of systems with control block containing the second signaling system is only the human being.

Self-organizing systems. Bogdanov has shown that there exist two modes of formation of systems. According to the first one the system arises at least from two objects of any nature by means of the third entity - connections (synthesis, generation). According to the second one the system is formed at the expense of disintegration (destruction, retrogression/degeneration) of the more complex system that previously existed [6]. Hence, the system may be constructed (arranged) from new elements or restructured (reorganized) at the expense of inclusion of additional elements in its structure or by exclusion from its structure of unnecessary elements. Apparently, there is also a third mode of reorganization of systems - replacement of old or worn out parts for the new ones (structural regeneration), and the fourth mode - changing of connections/bonds between internal elements of the system (functional regeneration). Generation (the first mode of reorganization) is a process of positive entropy (from simple to complex, complexification of systems). New system is formed for the account of expanding the structure of its elements. This process occurs for the account of emergence of additional connections between the elements and consequently requires energy and inflow of substances (new elements). The degeneration (the second mode of reorganization) is a process of negative entropy (from complex to simple, simplification of systems). New system is formed for the account of reduction of compositional structure of its elements. This process releases energy and elements from the structure. Both modes are used for the creation of new systems with the new goals. In the first case complexification of systems takes place, while in the second one their simplification or destruction occurs. Structural regeneration (the third mode of reorganization) is used for the conservation and restoration of the systems' structure. It is used in the form of metabolism, but at that, the system and its goals remain unchanged. Energy and inflow of substances for the SFU restoration is required for this process. Functional regeneration (the fourth mode of reorganization) is used for the operation of systems as such. The principle of the systems' functioning resembles generation and degeneration processes. In process of accretion of functions the system includes the next in turn SFU ostensibly building a new, more powerful system with larger number of elements (generation). During the reduction of capacity of functions the system deactivates the next in turn SFU as if it means to build a new system with fewer number of elements (degeneration). But these are all reversible changes of the system arising in response to the external influence which are effected for the account of the change of the condition of its elements and the use of DPC, NF and effectors. At that, the system's structure kind of alters depending on its goal. New active and passive (reserve) SFU appear in it. This process requires energy and flow of substances for energy recovery, but not necessarily requires a flow of substances for the restoration of SFU. How does the organization (structuring) of system occur? Who makes decision on the organization or reorganization of systems? Who builds control block of the new or reorganized system? Who gives the command, the task for the system? Why is the NF loop built for meeting the given specific condition? Before we try to answer these questions, we will note the following. First, there is a need in the presence of someone or something interested in the new quality of the result of action who (or which) will determine this condition (set the goal) and construct the control block. Someone or something interested may be the case coupled with natural selection, whereby by way of extensive arbitrary search corresponding combinations of elements and their interactions may emerge that are the most sustained/lasting in the given conditions of environment. Thus, the environment/medium sets condition and the incident builds the systems under these conditions. At this point we do not consider the conditions in which generation or degeneration occurs and which are associated with redundancy or lack of energy (with positive or negative entropy). We only consider the need and expediency of creation of systems. The more complicated the system is, the more search options should be available and the more time it takes (the law of large numbers). We will note, however, that the goal is set to any systems from the outside, whether it is an incident, a person, natural selection or something else. But we cannot ignore the following very interesting consequence. Firstly, the survival rate is the main and general goal of any living organism. And as far as the goal is set from the outside, the survival rate is also something set to us from the outside and is not something that stems from our internal inspirations. In other words, the aim to survive is our internal incentive, but someone or something from the outside has once imbedded it in us. And prior to such imbedding it was not ours. Secondly, in order to ensure the possibility of building systems with any kind of control block, even the elementary one, the presence of such elements is necessary which quality of results of actions could in principle provide such a possibility. It follows from the conservation law and the law of cause-and-effect limitations that nothing occurs by itself. These elements should have entry points of external influence (necessarily), command entry points (not necessarily for uncontrollable SFU) and exit points of the result of action (necessarily). Exits and entries should have possibility to interact between themselves. This possibility is realized by means of combination of homo-reactivity and hetero-reactivity of elements. Physical homo-reactivity is the ability of an element to produce the same kind of result of action as is the kind of external influence (pressure > pressure, electricity > electricity, etc.). At the same time, characteristics of physical parameters do not vary (10g >10g, 5mV > 5mV, etc.). Homo-reactive elements are transmitters of actions. Physical hetero-reactivity is the ability of an element, in response to external influence of one physical nature, to yield the result of action of other physical nature (pressure > electric pulse frequency, electric current > axis shaft rotation, etc.). Hetero-reactive elements are converters of actions. The elements with physical hetero-reactivity are, for example, all receptors of living organism (which transform the signals of measurable parameters into nerve pulse trains), sensors of measuring devices, levers, shafts, planes, etc. In other words such elements may be any material things of the world around us that satisfy hetero-reactivity condition. Chemical reactions also fall under the subcategory of physical reactions as chemical reactions represent transfer of electrons from one group of atoms to others. Chemistry is a special section of physics. Logic hetero-reactivity is the ability of an element, in response to external influence of one type physical nature, to yield the result of action of the same physical nature (pressure > pressure, electric current > electric current, etc.), but with other characteristics (10g > 100g, 5mA > 0.5mA, 1Hz > 10Hz, 5 impulses > 15 impulses, etc.). Amplifiers, code converters, logic components of electronics are the examples of elements with logic hetero-reactivity. Neurons do not possess physical hetero-reactivity as they can perceive only potentials of action and generate the potentials. But they have logic hetero-reactivity and they can transform frequency and pulse count. They do not transform a physical parameter as such, but its characteristics. Any system consists of executive and operating elements. At the same time any control block of any system itself consists of some kind of parts (elements), so it also falls under the definition of systems. In other words, control block and its parts are specific systems (subsystems) themselves with their goals, and they have their own executive elements and local control blocks operating these executive elements. Compulsory condition for part of them is their ability to hetero-reactivity of one or other sort. The effect of their control action consists only in their relative positioning. Command is entered into the local control block (condition of the task, the goal/objective) and the latter continually watches that the result of action always satisfies the command. At that, the command can be set from the outside by other system external in relation to the given one, or the self-training block may decide independently to change the parameters (but not the goal) set by the command. So, the elements of control may be the same as the executive elements. The difference is only in relative positioning. Director of an enterprise is just the same kind of individual as any ordinary engineer. All elements of the system, both executive and controlling, are structured according to a certain scheme specific for each concrete case (for each specific goal), but all of them must have the exit point/outlet/, whence the result of action of the given element is produced, and two entry points - for external influence and for entry of the command. If the exit points of any elements are connected to the entry points for external influences of other elements, such elements are executive. In this case executive elements are converters of one kind of results of action into the other, because the results of actions of donor systems represent external influence for the recipient systems (executive elements). They (external influences) ostensibly enter the system and exit it being already transformed into the form of new results of action. If exit points of elements are connected to command entry points of other elements, such elements are controlling and represent a part of control block. In such cases the result of action of some systems represents the command for the executive elements, the instruction on how to transform the results of action of donor systems into the results of action of recipient systems. But the law of homogeneity of actions and homogeneous interactivity (homo-reactivity) of the exit-entry connection is invariably observed. If, for example, the result of action of the donor element is pressure, the entry point of external influence (for the command) of the recipient element should be able to react to pressure, or otherwise the interaction between the elements would be impossible.

Thirdly, in order to hack into the control of other systems the given system should have physical or any other possibility to connect its own exit point of result of action or own stimulator to the entry point of the command of any other system. In this case this other system becomes the subsystem subordinate to the given control block, i.e. the systems should have physical possibility to combine exits of their stimulators and/or results of action with the command entry points of other systems. For this purpose they should be mobile. There are types of devices for which the requirement of physical mobility is not necessary, but, nevertheless, information from one system may flow into control blocks of other devices. These are the so-called relay networks, for example, computer operating networks, cerebral cortex, etc., in which virtual mobility is possible, i.e. the possibility of switching of information flows. In such networks the information can be pumped over/downloaded/ in those directions in which it is required. For example, human feet are intended for walking, while hands - for handiwork. How is predestination effected? In principle hands and feet are structured identically, with the same autopodium, the same fingers (the same executive elements). Nevertheless, it is practically impossible, for example, to brush the hair with feet. Why? Because there are certain stereotypes of movements in the cerebral cortex, without which hands are not hands and feet are not feet. But we know cases when a person who lost both hands and nevertheless, he perfectly coped with many household affairs with the help of feet and took part in a circus show. How was it possible? Some kind of remodeling/change/ occurred in his brain and he changed his stereotypes. Cerebral structures which were previously controlling hands have downloaded their knowledge bases into those cerebral structures which operate the feet. Cerebral cortex was only able to do it thanks to the presence of its property of relay circuits, i.e. the possibility to turn information flows to the directions required for the given purpose. Organization and reorganization of systems may be incidental and target-oriented. In incidental organization or reorganization there is no special control block which has the goal and decision on building of a new system, even more so in such a detail that, for example, such-and-such exit point of a stimulator needs to be connected to such-and such command entry point. Fortuity is determined by probability. That's where the law of large numbers works, which reads: If theoretically something may happen, it will surely happen, provided a very large number of occurrences. The more the number of cases is, the higher is the probability of appearance of any systems, successful and unsuccessful, because fortuity creates the systems, the probability sets their configuration and the external medium makes natural selection. Therefore evolution lasts very long, sorting out multitude of occurrences (development options). It is for this reason that various combinations of connections of parts of systems occur. Therefore, both nonviable monsters and the systems most adaptable to the given conditions may be formed. Those weak are annihilated, while those strong transfer their knowledge bases and bases of decisions to their posterior generations in the form of genetically embedded properties and instincts. It is not so important in the organization of systems which control block (simple or complex) the coalescing (organizing) systems have. What is only important is that the exit points of stimulators or results of action of one kind of systems connect to the command entry points of the others. Control blocks of coalescing systems may be of any kind, from elementary to self-training. At that, even if the self-training block (i.e. sufficiently developed) would not want to connect its command entry point to the exit point of stimulator or the result of action of other system, even the simplest one, it still won't be able of doing anything if it fails to safeguard its command entry point. The virus does not ask the permission of a cell when it downloads its genetic information in the cell's DNA. The decision on reorganization of the system (purpose) may come from the outside, from the operating system sited higher on a hierarchy scale. It is passive purposefulness, since the initiative comes from the outside. The external system tells the given system: As soon as you see such-and-such system, affix it immediately to yourself. The system can undertake active actions for such an organization, but it is not yet self-organizing as such, but an imposed (forced, prescriptive) organization. But if it occurs to the system that it would be quite good if that green thing that stuck to me is included as a component in my own structure, since the experience shows it can deliver glucose for me from 2 and light, it would then mean self-organizing. Thus, perhaps, once upon a time chlorophyll was included in the structure of seaweed. Most likely, it did not happen purposefully, but rather accidentally (accidental organization), as we cannot be sure that those ancient seaweeds had a self-training control block, and the independent thought may only occur in the system with such control block. This example is only drawn to illustrate what we call a self-organizing system. But the idea to take a stick in one's hands to extend the hand and get the fruit hanging high on the tree is only a prerogative of the higher animals and the human being, which is a true example of self-organization. Only the systems with self-training control block can evaluate the external situation, properly assess the significance of all the novelty surrounding the given system and draw conclusion on the expediency of reorganization. It is an active purposefulness anyway, since the initiative originated inside the given system and it decided on its own and no one imposed it on the system. External medium dictates conditions of existence of the systems and it can force the system to make the decision on reorganization. But the decision on the time and character of reorganization is taken by the system itself on the basis of its own experience and possibilities. Only systems with self-training control block can initiate active purposefulness, can be deliberately the self-organizing systems. Thus, a man has invented work tools, having thus strengthened the possibilities of its body. At that, it should be noted that the decision on self-organizing does not indicate at the freedom of choice of the goal of the system, but a freedom of choice of its actions for the achievement of the goal set from the outside. In order to implement its goal in a better way, for example, to survive in such-and-such conditions, the system makes the decision on reorganization so that to better adapt to external conditions and enhance its survival chances.

Metabolism and types of self-organization. All the above was only concerning the creation of new systems and their development. But any systems are continually exposed to various external influences which sooner or later destroy them. Our world is in continuous and uninterrupted movement. The speeds of this movement may vary: somewhere events occur once in millions years, while somewhere else millions times a second. But most likely it is impossible to find a single place in the Universe where no movement of any kind (thermal, electric, gravitational, etc.) occurs. Hence, the process of negative entropy is always present. Any systems are always being reorganized at the expense of disintegration of more complex systems that have been existing earlier, which grow old (degenerate). Destruction is a process of loss by systems of their SFU. Systems of mineral nature (crystals, any other amorphous, but inanimate bodies, planetary, stellar and galactic systems) continuously undergo various external influences and are scattered with varying speed due to the loss of their SFU. Mineral nature grows old and changes, because the entropy law - from more complex to more simple - works. In the mineral nature complexification (generation) can only occur in case of excess of internal energy or its continuous inflow from the outside. Thus, in a thermonuclear pile of ordinary stars nuclei of complex atoms including atoms of iron were formed. But the energy of such piles is not yet sufficient for the formation of heavier nuclei. All other heavier nuclei were formed as a result of explosions of supernovae and the release of super-power energy. Therefore, figuratively speaking, our bodies are built of stellar ashes. But as soon as energy of thermonuclear synthesis comes to an end, the star starts to die out, passing through certain phases. We do not know yet all phases of the development and dying of stars, but if failing to undertake some sort of measures after a very long period of time not only stars, but atoms as well, including their components (protons, neutrons and electrons) will be shivered. Thus, the free neutron unprotected by intranuclear system breaks up into a proton, electron and neutrino within 12 minutes. Hence, the atomic and intranuclear system is the system of stabilization of a neutron protecting atom and its elements from disintegration. But even such stable and seemingly eternal stellar formations such as black holes evaporate in the course of time, expending their mass for gravitational waves. In the absence of energy inflow the system would just flake/scatter and lose its SFU. It follows explicitly from thermodynamics laws. The so-called thermal entropic death is coming forth. Destruction of systems under the influence of external environment is the forced entropic reorganization (degeneration), rather than self-organization. The objects of mineral nature possess only passive destruction protection facilities and one of the major means of protection is integration of elements in a system (generation). Consequently, the emergence of systems and their evolution in mineral nature represents means of protection of these elements from destruction. One can not conquer alone. The system is always stronger than singletons. Formation of connections/bonds between the elements and the emergence of generation type systems in mineral nature is the passive way of protection of elements against the destructive effect of negative entropy. The weakest bodies are ionic and gas clouds, while the strongest ones are crystals. However, all of them cannot resist external influences indefinitely long, because they react only after their occurrence, and they cannot resist entropy. Consequently, the presence of passive means for the protection against destruction is insufficient. Whatever solid and large the crystals might be, they would be scattered /flaked in the lapse of time either. In order to keep the system from destruction it is necessary to replenish destroyed parts continually. Systems of vegetative, animal and human nature also undergo various external influences and also are scattered (worn out) with varying speed. And it happens for the same reason and the same law of negative entropy, i.e. from more complex to more simple (degeneration) works. But these systems differ from the systems of mineral nature that actively try to resist destruction by continual renewal of their SFU structures. This renewal occurs at the expense of continuous building of new SFU in substitution of the destroyed ones. This process of renewal of destroyed SFU also represents structural regeneration as such - a purposeful metabolism. Therefore, metabolism of living organisms is an active way of protection of systems from destructive effect of negative entropy (from degeneration). In mineral nature metabolism may take place as well, but it essentially differs from metabolism of any living systems. Crystals grow from the oversaturated saline solution, the atmosphere exchanges water and gases with the seas, automobile and other internal combustion engines consume fuel and oxygen and discharge carbon dioxide. But if a crystal is taken out from saline solution, it will just collapse and will not undertake any measures on conservation of its structure. When a camshaft in the automobile engine is worn out the car does nothing to replace it. Instead, it is done by man. Any actions of the system directed towards the replacement of destroyed and lost SFU represent self-organization anyway, which in the living nature is called structural self-reorganization or metabolism. In mineral nature structural self-reorganization is nonexistent. Any living system, regardless of its complexity, would undertake certain actions for the conservation of its structure. At that, there are always two flows of substances in living systems - flow of energy and structural/constructive/ flow. The energy flow is intended to provide energy for any actions of systems, including structural self-reorganization, as it is necessary every time to build new connections/bonds which require energy (regeneration). Structural flow of substances is only used for structural regeneration, i.e. replacement of worn out SFU for the new ones (in this case we do not examine the system's growth, i.e. generation). When we talk about self-reorganization we mean structural flow of substances, although such flow is impossible without energy. Myocardium in humans completely renews (regenerates) its molecular structure approximately within a month. It means that its myocardiocytes, or rather their elements (myofibrillas, sarcomeres, organelles, membranes, etc.) are continually being worn out and collapse, but are continually built again at the same speed. Outwardly we can see one and the same myocardial cell, but eventually its molecular composition is being completely renewed. Throughout the human lifespan the type of organization varies. In the early years of life organization occurs at the expense of inclusion of new additional elements in the structure (generation, the organism grows and develops), whereas starting from the mid-life period degeneration predominantly takes place, i.e. destruction process (disintegration of the previously existing more complex system). But these are now the particulars associated with imperfection of real living systems. For any system the overall objective is to exist in this World, and for this purpose it should counteract destructive influences, for which purpose it should have specific SFU which facilitate its operation and which continuously collapse and need to be continuously renewed, i.e. build anew, since regeneration is the essence of self-reorganization by means of metabolism. Hence, the living nature differs from inanimate first of all in that metabolism is intended for the conservation of its structure (structural regeneration). In principle, any reaction of any systems is directed towards conservation of the systems. Control block of systems takes care of it using all its possibilities for this purpose: DPC, NF and analyzers for the SFU operation. But in mineral nature there are only passive ways of protection. And when the system of mineral nature loses its SFU, it does not undertake any active measure to replace them. It would try to resist the external influence, but no more than that. In vegetative and animal nature and humans the systems cannot passively resist the destructive effect of environment either, they also collapse, but anyway they have active means of restoration of the destroyed parts, they have the purposeful metabolism aimed at replacement of the lost SFU (structural regeneration). It uses two mechanisms of the so-called genetic regeneration: reproduction of systems (the parent will die, but children will remain) and reproduction of elements of systems (regeneration of elements of cells and tissue cells themselves). These ways of conservation of systems are sufficiently effective. It is known how complex it is to get rid of weeds in the field. There are sequoias aged several thousand years that are found in nature. At the level of separate individuals of a species this genetic system proves as the system with simple control block, as simple automatic machine because the DNA molecule does not have remote sensors, is has no analyzer-correlator and it is impossible to develop conditioned reflexes in it during the lifespan of one individual. But at the level of species of living systems genetic mechanism proves anyway as a system with complex control block because it has a notion of space and it has collective memory in the form of conditioned reflexes and it is able of self-training (adaptation of species). It is for this reason that genetic accumulation of collective experience occurs, which then is shown in the form of instincts at the level of separate individuals of a species. This collective genetic mechanism watches that tomato looks like tomato, a cockroach looks like a cockroach and chimpanzee looks like a chimpanzee, and it watches that the behavior of the systems is relevant. We do not know yet all the details of this mechanism, although genomes of many living organisms, including human genomes, are developed. We know that genes contain recorded genetic information on how to structure this or another protein, but we do not know yet how, for example, how the form of the nose constructed from this protein is preset. The gene is known responsible for the generation of pigment that tinctures the iris /orbital septum/ but we do not know how the form and the size of this septum is coded. This mechanism is probably realized only partially in the DNA itself, as a genome of an insect has much more in common, let's say, with a human genome, than the insect itself with the human being. We do not know how the feelers of any insect of such-and-such length are programmed and where it is recorded that it should have eight pedicles or one horn on its head. And why from these proteins programmed in one of the DNA genes structures in the form of the feelers should be built in this particular place, while the structures in the form of intestinal tubules should be built in another place. Protein molecules are very complex and gigantic formations in terms of molecular sizes with a very sophisticated three-dimensional configuration. Probably, separate molecules of certain albumen types, incidentally or non-incidentally, may approach each other so that to form, like in a puzzle, the albuminous conglomerate only of a specific shape. In that way it is possible to explain both the form and sizes of albuminous structures. We can also assume that casually assembled lame/poor forms have been rejected by evolution, while those successful were purposefully fixed in genes. Consequently, the difference of forms of organs constructed of identical proteins is explained by the difference of the protein molecules structure? It may be true... But why then keratin here is formed in the shape of elytra, and there - in the form of horns or some kind of septa in the insect's body? DNA only programs building material - albumen/proteins, rather than the structure (form), i.e. the organs built of these proteins, since DNA contains a record of only how to structure the proteins (the bricks for building a structure). But where is the drawing of the entire building and its configuration recorded? There are no answers for the present. So, living systems have the purposeful genetic structural regeneration which is intended for continual renewal of elements of the system. Genetic mechanism uses the database recorded in DNA and realized by means of RNA. If it were not for the failures in this system, there would have been no mutations and variability of species. However, the faulty mechanism of mutations is too much subjected to contingencies and cannot be target-oriented just because of contingency (incidental self-organization). Reproductive mechanism of mutations allows making selection by some features, and this is exactly a purposeful mutation (purposeful self-organization). This mechanism can change its program due to cross mating or at the moment of changing life phases (larva>chrysalis>moth), although the possibilities of such change are still very limited. A wolf will never beget a tiger and a trunk will never grow in a wolf either, even if there would be a sudden need in it, at least, for sure, not during the lifespan of one generation. But if me myself, for example, need right now to reconstruct a hand to extend it and to tear off a fruit from a tree, should I then wait for several generations to pass for my hand to grow and extend? Can't one get transmuted without resorting to metabolism? It is possible if conscious self-organization is added. All living beings, including humans, have genetic system of contingency self-organization and in this sense the human being is the same animal as any other animal. But conscious and purposeful type of self-organization is only inherent in human beings. Systems with preset (target-oriented) properties will always be forming only in the event that organization or reorganization of systems is purposeful. Only the control block knows about the goal of the system and only it can make a decision, including on the system reorganization. However, not each control block is suitable for target-oriented reorganization. In order to decide that that system needs to be attached to itself it is necessary to see this system, know its property and define, even prior to beginning interaction, whether these properties suit for the achievement of its own purpose. And for this purpose it is necessary to be able to see and assess the situation around the given system. All self-training systems are able of making such an analysis. Therefore, many higher animals can reorganize their body by enhancing its possibilities with additional executive elements. They use tools of work (stones, sticks, etc.) for hunting food. But these animals, perhaps, act at the level of instincts, i.e. at the level of genetic self-organization, because even insects can use work tools. True conscious self-organization at the given stage of evolution is only present in human being because only he/she has analyzers-abstractors of respective degree of complexity. Only the human being could develop instruments of labor up to the level of modern technologies because it has second signaling system which helped to accumulate the experience of the previous generations by fixing it in the abstract form, in the form of the script. And only the human being using this experience has realized that there exists metabolism in a living organism and that it is possible to influence an organism so that to reorganize, if the need arises (to cure sick organism). Structural regeneration is intended for conservation of the systems' structure. However, metabolism is not a full warranty from the destruction of systems either. Plants cannot foresee the forthcoming destruction because they do not possess the notion of space and they do not see the situation around them, because they have simple control block. Fire will creep up and burn a plant, the animal will approach and eat it, while the plant will quietly waiting for its lot because it does not see the surrounding situation, does not know the forecast and it does not have corresponding decisions regarding specific situations. That is why the systems emerged with more complex control blocks (animals and humans) which can anticipate a situation and protect themselves from destruction. Animals know about space and see the situation around, because they have more complex control blocks. They can compete very effectively with mineral and vegetative media. But competition between the animal species has placed them in new circumstances. Now it is not enough to have only complex control block and to see the surrounding situation. In order to survive it is not enough only to be able of scampering or be strong physically, it is necessary to better orient itself in space and better assess the situation and be able to make conclusions of own failures in case of survival. For this purpose it is necessary to develop control blocks. The more complex the control block, the higher is the degree of safety. And now it is not physical strength which is a criterion of advantage, but cognitive ability, i.e. the more complex the control block is (the brain with all its hierarchy of neural structures), the better. Knowledge is virtue. At that, the purposes of metabolism in animals and humans are the same as in flora, i.e. reproduction of systems and reproduction of elements of systems. Hence, in process of evolution advancement to ensure higher degree of safety of systems, the possibilities of regeneration in the form of metabolism were supplemented by intellectual possibilities of control blocks. Regardless of what kind of nature the system belongs to (mineral, vegetative, animal or human) one of its main purposes is always to preserve itself and its structure. But in mineral nature there are only passive ways of conservation, whereas in the organic nature active ways of conservation do exist: self-organization at the expense of purposeful metabolism. Therefore, struggle for food has always been the foundation of existence. But metabolism only is not sufficient. Therefore, in animals new active ways of protection are added: assessment of external situation and protection from the destructive external influences (complex reflexes, behavioral reactions). However, complex reflexes are not enough either, as it is necessary also to learn new situations and be able of making new decisions (reflexes to new stimuli/exciters). But these appeared to be insufficient as well because of limitation of personal experience. Therefore, personal experience was supplemented by collective experience for the account of the first signaling system (conditioned reflexes: the first signaling system, complex behavioral reactions). And as far as the lifespan of each system is limited, in order to transfer experience to the subsequent generations second signaling system emerged which allows to save personal experience of each system in the form of the script regardless of the system's lifespan. Consequently in order to better preserve itself, it is necessary for the system to change and complicate continually the structure (evolution and development of species) and, apparently to be on the safe side, it's nevertheless better to be more complex rather than simpler (evolution race). Thus, a system may have: incidental organization; generation (incidental physical coincidence of exit points of stimulator or result of action of one systems with the command entry points of control block or entry points of external influence of other systems; may be present in systems with any control blocks, including elementary); degeneration (destruction, structural simplification, loss of SFU under the influence of environment - other systems, may be the systems with any control blocks, including elementary); purposeful organization; forced generation (purposeful physical combination of exit points of stimulator or result of action of one systems with the command entry points of control block or entry points of external influence of other systems; may be in systems with any control blocks, including elementary); forced degeneration (destruction, structural simplification, loss of SFU of the system due to the purposeful effect of other systems; may be in systems with any control blocks, including elementary); self-organization; functional regeneration (operation of the system proper, actuation or de-actuation of functions of own SFU, depending on situational needs, without change of the structure; may be in systems with any control blocks, including elementary); genetic structural regeneration in the form of metabolism and reproduction of individuals directed towards preservation of its structure (may be in systems with control blocks, starting from simple ones); genetic structural regeneration in the form of instinctive/subconscious/ structural reorganization aimed at strengthening the possibilities of an organism by using other systems, that are not an immediate part of the given system (subjects) (uses genetic memory and may be present in systems with control blocks, starting from simple ones); conscious structural regeneration directed to strengthening of possibilities of an organism by use of other systems, not being an immediate part of the given system (subjects) (various technologies; it is aimed at strengthening the possibilities of an organism, may be present in systems with control blocks, starting from complex ones with the second signaling system). As we can see, there is a succession present in the given classification of organization of systems, as it includes everything that exists in our World, starting from objects of mineral nature and including human activities in the form of industrial technologies.

  • Value and probability weighting function. Tournament games as special settings for a competition between individuals. Model: competitive environment, application of prospect theory. Experiment: design, conducting. Analysis of experiment results.

    [1,9 M], 20.03.2016

  • Critical literature review. Apparel industry overview: Porters Five Forces framework, PESTLE, competitors analysis, key success factors of the industry. Bershkas business model. Integration-responsiveness framework. Critical evaluation of chosen issue.

    [29,1 K], 04.10.2014

  • The main reasons for the use of virtual teams. Software development. Areas that are critical to the success of software projects, when they are designed with the use of virtual teams. A relatively small group of people with complementary skills.

    [16,4 K], 05.12.2012

  • Theoretical basis recruitment and selection methods: internal or external recruitment, job resume, job interview. Recruitment process design and development. Evaluation of methods of recruitment and selection on example of "Procter and Gamble".

    [73,2 K], 03.05.2012

  • The concept and features of bankruptcy. Methods prevent bankruptcy of Russian small businesses. General characteristics of crisis management. Calculating the probability of bankruptcy discriminant function in the example of "Kirov Plant "Mayak".

    [74,5 K], 18.05.2015

  • Leadership and historical approach. Effect, which leader makes on group. Developing leadership skills. Exercise control as function of the leader is significant difference between managers and leaders. Common points of work of leader and manager.

    [37,7 K], 13.02.2012

  • Relevance of electronic document flow implementation. Description of selected companies. Pattern of ownership. Sectorial branch. Company size. Resources used. Current document flow. Major advantage of the information system implementation in the work.

    [128,1 K], 14.02.2016

  • The essence, structure, bjectives and functions of business plan. The processs essence of the banks business plan realization. Sequential decision and early implementation stages of projects. Widely spread mistakes and ways for their improvement.

    [67,0 K], 18.12.2011

  • Analysis of the peculiarities of the mobile applications market. The specifics of the process of mobile application development. Systematization of the main project management methodologies. Decision of the problems of use of the classical methodologies.

    [1,4 M], 14.02.2016

  • Major factors of success of managers. Effective achievement of the organizational purposes. Use of "emotional investigation". Providing support to employees. That is appeal charisma. Positive morale and recognition. Feedback of the head with workers.

    [1,8 M], 15.07.2012

, , ..