Расчет структурной схемы системы автоматического управления
Определение передаточной функции разомкнутой системы, стандартной формы ее записи и степени астатизма. Исследование амплитудно-фазовой, вещественной и мнимой частотных характеристик. Построение годографа АФЧХ. Алгебраические критерии Рауса и Гурвица.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.05.2011 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
КУРСОВАЯ РАБОТА
по дисциплине: "Теория автоматического управления"
Уфа 2011
ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
Вариант 16
Схема |
k1 |
k2 |
k3 |
k4 |
k5 |
T1 |
T2 |
T3 |
T4 |
T5 |
о |
|
(а) |
4 |
1.5 |
4 |
2 |
0.7 |
0.4 |
0.3 |
0.5 |
0.15 |
0.9 |
0.5 |
Схема а:
Для структурной схемы САУ, соответствующей выбранному варианту, выполнить следующие действия:
1) Определить передаточную функцию разомкнутой системы, привести ее к стандартной форме записи. Определить степень астатизма системы.
2) Определить амплитудно-фазовую, вещественную и мнимую частотные характеристики.
3) Построить годограф АФЧХ разомкнутой системы.
4) Найти выражения для асимптотической ЛАЧХ и ЛФЧХ разомкнутой системы.
5) Построить в масштабе ЛАЧХ и ЛФЧХ разомкнутой системы.
6) Определить устойчивость замкнутой САР с помощью критерия Найквиста и логарифмических частотных характеристик.
7) Найти запасы устойчивости системы по фазе и амплитуде.
8) Записать выражение для передаточной функции замкнутой системы и проверить выводы пункта 6 с помощью алгебраических критериев Рауса и Гурвица.
9) Проверить выводы пункта 6 с помощью частотного критерия Михайлова.
10) Найти коэффициенты С0, С1, С2 ошибок системы.
11) Построить с помощью ЭВМ переходную функцию замкнутой системы и оценить основные показатели качества регулирования (перерегулирование, и время регулирования) в системе.
передаточный астатизм амплитудный голограф
1. Передаточная функция разомкнутой системы
Упростим схему.
Где
; ; ; ; ; .
Перенесем сумматор.
Затем упростим.
Где
;
Где
;
Где
;
; ; ; ; .
;
;
Степень астатизма н=0. Коэффициент передачи К=1.71. Постоянные времени: Т1=0.15, Т2=0.23, Т3=0.23, Т4=0.4, Т5=0.39, Т6=0.34, о=0.24.
2. Частотная передаточная функция системы (s>jщ)
Особые точки АФЧХ приведены в таблице 1.
Таблица 1.
щ |
0 |
2,85 |
? |
|
P(щ) |
1.71 |
0 |
0 |
|
Q(щ) |
0 |
-2.46 |
0 |
3. Годограф АФЧХ разомкнутой системы
Годограф (рисунок 1) при щ=0 начинается на положительной вещественной полуоси. При щ> ? через четвертый и третий квадранты стремиться к нулю. Пересекает при щ=0 вещественную ось в точке (1,71;j0) и при щ=2,85 пересекает мнимую ось в точке (0;-j2.46).
Рисунок 1.
4. Асимптотическая ЛАХ и ЛФХ
Асимптотическая ЛАХ:
Асимптотическая ЛФХ:
5. Построение в масштабе ЛАХ и ЛФХ системы
1) Значение ЛАХ при щ =1 равно 20lgK, где К - коэффициент передачи разомкнутой системы. К=1,71, значит ЛАХ пересекает ось L(щ) на уровне 4.66.
2) Степень астатизма системы н =0, следовательно наклон самой низкочастотной асимптоты равен 0 дБ/дек.
3) Таблица значений сопрягаемых частот.
Таблица 2.
Т |
0.4 |
0.39 |
0.34 |
0.23 |
0.23 |
0.15 |
|
щ |
2.5 |
2.56 |
2.94 |
4.35 |
4.35 |
6.67 |
|
Изменение наклона (дБ/дек) |
-20 |
-20 |
-40 |
+20 |
+20 |
+20 |
Асимптотическая ЛАХ, построенная от руки (схематично) по информации из таблицы 2 показана на рисунке 2.
Рисунок 2.
На рисунке 3 показаны в масштабе ЛАХ и ЛФХ системы, построенные с помощью ЭВМ.
Рисунок 3.
6. Устойчивость замкнутой САУ с помощью критерия Найквиста и логарифмических частотных характеристик
Степень астатизма системы н=0 и характеристический полином разомкнутой системы имеет все корни в левой половине комплексной плоскости, то критерий Найквиста будет следующим: Для того чтобы замкнутая САУ была устойчивой необходимо и достаточно, чтобы годограф амплитудно-фазовой характеристики разомкнутой системы не охватывал точку с координатами (-1; j0).
На рисунке 4 изображен годограф АФХ. Он не охватывает точку (-1; j0), следовательно, замкнутая система будет устойчивой.
Рисунок 4.
7. Запасы устойчивости по фазе и амплитуде
Как видно из рисунка 4 годограф не пересекает отрицательную вещественную полуось, следовательно, запас устойчивости по амплитуде 100%.
Рассчитаем запас устойчивости по фазе:
Найдем щср(частоту среза) из условия A(щ)=1
щср=3,924 с-1
Таким образом запас по фазе составляет 39,230.
Передаточная функция замкнутой системы может быть найдена по следующей формуле
Характеристический полином системы:
Определение устойчивости замкнутой системы методом Рауса.
Таблица Рауса.
a0 |
a2 |
a4 |
||
a1 |
a3 |
a5=0 |
||
C13=a2-ф3a3 |
C23=a4-ф3a5 |
C33=a6-ф3a7 |
ф 3 =a0/a1 |
|
C14=a3- ф4C23 |
C24=a5- ф4C33 |
C34=0 |
ф 4=a1/C13 |
|
C15=C23-ф5C24 |
C25=C33-ф5C34 |
C35=0 |
ф 5=C13/C14 |
|
C16=C24-ф6C25 |
C26=C34-ф6C35 |
C36=0 |
ф 6=C14/C15 |
Заполним таблицу.
0.018 |
0.612 |
2.71 |
||
0.1314 |
2 |
0 |
||
C13=0.3384 |
C23=2.71 |
C33=0 |
ф 3 =0.137 |
|
C14=0.948 |
C24=0 |
C34=0 |
ф 4=0.388 |
|
C15=2.71 |
C25=0 |
C35=0 |
ф 5=0.357 |
|
C16=0 |
C26=0 |
C36=0 |
ф 6=0.34 |
Все элементы первого столбца таблицы имеют один и тот же знак, следовательно, характеристический полином замкнутой системы имеет корни только в левой половине комплексной плоскости. Замкнутая САУ устойчива.
Определение устойчивости замкнутой системы методом Гурвица.
Построим определители Гурвица
Все определители Гурвица положительны, следовательно, характеристический полином замкнутой системы имеет корни только в левой половине комплексной плоскости. Замкнутая САУ устойчива.
8. Определение устойчивости замкнутой системы с помощью частотного критерия Михайлова
Характеристический полином системы
s>jщ
Вещественная функция Михайлова:
.
Мнимая функция Михайлова:
Решим уравнения
; .
,
Учитываем корни щ > 0
; ;
; .
; ; .
Построим таблицу
щ |
0 |
2.88 |
3.9 |
5.36 |
|
Re(щ) |
2.71 |
0 |
-2.44 |
0 |
|
Im(щ) |
0 |
3 |
0 |
-9.57 |
Годограф Михайлова (в схематичном виде) представлен на рисунке 5.
Рисунок 5.
Критерий Михайлова: Замкнутая САУ будет устойчивой тогда и только тогда, когда годограф Михайлова, при изменении частоты щ от 0 до +? начинаясь на положительной действительной полуоси последовательно и нигде не обращаясь в 0 пересекает n квадрантов комплексной плоскости (где n - порядок характеристического полинома САУ).
В данном случае годограф соответствует критерию Михайлова, значит замкнутая САУ устойчива.
9. Коэффициенты ошибок системы
Передаточная функция ошибки будет иметь вид
10. Переходная функция САУ
Найдем корни N(s):
Получим следующее:
Построим график с помощью ЭВМ.
График переходной функции.
Из графика видно, что время регулирования tp?3.29с, а перерегулирование
.
Размещено на Allbest.ru
Подобные документы
Расчет и структурная схема передаточных функций разомкнутой и замкнутой системы автоматического управления (САУ) относительно входного воздействия. Формулы для мнимой и вещественной компоненты. Графики логарифмических амплитудной и фазовой характеристик.
курсовая работа [505,8 K], добавлен 15.11.2009Построение структурной схемы нескорректированной системы и определение передаточных функций звеньев. Построение логарифмических амплитудно-частотных характеристик для исходной системы. Синтез и моделирование последовательного корректирующего устройства.
курсовая работа [90,6 K], добавлен 21.12.2010Расчет линейных систем автоматического управления. Устойчивость и ее критерии. Расчет и построение логарифмических частотных характеристик скорректированной системы и анализ её устойчивости. Определение временных и частотных показателей качества системы.
курсовая работа [741,2 K], добавлен 03.05.2014Определение передаточных функций и переходных характеристик звеньев системы автоматического управления. Построение амплитудно-фазовой характеристики. Оценка устойчивости системы. Выбор корректирующего устройства. Показатели качества регулирования.
курсовая работа [347,1 K], добавлен 21.02.2016Определение устойчивости стационарных и нестационарных линейных непрерывных и дискретно-непрерывных САР по критериям Гурвица, Раусса, Михайлова, Ляпунова и Шур-Кона. Построение годографа Найквиста для разомкнутой системы автоматического регулирования.
контрольная работа [844,4 K], добавлен 09.03.2012Получение эквивалентной передаточной функции. Построение годографа Михайлова для сочетания параметров регулятора. Их выбор по заданным показателям установившегося и переходного процесса. Построение частотных и временных характеристик замкнутой системы.
курсовая работа [439,9 K], добавлен 28.06.2011Методика определения устойчивости системы по алгебраическим (критерии Рауса и Гурвица) и частотным критериям устойчивости (критерии Михайлова и Найквиста), оценка точности их результатов. Особенности составления передаточной функции для замкнутой системы.
лабораторная работа [161,5 K], добавлен 15.12.2010Разработка схемы электрической принципиальной математической модели системы автоматического управления, скорректированной корректирующими устройствами. Оценка устойчивости исходной системы методом Рауса-Гурвица. Синтез желаемой частотной характеристики.
курсовая работа [172,1 K], добавлен 24.03.2013Вывод дифференциального уравнения дроссельной иглы. Построение схемы и понятие передаточных функций системы автоматического регулирования перепада давления топлива на дроссельном кране. Проверка устойчивости САР по критериям Найквиста и Рауса-Гурвица.
курсовая работа [755,4 K], добавлен 18.09.2012Составление структурной схемы и определение передаточной функции объекта управления. Построение логарифмических, переходных характеристик и составление уравнения состояния непрерывного объекта. Определение периода квантования управляющей цифровой системы.
контрольная работа [205,5 K], добавлен 25.01.2015