Обработка результатов многократных прямых равноточных измерений

Составление эскиза детали и характеристика средств измерений. Оценка результатов измерений и выбор устройства для контроля данной величины. Статистическая обработка результатов, построение гистограммы распределения. Изучение ГОСТов, правил измерений.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 01.12.2015
Размер файла 263,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

"Ярославский государственный технический университет"

Кафедра "Управление качеством"

Пояснительная записка к курсовой работе

Обработка результатов многократных прямых равноточных измерений

Работу выполнил

ст.пр. студент гр. ЭСМ-32

П.А Лазур

Руководитель, ст.пр.

В.Ф. Ершова

2014

Содержание

Введение

1. Задание

1.1 Исходные данные

1.2 Эскиз детали

2. Расчетная часть (обработка многократных измерений)

2.1 Вариационный ряд измерений

2.2 Статистический ряд распределения

2.3 Статистическая обработка результатов измерений

2.4 Гистограмма распределения измеренных величин

2.5 Окончательный результат измерения

3. Выбор измерительных средств

Вывод

Заключение

Список использованных источников

Введение

Основная цель обработки экспериментальных данных - получение результата измерения и оценка его погрешности.

Для определения результата многократных измерений и оценки их погрешностей широкое распространение получили вероятностно-статистические методы.

При прямых измерениях выполняется следующий порядок операций:

- исключают известные систематические погрешности из результатов измерений;

- проверяют гипотезу о принадлежности результатов наблюдении нормальному закону распределения;

- устанавливают наличие грубых погрешностей в совокупности результатов наблюдений и результаты измерений, содержащие грубые погрешности, исключают из обработки;

- вычисляют оценку истинного значения измеряемой величины (результат измерения);

- вычисляют погрешности результата измерения (случайные и не исключённые, систематические) и записывают в форме, предусмотренной МИ 1317-2004.

Проверка нормального распределения результатов измерений

Статистические методы обработки результатов измерений часто основываются на гипотезе о нормальном распределении. Поэтому при решении многих практических задач важную роль играет проверка соответствия распределения случайных величин нормальному закону распределения, которому чаще всего подчиняются результаты большинства случайных измерений, что необходимо для обоснования выбора доверительных границ результатов измерений и оценки точности измерений

Для определения вида закона распределения по опытным данным на практике широко применяют метод построения гистограммы.

Гистограмма представляет собой столбчатый график, построенный по полученным за определенный период (например, за неделю или месяц) данных, которые разбиваются на несколько интервалов; число данных, попадающих в каждый из интервалов (частота), выражается высотой столбика. Данные для построения гистограммы собираются в течение длительного периода - недели, месяца, года и т.д.

После построения гистограммы надо подобрать теоретическую плавную кривую распределения, которая, выражая все существенные черты опытного распределения, сглаживала бы все случайности, связанные с недостаточностью объема экспериментальных данных.

Проверить гипотезу о том, что распределение данных не противоречит теоретическому распределению, можно по ряду критериев.

Наиболее эффективными являются критерий Колмогорова, щ - критерий и ч2 -критерий Пирсона.

При числе результатов наблюдений n ? 50 для проверки критерия согласия опытного распределения с теоретическим чаще всего используют критерий Пирсона.

При 15< n <50 нормальность распределения следует проверять при помощи составного критерия согласно МИ 1317-2004.

При n ? 15 принадлежность результатов к нормированному распределению не проверяют.

1. Задание

1.1 Исходные данные

Результаты измерений, полученные экспертным путем:

49,60;49,959;49,95;49,953;49,955;49,956;49,975;49,97;49,972;49,96;

4,.957;49,952;49,954;49,958;49,965;49,968;49.973;49,975;49,97;49,965;

49,965;49,963;49,962;49,965;49,965;49,966;49,974;49,967,49;966;49,965;

1.2 Эскиз детали

Рисунок 1 - Деталь (распределительный вал двигателя).

2. Расчетная часть (обработка многократных измерений)

Составляем вариационный ряд, т.е. исходную информацию представляем в виде таблицы, в которой располагаем все значения измерений в порядке возрастания величин (Таблица 1).

2.1 Вариационный ряд измерений

Таблица 1 - Вариационный ряд измерений

номер

размеры

номер

размеры

номер

размеры

1

49,95

11

49,962

21

49,967

2

49,952

12

49,963

22

49,968

3

49,953

13

49,965

23

49,97

4

49,954

14

49,965

24

49,97

5

49,955

15

49,965

25

49,972

6

49,956

16

49,965

26

49,973

7

49,957

17

49,965

27

49,974

8

49,958

18

49,965

28

49,975

9

49,959

19

49,966

29

49,975

10

49,960

20

49,966

В данной совокупности результатов измерений установилась случайная погрешность, равная Х=49,60 поэтому данный результат измерений следует исключить из обработки. И теперь за предельное минимальное измеренное значение параметров в выборке принимаем значение Xmin =49,95.

2.2 Статистический ряд распределения

Составляем статистический ряд распределения.

Для построения статистического ряда распределения весь ряд измерений разбиваем на r интервалов:

r = 1 + 3,322 lg n =

r =

Найденное число округляем до ближайшего нечетного целого, значит

r = 5

Находим длину интервала:

l = (Xmax - Xmin)/r

l = (49,975-29,955) = 0,025/5 =

Все рассчитанные данные представляем в Таблице 2.

Таблица 2 - Статистическая обработка результатов измерений

Номер интервала

Границы интервала

Середина интервала

*тервала7 до 49.975ы: 49.975-29.95=0.025

1

49,95 - 49.955

49,952

5

-2

-10

20

2

49,955 - 49,96

49,955

5

-1

-5

5

3

49,96 - 49,965

49,962

8

0

0

0

4

49,965 - 49,97

49,967

6

+1

6

6

5

49,97 - 49,975

49,972

5

+2

10

20

сумма

29

1

51

2.3 Статистическая обработка результатов измерений

Проводим статистическую обработку результатов измерений.

Рассчитываем среднеквадратичное отклонение:

=

=

2.4 Гистограмма распределения измеренных величин

Строим гистограмму распределения измеренных величин, используя по оси Х - масштаб, включающий весь интервал разброса значений параметра, по оси Y - масштаб, включающий весь интервал разброса частот (количество попаданий в интервал). Наносим на гистограмму в виде вертикальных линий значения среднего и допустимых предельных значений Хmax и Xmin, а также все необходимые надписи.

Строим полигон распределения измеренных величин, соединив прямыми линиями середины верхних (горизонтальных) сторон прямоугольника гистограммы.

Гистограмма.

2.5 Окончательный результат измерения

Полученная гистограмма распределения величин имеет вид Гистограммы с двухсторонней симметрией - нормальное распределение. Гистограмма с таким распределением встречается чаще всего. Она указывает на стабильность процесса.

Рассчитываем среднее арифметическое значение:

=

=

Записываем окончательный результат измерения в виде:

X =

X =

3. Выбор измерительных средств

Исходя из исходных данных измерений, выбираем измерительное средство для контроля данного размера.

Выбор средств измерений (СИ) производим по коэффициенту уточнения. Это самый простой способ, предусматривающий сравнение точности измерения и точности изготовления (функционирования) объекта контроля.

Здесь предусматривается введение коэффициента уточнения КТ1 (коэффициента закона точности) при известном допуске Т и предельном значении [] погрешности измерения.

КТ1 = Т/2]

Находим допуск, имея исходные данные:

Т = -0,025-(-0,050) = 0,025

В соответствии с ГОСТ 8.051-81 значения пределов допускаемых погрешностей [] для линейных размеров задаются в зависимости от допусков и квалитета и представлены в Таблице 3.

Таблица 3 - Зависимость диапазона допусков от квалитета

Квалитет

2 - 5

6 - 7

8 - 9

10 - 16

Средний коэффициент с

0,35

0,30

0,25

0,20

Диапазон допусков, мкм

0,8 - 2,7

6 - 63

14 - 155

40 - 4000

Диапазон [Дизм], ±мкм

0,25 - 10,00

2 - 19

3,5 - 39,0

8 - 800

Зная допуск и квалитет, находим значение пределов допускаемых погрешностей:

[] = (0,20…0,35) Т =

[]= 0,30*0,025= 0,0075

Теперь можем найти коэффициент уточнения КТ1 (коэффициента закона точности):

КТ1 = 0,025/(2*0,0075) =0,025/0,015 =1,7

Далее находим величину, обратную КТ1. Эту величину называют относительной погрешностью метода измерения

Аизм = 1/ КТ1

Аизм=1/1,7=0,6

Для линейных размеров указанное соотношение между [] и Т от 20 до 35% соответствует КТ1 = 2,5…1,4. При выборе СИ по величине КТ1 необходимо иметь соответствующие справочные данные о погрешностях конкретных СИ, которые представлены в Таблице 4.

Таблица 4 - Предельные погрешности наиболее распространенных универсальных средств измерения

Измерительные средства

Предельные погрешности измерения [Дизм], мкм

для интервалов размеров, мм

до 10

11-50

51-80

81-120

121-180

181-260

261-360

361-500

1

2

3

4

5

6

7

8

9

Оптиметры, измерительные машины (при измерении наружных размеров)

0,7

1,0

1,3

1,6

1,8

2,5

3,5

4,5

То же (при измерении внутренних размеров)

_

0,9

1,1

1,3

1,4

1,6

_

_

Микроскоп универсальный

1,5

2,0

2,5

2,5

3,0

3,5

_

_

То же

5,0

5,0

_

_

_

_

_

_

Миниметр с ценой деления:

1 мкм

1,0

1,5

2,0

2,5

3,0

4,5

6,0

8,0

2 мкм

1,4

1,8

2,5

3,0

3,5

5,0

6,5

8,0

5 мкм

2,2

2,5

3,0

3,5

4,0

5,0

6,5

8,5

Рычажная скоба с ценой деления:

2 мкм

3,0

3,5

4,0

4,5

_

_

_

_

10 мкм

7,0

7,0

7,5

7,5

8,0

_

_

_

Микрометр рычажный

3

4

_

_

_

_

_

_

Микрометр

7

8

9

10

12

15

20

25

Индикатор

15

15

15

15

15

16

16

16

Штангенциркуль с ценой деления:

0,02 мм

40

40

45

45

45

50

60

70

0,05 мм

80

80

90

100

100

100

100

100

0,10 мм

150

150

160

170

190

200

210

230

1 - скоба; 2 - пятка; 3 - микрометрический винт; 4 - стопор; 5 - стебель; 6 - барабан; 7 - трещотка (фрикцион)

Рисунок 6 - микрометр наружный.

Вывод

В качестве вывода представляем характеристику выбранного средства измерения в Таблице 5.

деталь измерение гистограмма распределение

Таблица 5 - Характеристика объекта и средств измерений

Объект измерения

Объем выборки, шт.

Нормативный документ

Контролируемый параметр

Допустимые размеры, мм

max

min

Распределительный вал

29

ГОСТ 8.207-76

Посадочный диаметр

49.975

49.95

Средство измерения

Метрологическая характеристика, мм

Цена деления

Пределы измерения

Микрометр

0,015

0-75

Заключение

По ходу выполнения курсовой работы по дисциплине "Метрология и сертификация" мы приобрели навыки самостоятельной работы при обработке многократных прямых равноточных измерений, научились оценивать результаты измерений и выбирать измерительное устройство для контроля данного размера, а также развили навыки пользования справочной литературой, ГОСТами, правилами, методами обработки результатов измерений.

Список использованных источников

1. "Обработка результатов многократных прямых равноточных измерений" - Методические указания по курсовой работе по дисциплине "Метрология и сертификация".

2. ГОСТ 8.207-76 Межгосударственный стандарт. Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения. ИПК Издательство стандартов. Москва

Размещено на Allbest.ru


Подобные документы

  • Проведение измерений средствами измерений при неизменных или разных внешних условиях. Обработка равноточных, неравноточных и косвенных рядов измерений. Обработка многократных результатов измерений (выборки). Понятие генеральной совокупности и выборки.

    курсовая работа [141,0 K], добавлен 29.03.2011

  • Построение точечных диаграмм результатов многократных измерений одной и той же физической величины, тенденции их изменения, оценка погрешностей. Построение аппроксимирующих линий и эквидистант. Статистическая обработка результатов серии измерений.

    курсовая работа [733,0 K], добавлен 28.07.2013

  • Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.

    реферат [356,6 K], добавлен 26.07.2014

  • Методика и основные этапы обработки исправленных результатов прямых равнорассеянных наблюдений, механизм и значение проведения проверки нормальности их распределения. Результаты наблюдений многократных прямых измерений, их анализ и формирование выводов.

    курсовая работа [96,7 K], добавлен 06.04.2015

  • Обработка результатов прямых равноточных и косвенных измерений. Нормирование метрологических характеристик средств измерений классами точности. Методика расчёта статистических характеристик погрешностей в эксплуатации. Определение класса точности.

    курсовая работа [1,2 M], добавлен 16.06.2019

  • Назначение и цели измерительного эксперимента, характеристика этапов проведения. Понятие и формулы расчёта относительной, приведенной, систематической, случайной погрешности, грубой ошибки. Обработка результатов прямых, косвенных и совокупных измерений.

    реферат [199,9 K], добавлен 10.08.2014

  • Оценка погрешностей результатов прямых равноточных, неравноточных и косвенных измерений. Расчет погрешности измерительного канала. Выбор средства контроля, отвечающего требованиям к точности контроля. Назначение класса точности измерительного канала.

    курсовая работа [1002,1 K], добавлен 09.07.2015

  • Порядок и методика выполнения прямых измерений с многократными независимыми наблюдениями. Обработка наблюдений и оценка их погрешностей. Формулировка и проверка гипотезы тождественности теоретического и эмпирического закона распределения выборки.

    курсовая работа [762,7 K], добавлен 09.03.2012

  • Алгоритм обработки многократных испытаний. Основные законы распределения. Требование к оценкам измеряемой величины. Систематические погрешности и основные методы их устранения. Определение принадлежности результатов измерений нормальному распределению.

    курсовая работа [439,6 K], добавлен 08.05.2012

  • Обработка результатов прямых и косвенных измерений с использованием ГОСТ 8.207-76. Оценка среднего квадратического отклонения, определение абсолютной погрешности и анормальных результатов измерений. Электромагнитный логометр, его достоинства и недостатки.

    курсовая работа [938,3 K], добавлен 28.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.