Точность оценки, доверительная вероятность (надежность)

Оценка истинного значения измеряемой величины. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения. Оценка точности измерений. Оценка вероятности (биномиального распределения) по относительной частоте.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 13.10.2013
Размер файла 277,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Точность оценки, доверительная вероятность (надежность)

Доверительный интервал

При выборке малого объема следует пользоваться интервальными оценками т.к. это позволяет избежать грубых ошибок, в отличие от точечных оценок.

Интервальной называют оценку, которая определяется двумя числами - концами интервала, покрывающего оцениваемый параметр. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика * служит оценкой неизвестного параметра . Будем считать постоянным числом ( может быть и случайной величиной). Ясно, что * тем точнее определяет параметр в, чем меньше абсолютная величина разности | - * |. Другими словами, если >0 и | - * | < , то чем меньше , тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка * удовлетворяет неравенству | - *|<, можно лишь говорить о вероятности , с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по * называют вероятность , с которой осуществляется неравенство | - *|<. Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что | - *|<, равна т.е.

Р(| - *|<)=

Заменив неравенство | - *|< равносильным ему двойным неравенством -<| - *|<, или *- <<*+, имеем

Р(*- < <*+)=.

Доверительным называют интервал (*- , *+), который покрывает неизвестный параметр с заданной надежностью .

Доверительные интервалы для оценки математического ожидания нормального распределения при известном .

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t(/n^?) < a < х + t(/n^?),

где t(/n^?)= - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Ф(t)=/2.

Из равенства t(/n^?)=, можно сделать следующие выводы:

1. при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2. увеличение надежности оценки = 2Ф(t) приводит к увеличению t (Ф(t) -- возрастающая функция), следовательно, и к возрастанию ; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Пример. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним х, если объем выборки n = 36 и задана надежность оценки = 0,95.

Решение. Найдем t. Из соотношения 2Ф(t) = 0,95 получим Ф (t) = 0,475. По таблице находим t=1,96.

Найдем точность оценки:

точность доверительный интервал измерение

=t(/n^?)= ( 1 ,96 . 3)/ /36 = 0,98.

Доверительный интервал таков: (х - 0,98; х + 0,98). Например, если х = 4,1, то доверительный интервал имеет следующие доверительные границы:

х - 0,98 = 4,1 - 0,98 = 3,12; х + 0,98 = 4,1+ 0,98 = 5,08.

Таким образом, значения неизвестного параметра а, согласующиеся с данными выборки, удовлетворяют неравенству 3,12 < а < 5,08. Подчеркнем, что было бы ошибочным написать Р (3,12 < а < 5,08) = 0,95. Действительно, так как а - постоянная величина, то либо она заключена в найденном интервале (тогда событие 3,12 < а < 5,08 достоверно и его вероятность равна единице), либо в нем не заключена (в этом случае событие 3,12 < а < 5,08 невозможно и его вероятность равна нулю). Другими словами, доверительную вероятность не следует связывать с оцениваемым параметром; она связана лишь с границами доверительного интервала, которые, как уже было указано, изменяются от выборки к выборке.

Поясним смысл, который имеет заданная надежность. Надежность = 0,95 указывает, что если произведено достаточно большое число выборок, то 95% из них определяет такие доверительные интервалы, в которых параметр действительно заключен; лишь в 5% случаев он может выйти за границы доверительного интервала.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью , то минимальный объем выборки, который обеспечит эту точность, находят по формуле

N=t^2^2/^2

Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при неизвестном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t()(s/n^?) < a < х + t()(s/n^?),

где s -«исправленное» выборочное среднее квадратическое отклонение, t() находят по таблице по заданным и n.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя x = 20,2 и «исправленное» среднее квадратическое отклонение s = 0,8. Оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем t(). Пользуясь таблицей, по = 0,95 и n=16 находим t()=2,13.

Найдем доверительные границы:

х - t()(s/n^?) = 20,2 - 2,13 *. 0 ,8/16^? = 19,774

х + t()(s/n^?) = 20,2 + 2,13 * 0 ,8/16^? = 20,626

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,774 < а < 20,626

Оценка истинного значения измеряемой величины

Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение а которой неизвестно.

Будем рассматривать результаты отдельных измерений как случайные величины Хl, Х2,…Хn. Эти величины независимы (измерения независимы). Имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии ^2 (измерения равноточные) и распределены нормально (такое допущение подтверждается опытом).

Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов, выполняются, и, следовательно, мы вправе использовать формулы. Другими словами, истинное значение измеряемой величины можно оценивать по среднему арифметическому результатов отдельных измерений при помощи доверительных интервалов.

Пример. По данным девяти независимых равноточных измерений физической величины найдены среднее арифметической результатов отдельных измерений х = 42,319 и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение измеряемой величины с надежностью = 0,95.

Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к. оценке математического ожидания (при неизвестном ) при помощи доверительного интервала покрывающего а с заданной надежностью = 0,95.

х - t()(s/n^?) < a < х + t()(s/n^?)

Пользуясь таблицей, по у = 0,95 и л = 9 находим

Найдем точность оценки:

t()(s/n^?) = 2 ,31 * 5/9^?=3.85

Найдем доверительные границы:

х - t()(s/n^?) = 42,319 - 3,85 = 38,469;

х + t()(s/n^?) = 42,319 +3,85 = 46,169.

Итак, с надежностью 0,95 истинное значение измеряемой величины заключено в доверительном интервале 38,469 < а < 46,169.

Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Для этого воспользуемся интервальной оценкой.

Интервальной оценкой (с надежностью ) среднего квадратического отклонения о нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит доверительный интервал

s (1 -- q) < < s (1 + q) (при q < 1),

0 < < s (1 + q) (при q > 1),

где q находят по таблице по заданным n н .

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено «исправленное» среднее квадратическое отклонение s = 0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.

Решение. По таблице по данным = 0,95 и n = 25 найдем q = 0,32.

Искомый доверительный интервал s (1 -- q) < < s (1 + q) таков:

0,8(1-- 0,32) < < 0,8(1+0,32), или 0,544 < < 1,056.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,999.

Решение. По таблице приложения по данным = 0,999 и n=10 найдем 17= 1,80 (q > 1). Искомый доверительный интервал таков:

0 < < 0,16(1 + 1,80), или 0 < < 0,448.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки используют «исправленной» среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений.

Пример. По 15 равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99.

Решение. Точность измерений характеризуется средним квадратическим отклонением случайных ошибок, поэтому задача сводится к отысканию доверительного интервала s (1 -- q) < < s (1 + q) , покрывающего с заданной надежностью 0,99

По таблице приложения по = 0,99 и n=15 найдем q = 0,73.

Искомый доверительный интервал

0,12(1-- 0,73) < < 0,12(1+0,73), или 0.03 < < 0,21.

Оценка вероятности (биномиального распределения) по относительной частоте

Интервальной оценкой (с надежностью ) неизвестной вероятности p биномиального распределения по относительной частоте w служит доверительный интервал (с приближенными концами p1 и р2)

p1 < p < p2,

где n - общее число испытаний; m - число появлений события; w - относительная частота, равная отношению m/n; t - значение аргумента функции Лапласа, при котором Ф(t) = /2.

Замечание. При больших значениях n (порядка сотен) можно принять в качестве приближенных границ доверительного интервала

Размещено на Allbest.ru


Подобные документы

  • Характеристика современных телевизоров. Стандарты телевизионного вещания. Доверительные границы случайной погрешности результата измерения. Прямые измерения с многократными наблюдениями. Результат измерения, оценка его среднего квадратического отклонения.

    курсовая работа [1,0 M], добавлен 14.11.2013

  • Обработка результатов прямых и косвенных измерений с использованием ГОСТ 8.207-76. Оценка среднего квадратического отклонения, определение абсолютной погрешности и анормальных результатов измерений. Электромагнитный логометр, его достоинства и недостатки.

    курсовая работа [938,3 K], добавлен 28.01.2015

  • Определение количества интервалов по формуле Старджесса. Определение среднего арифметического значения и среднеквадратического отклонения. Теоретическая вероятность попадания результата измерения в каждый интервал. Основные свойства функции Лапласа.

    контрольная работа [56,2 K], добавлен 16.12.2012

  • Кривые распределения контролируемого параметра и оценка точности обработки на их основе. Основные виды погрешностей. Систематические закономерно изменяющиеся, случайные погрешности в результате действия большого количества несвязанных факторов.

    презентация [3,0 M], добавлен 26.10.2013

  • Определение значения мощности электрического тока в результате косвенных измерений путем оценки величины сопротивления, напряжения и погрешностей. Оценка стоимости аккредитации базового органа по сертификации продукции и испытательной лаборатории.

    курсовая работа [80,9 K], добавлен 15.02.2011

  • Составление эскиза детали и характеристика средств измерений. Оценка результатов измерений и выбор устройства для контроля данной величины. Статистическая обработка результатов, построение гистограммы распределения. Изучение ГОСТов, правил измерений.

    курсовая работа [263,8 K], добавлен 01.12.2015

  • Исследование приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы прямых измерений: оценки, противопоставления, полного замещения. Сертификат пожарной безопасности. Добровольная сертификация.

    контрольная работа [926,7 K], добавлен 07.01.2015

  • Применение коэффициентов асимметрии и эксцесса для проверки нормальности распределения результатов измерений. Проверка с использованием критерия Пирсона. Оценка нормальности распределения периода калибровочной решетки "TGZ2" непараметрическим методом.

    курсовая работа [2,7 M], добавлен 29.04.2014

  • Установление соответствия брака для формообразующих операций сравнением заданного чертежного размера детали с ожидаемым значением технологического размера. Определение вероятности брака с помощью законов нормального распределения и равной вероятности.

    лабораторная работа [99,9 K], добавлен 07.06.2012

  • Алгоритм обработки многократных испытаний. Основные законы распределения. Требование к оценкам измеряемой величины. Систематические погрешности и основные методы их устранения. Определение принадлежности результатов измерений нормальному распределению.

    курсовая работа [439,6 K], добавлен 08.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.