Биотехнологическая очистка сточных вод
Принципиальная схема очистных сооружений. Показатели загрязненности сточных вод и технология их очистки. Классификация биофильтров и их типы, процесс вентиляции и распределение сточных вод по биофильтрам. Биологические пруды для очистки сточных вод.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 15.01.2012 |
Размер файла | 134,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Исследования, проведенные Н.А. Базякиной, показали, что объем кислорода воздуха, используемого в биофильтрах, как и в других сооружениях биологической очистки, не превышает 7--8%.
Температура внутри биофильтра не должна быть ниже 6° С, иначе окислительный процесс практически прекращается.
В установках большой и средней пропускной способности необходимая температура поддерживается вследствие постоянного притока сточных вод, температура которых почти всегда выше 8° С. Поэтому такие фильтры обычно не требуют утепления. Небольшие фильтры, как уже отмечалось, приходится размещать в утепленных помещениях во избежание их переохлаждения, особенно в ночное время, когда приток сточной воды уменьшается.
Распределение сточных вод по биофильтрам
Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение производится распределительными устройствами, которые подразделяются на две основные группы: неподвижные и подвижные.
К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным -- качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители).
В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение при помощи подвижных оросителей.
Спринклерное орошение. Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров.
Спринклеры (спринклерные головки) -- специальные насадки, надетые на концы стояков, которые ответвляются от водораспределительных труб, уложенных на поверхности или в теле биофильтра. Отверстия спринклерных головок невелики -- обычно 19, 22 и 25 мм. Во избежание коррозии спринклеры изготовляют из бронзы или из латуни.
Достоинством головки этого типа является, то, что опора, к которой прикреплен отражательный обратный конус, находится в стороне от движущейся струи и не мешает ее действию.
Дозирующий бак автоматически подает воду в спринклерную сеть под постоянным напором. Продолжительность опорожнения бака (период орошения), зависящая в основном от вместимости бака и размеров выпускаемой трубы, всегда одинакова; продолжительность же наполнения бака зависит только от притока сточных вод, который колеблется в течение суток. Поэтому орошение биофильтра производится периодически, через неровные по продолжительности интервалы. Во избежание сильного охлаждения не обогреваемых биофильтров интервал между орошением не должен превышать 5--8 мин.
При большой площади биофильтры разделяются на секции с самостоятельными распределительными сетями и отдельными дозирующими баками.
В отечественной практике наибольшее распространение получил дозирующий бак с сифоном. Преимущество его перед другими состоит в том, что он совершенно не имеет движущихся частей.
Выпускная труба из дозирующего бака представляет собой сифон, верхний срез которого возвышается над дном бака. Внутри дозирующего бака расположен опрокинутый стакан, установленный на подставках и не доходящий до дна бака. К стакану в верхней его части присоединены две трубки: одна из них -- воздушная трубка -- заканчивается открытым концом в баке, другая трубка, представляющая собой вентиляционный затвор, или регулятор напора, заканчивается открытым концом, выведенным выше максимального уровня воды в баке. Кроме того, регулятор напора присоединен патрубком к главной выпускной трубе. В верхней части бака имеется переливная труба, диаметр которой принимается в соответствии с притоком воды в бак.
Действие автоматического сифона заключается в следующем. Вначале вода в баке стоит на низшем уровне А, соответствующем нижнему колену воздушной трубки. В сифоне вода в это время стоит на уровне выходного отверстия спринклеров; регулятор напора заполнен водой до уровня на котором он присоединен к стакану. По мере поступления воды горизонт ее в баке повышается, причем давление под стаканом и в отводной трубе остается равным атмосферному до тех пор, пока уровень ее не дойдет до отверстия воздушной трубки. После этого выход воздуха из-под стакана прекращается и воздушное давление в нем по мере заполнения бака начинает возрастать.
Когда горизонт воды в баке достигнет наивысшего уровня, а горизонт воды под стаканом достигнет верхнего края отводной трубы, уровень воды в регуляторе напора упадет до нижнего его колена В2, а в главном сифоне -- до уровня Б2> также почти у нижнего колена. При этом давление воздуха под стаканом, в главной трубе сифона и в регуляторе напора будет равно высоте столба воды. В следующий момент гидравлический затвор в регуляторе напора прорвется, давление под стаканом упадет до атмосферного, вследствие чего вода из бака устремится в главную трубу и будет вытекать из нее до тех пор, пока горизонт в баке не упадет до уровня А нижнего колена воздушной трубки. Как только через нее воздух проникнет под стакан, действие сифона приостановится, причем колено регулятора напора, засасывающего во время действия сифона воду из главной отводной трубы, останется заполненным водой.
Для регулирования наивысшего уровня воды в баке, при котором начинают действовать сифоны, верхнюю часть регулятора напора делают подвижной на сальниках; поднимая или опуская переливной патрубок регулятора напора, можно установить начало действия сифона как раз в тот момент, когда уровень воды под стаканом дойдет до края выпускной трубы. Отводную трубу от бака можно устраивать с гидравлическим затвором и без него. Диаметр сифона равен диаметру разводящей трубы. Внутренний диаметр колокола принимают равным двум диаметрам трубы сифона, но он может быть и больше.
По мере вытекания воды из бака радиус действия спринклера, зависящий от напора, постепенно уменьшается и таким образом орошается вся площадь круга вокруг спринклера. Для более равномерного распределения воды по орошаемой площади дозирующему баку придают такую форму, при которой площадь его горизонтальных сечений на различных уровнях пропорциональна расходу воды из бака в данный момент. Этому требованию с достаточным приближением удовлетворяет форма опрокинутой усеченной пирамиды. Площадь нижнего ее сечения назначают в зависимости от размера выходной трубы; площадь верхнего сечения (соответствующего уровню воды при максимальном напоре) определяется из указанного соотношения.
Расчет водораспределительной системы сводится к определению расхода воды из каждого разбрызгивателя (спринклера), определению необходимого их числа, диаметра разводящей сети, емкости и времени работы дозирующего бака.
Распределительную сеть укладывают или на специальные столбы, или прямо на фильтрующую загрузку на глубине 0,7--0,8 м от поверхности биофильтра. Сеть укладывают с уклоном с тем, чтобы ее можно было опорожнить в случае необходимости. В конце каждой трубы целесообразно иметь пробку, через которую можно было бы промыть трубопровод чистой водой. Спринклерные головки устанавливают обычно на 0,15 м выше поверхности загрузки фильтра.
Реактивные вращающиеся водораспределители (оросители). Вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке.
Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг своей вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, распределитель вращается.
Такие реактивные оросители получили большое распространение за рубежом (в Англии, ФРГ и Чехословакии) и вполне себя оправдали. У нас они применяются на очистных станциях во многих городах (Харькове, Славянске, Шереметьеве, Владимире и др.).
Союзводоканалниипроектом разработаны типовые проекты вращающихся оросителей для биофильтров диаметром 15, 21, 27 и 29 м.
Для приведения в действие реактивного оросителя необходим сравнительно небольшой напор (0,2--1 м), что является одним из достоинств этого устройства. Кроме того, при реактивных оросителях отпадает необходимость в устройстве дозаторов.
Диаметр отверстий в радиально расположенных трубах обычно колеблется от 10 до 15 мм; расстояние между отверстиями увеличивается от периферии к центру, что обеспечивает более равномерное орошение биофильтра.
Биофильтры с загрузкой из пеностекла или пластмассы
Сооружения биологической фильтрации, особенно с прикрепленным биоценозом, хорошо себя зарекомендовали в работе с малыми расходами и пиковыми нагрузками по органике. Они просты, удобны, в них за короткое время (до 30 минут) происходит скоростное изъятие загрязнений. На традиционных биофильтрах в качестве фильтрующей массы применяют объемный материал: щебень, гравий, керамзит. Блочные загрузки из блоков пеностекла имеют преимущества в технологическом, конструктивном и эксплуатационном отношениях по сравнению с другими материалами. Пеностекло - это теплоизоляционный строительный материал. Он отличается механической прочностью, влаго-, паро- и газонепроницаемостью, огнестойкостью, морозостойкостью, долговечностью, устойчивостью к воздействию кислот и продуктов разложения. Площадь адсорбционной поверхности пеностекла в зависимости от величины перфорации с учетом малых и больших пор- 200 кв.м/куб.м. Пеностекло имеет чрезмерно развитую поверхность, удерживает в единице объема большое количество биопленки, чем какой-либо другой вид загрузочного материала, что способствует интенсивному изъятию загрязнений из сточных вод. Распределение сточной воды по поверхности биофильтра осуществляется с помощью реактивного оросителя. Пластмассовые загрузки используются в виде жесткой (кольца, обрезки труб и т.д.), жестко-блочной (из плоских и гофрированных листов), а также мягкой (из пластмассовых пленок) засыпки. Таким образом, загрузка обладает высокой пустотностью, большой сорбционной поверхностью и относительно малым коэффициентом сцепления биопленки с поверхностью загрузки, что создает условия для образования тонкого слоя биопленки.
Пластмассовая загрузка исключает заиливание биофильтров, значительно увеличивает объем поступающего воздуха, что способствует повышению окислительной мощности. Кроме достоинств, биофильтры обладают и рядом недостатков. Так, высокая не равномерность поступления сточных вод от малых объектов крайне отрицательно влияет на работу биофильтров и аэротенков. В биофильтрах происходит подсыхание биопленки и наблюдается не равномерность температурного режима ее работы, создаются условия, способствующие заиливанию загрузки. Во избежания этих явлений в часы минимального притока сточных вод осуществляют рециркуляцию очищенных сточных вод, что приводит к дополнительным энергозатратам на перекачку стоков.
Биодисковые фильтры
Эти сооружения предназначены для расхода сточных вод до 1000 куб.м в сутки. В качестве загрузки для биодисковых фильтров рекомендуются перфорированные диски, изготовленные из объемных синтетических материалов пониженной плотности (пенопласта, пеностекла). Современные биодисковые фильтры представляют собой многосекционную емкость, наполненную вращающейся загрузкой. Диски набирают на горизонтально расположенном валу с расстоянием между ними 15-20 мм. Диски обычно погружены в очищаемую жидкость на 0,45Д (30--45 %), иногда до 0,75Д. Диаметр дисков находится в пределах от 0,4 до 3,0 метров в зависимости от производительности установки. Принцип действия данного сооружения следующий: диски - основной компонент сооружения - находится в постоянном вращательном движении, причем их поверхность перфорации покрывается биопленкой, которая находится в прикрепленном состоянии. Биомодули, создавая обширную поверхность, обеспечивают гидродинамические условия, при которых отторгнутая биопленка продолжает работать, находясь во взвешенном состоянии. Здесь совмещается режим работы прикрепленного биоценоза и взвешенного (активного) ила. За пределами зоны очищаемой воды микроорганизмы, находясь в биопленке, получают кислород непосредственно из атмосферы. При одинаковых категориях обрабатываемых городских сточных вод и заданном эффекте очистки время аэрации в БДФ составляет 60-90 минут, а в классических аэротенках - около 6 часов. Биодисковые фильтры компактны, конструктивно просты, устойчивы к различного рода перегрузкам, имеют низкие удельные энергозатраты. Кроме того, при использовании этих фильтров практически отпадает необходимость насосной станции, так как гидравлические потери сооружений не значительны. Биодисковые фильтры - многосекционные сооружения (3-6 секций). Основная масса удаленных биоразлагаемых загрязнений приходится на первую и вторую секции БДФ. Процесс снижения аммонийного азота и нитрификации успешно протекает в третьей и последующих секциях. Удаление азота достигает 40 %, что выше, чем в классических биофильтрах и аэротенках. Однако в очищенных водах присутствуют азотистые соли (биогенные соединения), поэтому в некоторых случаях требуется доочистка. Из биодисковых фильтров биологическая пленка потока обработанной жидкости выносится во вторичный отстойник. Разделение биопленки осуществляется гравитационным способом. Вторичные отстойники рекомендуется оборудовать тонкослойными модулями.
Биофильтраторы
Компактная установка биофильтратор предназначена для малых расходов сточных вод (от 2 до 600 куб.м в сутки) и обеспечивает полную биологическую очистку от разнообразных загрязнений в широком диапазоне концентраций. Установка имеет низкие капитальные вложения и энергетические затраты. Она проста и экономична в эксплуатации, не требует специального постоянного ухода.Биофильтратор состоит из аэрационной (сорбционной) зоны и зоны осветления. В сорбционной зоне установлены вращающиеся перфорированные диски из пенопласта или подобных материалов. Диски вращаются мотор-редукторм с частотой вращения 10-15 об/мин. За счет градиента давления жидкость и отторгнутая биопленка переливаются через отверстие, устроенное в разделительной перегородке. Укрупненные хлопья активного ила из зоны осветления опускаются вниз и через отверстия подсасываются в аэрационную зону за счет кинематики течения. Таким образом, происходит постоянный обмен биомассы между зонами сорбции и осветления. Очищаемая жидкость поднимается к лотку и отводится за пределы сооружения. Для интенсификации биотехнологии в биофильтре используется струйная аэрация, что позволяет исключить механическую систему привода мотор-редуктор. Такой метод очистки применяется дла расходов сточных вод от 0,5 до 1,5 куб.м в сутки и более, с загрузкой от низких до высоких значений концентрации биоразделяемых соединений (БПК). Струйный биофильтр работает следующим образом. Сточные воды, прошедшие механическую очистку, попадают в аэрационную зону, куда также поступает смесь осветленной жидкости и циркуляционного активного ила. Эта смесь из нижней части осветляется забирается по трубопроводу насосом и через струйный аэратор шахтного типа сбрасывается в аэрационную зону биофильтра. Струя потока вводится в межсекционное пространство (Рис. 4) ниже свободной поверхности на 15-30 см и отражается от специально спланированной поверхности дна. В результате возникают интенсивные воздушные восходящие потоки, которые приводят к движению биоротора. После контакта очищаемой жидкости в аэрационной зоне смесь или и сточной воды поступает на осветление. Зона осветления разделена на три отсека. В дегазационно-отстойной зоне при низходящем потоке отделяются выносимые из аэрационной зоне пузырьки газа малых размеров. Здесь укрупненные частицы ила осаждаются на дно отстойника и возвращаются в аэрационную систему. Далее смесь поступает во вторую зону отстаивания, где происоходит основной процесс разделения твердой и жидкой фаз с образованием взвешенного слоя, углубляющего процесс биофильтрации. Из этой зоны укрупненные хлопья активного ила также поступают в камеру аэрации. В последующем отделении обеспечивается окончательная очистка сточных вод. Вторая зона отстаивания работает в режиме отстойника. Осаждающиеся хлопья активного ила по стенке емкости сползают в зону их забора насосным агрегатом. Осветленные сточные воды через сбросный лоток отводятся на обеззараживание.
7. Биологические пруды для очистки сточных вод
Биологические пруды представляют собой каскад прудов, состоящий из 3 -- 5 ступеней, через которые медленно протекает осветленная или биологически очищенная сточная вода. Пруды устраиваются для биологической очистки сточных вод в естественных условиях на слабофильтрующих грунтах в виде отдельных водоемов. В результате жизнедеятельности плангтона (фитопланктона) ассимилируется свободная и бикарбонатная кислота, благодаря чему рН воды днем повышается до 10 -- 11, что приводит к быстрому отмиранию бактерий.
Биологические пруды как самостоятельные очистные сооружения по СНиП допускается применять (при надлежащем обосновании) для населенных мест, расположенных в IV климатическом районе. Пруды могут проектироваться также для доочистки сточных вод в сочетании с другими очистными сооружениями.
В биологических прудах должно быть 2--3 ступени -- при поступлении биологически очищенных сточных вод и 4--5 ступеней -- при поступлении отстоенных сточных вод.
Биологические пруды рассчитываются по нагрузке сточными (первый случай) водами на 1 га водной поверхности пруда или по величине реаэрации (второй случай).
В первом случае эта нагрузка принимается равной (без разбавления для отстоенных сточных вод) до 250 м3/га в сутки и для биологически очищенных сточных вод -- до 5000 м3/га в сутки; во втором случае -- из расчета величины реаэрации, равной 6 -- 8 г кислорода в сутки с 1 м2 пруда в зависимости от климатических условий (СНиП).
Среднюю глубину воды в биологических прудах принимают в зависимости от местных условий в пределах 0,5--1 м. При использовании прудов для рыборазведения к ним должна подводиться осветленная сточная жидкость, разбавляемая речной водой в 3--5 раз. При этом в составе биологических прудов должен быть малый пруд глубиной не менее 2,5 м, предназначенный для рыбы в зимнее время.
При очистке сточных вод в биологических прудах, уменьшается количество бактерий -- более чем в 100 раз, понижается окисляемость на 90%, снижается количество органического азота -- на 88, аммиака -- на 97 и БПК -- до 98%. Осенью пруды, не предназначенные для выращивания рыбы, опорожняют, в зимнее время их используют как накопители. Весной пруды заполняются водой и примерно через месяц начинают работать на проток. Возможна также контактная работа прудов. Дно пруда рекомендуется ежегодно вспахивать. Сточные воды должны находиться в прудах 20--30 суток. Впускать сточные воды в пруды рекомендуется в дневное время. Пруды нужно располагать вблизи естественных водоемов. Количество растворенного кислорода в воде должно быть не ниже 2,5 мг/л. Дно пруда планируется в сторону выпуска. Глубина у впуска обычно принимается 0,5 м, у выпуска -- до 1--2 м. Пруды проектируются площадью 0,5--1,5 га и более.
При проектировании прудов, имеющих естественный водосбор, водосбросные сооружения нужно рассчитывать на дополнительный пропуск паводкового и ливневого расхода. В зависимости от условий выпуска (опорожнения), диктуемых рельефом, емкость пруда может быть образована устройством запруд по тальвегам, использованием существующих либо созданием искусственных выемок (котловин), ограждением территории валиками (дамбами). В верхнем пруде устраивают 2--3 впуска. Для лучшего распределения потока сточной жидкости поперек первого пруда устанавливают два ряда плетней. Перепуски из прудов устраивают в виде лотков шириной 0,4 м через 30 м. Из последнего пруда вода выпускается при помощи шахтных водосбросов.
После выхода из очистных сооружений сточные воды выпускаются в тальвеги балок и оврагов, где устраиваются каналы с незначительным уклоном, длина которых достигает сотен метров, а иногда и нескольких километров.
Исследуемые каналы располагались в тальвегах сухих балок со среднегодовой температурой воздуха местности 6,8 + 7,1°С и среднегодовым количеством осадков 500--510 мм. Скорость движения сточной воды в этих каналах колебалась в пределах 0,01--0,05 м/сек, время пребывания стоков в канале -- от 7 до 28 ч. Слой воды в канале (не считая осадка) приняли в пределах 0,025--0,15м, ширина канала -- в пределах 0,65--1,5 м.
На сточную воду, протекающую в каналах с малой скоростью и малой глубиной, но сравнительно большой шириной потока, воздействуют солнечные лучи, кислород воздуха и другие климатические факторы, отчего концентрация загрязнений в сточной воде по мере удаления ее от места выпуска уменьшается. Происходит естественное самоочищение сточных вод. Такие каналы называются естественными окислительными каналами, так как в них происходят процессы окисления, подобные процессам, происходящим в биологических прудах.
Искусственные окислительные каналы применяют за рубежом (Голландия, США и др.) в климатических условиях с минимальной температурой воздуха (до --8°С) и дают хорошие результаты при очистке малых количеств сточных вод. В таких каналах концентрация загрязнений снижается по БПК5 до 98%, резко падает бактериальное загрязнение и содержание взвешенных веществ. Искусственные окислительные каналы как очистные сооружения в наших условиях применяются пока редко.
Степень очистки сточных вод в естественных каналах зависит от длины сбросного канала и его уклона.
При очистке сточных вод в естественных окислительных каналах на двух объектах отбирались пробы сточной воды перед септиками, после септиков и по каналам через каждые 100 м, для химических и бактериологических анализов. На обоих объектах количество сточных вод колебалось в пределах 100--150 м3 в сутки. Первичными отстойниками служили септики, плохо эксплуатируемые (почти не очищались).
Анализы показали, что в естественных окислительных каналах намного снизилась концентрация загрязнений сточных вод. На протяжении исследуемых 1000 м канала сточная вода очищается, как в химическом, так и в бактериологическом отношениях.
Заключение
Существование человечества без пресной воды невозможно. Поэтому в последние годы вопрос о чистоте воды и воздуха ставится на многих всемирных форумах. Эта проблема возникла в связи с огромными масштабами промышленного, сельскохозяйственного и коммунального использования вод. В настоящее время во многих районах земного шара ощущается острый водный голод. Использование пресной воды в таких огромных масштабах приводит к изменению физико-химического состава воды. Для уменьшения вредного влияния промышленного и сельскохозяйственного использования воды на экологию земного шара необходима более глубокая очистка сточных вод.
СПИСОК ИСПАЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Карелин Я.А., Попова И.А., Евсеева Л.А. и др. Очистка сточных вод нефтеперерабатывающих заводов - М.: Стройиздат, 1982.
2. Роев Г.А., Юфин В.А. Очистка сточных вод и вторичное использование нефтепродуктов - М.: Недра, 1987.
3. Стахов Е.А. Очистка нефтесодержащих сточных вод предприятий хранения и транспорта нефтепродуктов - Л.: Недра, 1983.
4. Роев Г.А. Очистные сооружения. Охрана окружающей среды - М.: Недра, 1993.
5. Родионов А.И., Клушин В.П., Торочешников И.С. Техника защиты окружающей среды. Учебник для вузов - М.: Химия, 1989.
6. Очистка производственных сточных вод: учебное пособие для вузов/ Под. ред. Яковлева С.В. - М: Стройиздат, 1985.
7. Захаров С.Л. Очистка сточных вод нефтебаз // Экология и промышленность России. - 2002. - январь С. 35-37.
8. Крылов И.О., Ануфриева С.И., Исаев В.И. Установка доочистки сточных и ливневых вод от нефтепродуктов // Экология и промышленность России. - 2002. - июнь С. 17-19.
9. Минаков В.В., Кривенко С.М., Никитина Т.О. Новые технологии очистки от нефтяных загрязнений // Экология и промышленность России. - 2002. - май С. 7-9.
Размещено на Allbest.ru
Подобные документы
Основные процессы производства сульфитной целлюлозы. Общие показатели загрязненности сточных вод от окорки древесины. Состав промышленных сточных вод кислотного цеха. Сооружения биологической очистки. Локальная и централизованная очистка сточных вод.
реферат [92,7 K], добавлен 09.02.2014Определение расчётных расходов сточных вод и концентрации загрязнений. Расчёт требуемой степени очистки сточных вод. Расчёт и проектирование сооружений механической и биологической очистки, сооружений по обеззараживанию сточных вод и обработке осадка.
курсовая работа [808,5 K], добавлен 10.12.2013Вода, ее свойства и значение. Виды сточных вод и характеристика методов их очистки. Ситуация с очисткой сточных вод в городе Салават Республики Башкортостан. Характеристика очистных сооружений предприятия ООО "Промводоканал", пути их реконструкции.
дипломная работа [1,3 M], добавлен 06.05.2014Характеристика сточных вод. Тяжелые металлы и специфические органические соединения. Основные способы очистки сточных вод, физические и химические методы. Параметры биологической очистки. Бактериальное сообщество очистных сооружений, их строение.
курсовая работа [3,6 M], добавлен 31.03.2014Разработка схемы очистки сточных вод на правобережных очистных сооружениях г. Красноярска. Выбор методов очистки сточных вод. Комплекс очистных сооружений, позволяющие повысить эффективность очистки до нормативов, удовлетворяющим условиям выпуска стоков.
дипломная работа [274,5 K], добавлен 23.03.2019Исследование качественного и количественного состава сточных вод, поступающих на очистку, и сбрасываемых в водоем. Определение показателей реки Сухона в связи со спуском в нее сточных вод г. Тотьма. Анализ технологических процессов очистки сточных вод.
дипломная работа [89,8 K], добавлен 12.06.2010Основные методы и сооружения для очистки промышленных сточных вод от нефтепродуктов. Закономерности биохимического окисления органических веществ. Технологическая схема биологической очистки сточных вод, деструкция нефтепродуктов в процессе ее проведения.
дипломная работа [681,6 K], добавлен 27.06.2011Физико-химические, химические, биологические и термические методы очистки сточных вод. Характеристика хлебопекарных дрожжей. Приготовление растворов питательных солей. Схема очистки сточных вод на производстве. Расчет гидроциклона и отстойника.
курсовая работа [592,4 K], добавлен 14.11.2017Классификация сточных вод и основные методы их очистки. Гидромеханические, химические, биохимические, физико-химические и термические методы очистки промышленных сточных вод. Применение замкнутых водооборотных циклов для защиты гидросферы от загрязнения.
курсовая работа [63,3 K], добавлен 01.04.2011Понятие и назначение гальванического покрытия металлов, этапы проведения данного процесса. Характеристика сточных вод, образующихся в результате гальваники, методы их очистки. Выбор оборудования, описание и критерии выбора технологии очистки сточных вод.
курсовая работа [4,9 M], добавлен 24.11.2010