Биотехнологическая очистка сточных вод
Принципиальная схема очистных сооружений. Показатели загрязненности сточных вод и технология их очистки. Классификация биофильтров и их типы, процесс вентиляции и распределение сточных вод по биофильтрам. Биологические пруды для очистки сточных вод.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 15.01.2012 |
Размер файла | 134,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Тихоокеанский Государственный университет
Кафедра: Химическая технология и биотехнология
РЕФЕРАТ
на тему: «БИОТЕХНОЛОГИЧЕСКАЯ ОЧИСТКА СТОЧНЫХ ВОД»
Р.09041032747.00.00.00.
Выполнил ст.гр.ХТПЭзу2в-81
Кирюшкин В.В.
Проверил преподаватель:
Петрова С.И.
г. Хабаровск 2011г.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. Биотехнологическая очистка сточных вод
2. Аэробная очистка сточных вод
3. Анаэробные системы очистки
4. Показатели загрязненности сточных вод
5. Аэробные аэротенки
6. Биофильтры
7. Биологические пруды для очистки сточных вод
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратилось из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений.
Наиболее широко распространенными загрязнителями сточных вод являются нефтепродукты - неидентифицированная группа углеводородов нефти, мазута, керосина, масел и их примесей, которые вследствие их высокой токсичности, принадлежат, по данным ЮНЕСКО, к числу десяти наиболее опасных загрязнителей окружающей среды. Нефтепродукты могут находиться в растворах в эмульгированном, растворенном виде и образовывать на поверхности плавающий слой.
Основные вопросы защиты окружающей среды необходимо решать на основе следующих принципов:
· форма и масштабы человеческой деятельности должны быть соизмеримы с запасами невозобновляемых природных ресурсов;
· неизбежные отходы производства должны попасть в окружающую среду в форме и концентрации, безвредных для жизни. Особенно это относится к водным ресурсам.
Природная вода - не только источник водоснабжения и транспортное средство, но и среда обитания животных и растений. Круговорот воды в природе создает необходимые условия для жизни человечества на Земле.
Происхождение воды на земле связано с происхождением самой Земли. Существует две гипотезы образования воды на Земле. В первом случае это существование готовых молекул воды в газопылевом облаке, из которого произошла Земля и которое наблюдается в кометах и метеоритах сегодня. Во втором случае вода образовалась из водорода и кислорода после конденсации газопылевого облака в планету Земля. Впоследствии при повышении температуры недр Земли и их дегазации, а также в процессе миграции водорода и кислорода из центральной части планеты к периферии и химических реакций образовались молекулы воды.
Происхождение воды, ее первичное образование как растворителя и ее миграция представляют единое целое в изучении природной воды.
Одним из невосполнимых природных ресурсов является нефть, которая в процессе добычи, транспорта, переработки и потребления постоянно соприкасается с окружающей средой и загрязняет ее, особенно воду.
В настоящее время защита окружающей среды от нефтесодержащих сточных вод - одна из главных задач. Мероприятия, направленные на очистку воды от нефти, помогут сберечь определенные количества нефти и сохранить чистым воздушный и водный бассейны. На земном шаре много воды, но чистой пресной воды очень мало. Круговорот воды в природе создает необходимые условия для существования человечества на земле.
Для правильного подхода к решению актуальных задач в области окружающей среды необходимы определенные знания в этой области. Учебные программы, разработанные во многих университетах и институтах можно разбить на две крупные группы:
§ решение экологических вопросов в политическом, юридическом, экономическом и других гуманитарных направлениях;
§ решение экологических вопросов в техническом аспекте, где решаются общетехнические задачи или частные задачи отдельной или близких отраслей промышленности.
1. Биотехнологическая очистка сточных вод
Сточные воды, прошедшие механическую и физико-химическую очистку, содержат еще достаточно большое количество растворенных и тонкодиспергированных нефтепродуктов, а также других органических загрязнений и не могут быть выпущены в водоем без дальнейшей очистки.
Наиболее универсален для очистки сточных вод от органических загрязнений биологический метод. Он основан на способности микроорганизмов использовать разнообразные вещества, содержащиеся в сточных водах, в качестве источника питания в процессе их жизнедеятельности. Задачей биологической очистки является превращение органических загрязнений в безвредные продукты окисления - H2O, CO2, NO3-, SO42- и др. Процесс биохимического разрушения органических загрязнений в очистных сооружениях происходит под воздействием комплекса бактерий и простейших микроорганизмов, развивающихся в данном сооружении.
Для правильного использования микроорганизмов при биологической очистке необходимо знать физиологию микроорганизмов, т.е. физиологию процесса питания, дыхания, роста и их развития.
Всякий живой организм отличается от неживого наличием обмена веществ, в процессе которого происходит усвоение питательных веществ и выделение продуктов жизнедеятельности.
Основными процессами обмена веществ являются питание и дыхание.
Биохимическая очистка производственных сточных вод нефтеперерабатывающих заводов производится в аэрофильтрах (биофильтры), аэротенках и биологических прудах.
Биофильтры представляют собой железобетонные или кирпичные резервуары, заполненные фильтрующим материалом, который укладывается на дырчатое днище и орошается сточными водами. Для загрузки биофильтров применяют шлак, щебень, пластмассу и др. Очистка сточных вод в биофильтрах происходит под воздействием микроорганизмов, заселяющих поверхность загрузки и образующих биологическую пленку. При контакте сточной жидкости с этой пленкой микроорганизмы извлекают из воды органические вещества, в результате чего сточная вода очищается.
Аэротенки представляют собой железобетонные резервуары длиной 30-100 м и более, шириной 3-10 м и глубиной 3-5 м. Очистка сточных вод в аэротенках происходит под воздействием скоплений микроорганизмов (активного ила). Для нормальной их жизнедеятельности в аэротенки подают воздух и питательные вещества.
Преимущества биологического метода очистки - возможность удалять из сточных вод разнообразные органические соединения, в том числе ток-сичные, простота конструкции аппаратуры, относительно невысокая эксплуатационная стоимость. К недостаткам следует отнести высокие капи-тальные затраты, необходимость строгого соблюдения технологического режима очистки, токсичное действие на микроорганизмы некоторых орга-нических соединений и необходимость разбавления сточных вод в случае высокой концентрации примесей.
2. Аэробная очистка сточных вод
Биологическая переработка отходов опирается на ряд дисциплин: биохимию, генетику, химию, микробиологию, вычислительную технику. Усилия этих дисциплин концентрируются на трех основных направлениях:
деградация органических и неорганических токсичных отходов;
возобновление ресурсов для возврата в круговорот веществ углерода, азота, фосфора, азота и серы; получение ценных видов органического топлива.
При очистке сточных вод выполняют четыре основные операции:
очистка сточный вода биофильтр
1. При первичной переработке происходит усреднение и осветление сточных вод от механических примесей (усреднители, песколовки, решетки, отстойники).
2. На втором этапе происходит разрушение растворенных органических веществ при участии аэробных микроорганизмов. Образующийся ил, состоящий главным образом из микробных клеток, либо удаляется, либо перекачивается в реактор. При технологии, использующей активный ил, часть его возвращается в аэрационный тенк.
3. На третьем (необязательном) этапе производится химическое осаждение и разделение азота и фосфора.
4. Для переработки ила, образующегося на первом и втором этапах, обычно используется процесс анаэробного разложения. При этом уменьшается объем осадка и количество патогенов, устраняется запах и образуется ценное органическое топливо - метан.
На практике применяются одноступенчатые и многоступенчатые системы очистки. Одноступенчатая схема очистки сточной воды представлена на рис. 1.
Рис. 1. Принципиальная схема очистных сооружений:
1 - пескоуловители; 2 - первичные отстойники; 3 - аэротенк; 4 - вторичные отстойники; 5 - биологические пруды; 6 - осветление; 7 - реагентная обработка; 8 - метатенк; АИ - активный ил
Сточные воды поступают в усреднитель, где происходит интенсивное перемешивание стоков с различным качественным и количественным составом. Перемешивание осуществляется за счет подачи воздуха. В случае необходимости в усреднитель подаются также биогенные элементы в необходимых количествах и аммиачная вода для создания определенного значения рН. Время пребывания в усреднителе составляет обычно несколько часов. При очистке фекальных стоков и отходов нефтепереработки необходимым элементом очистных сооружений является система механической очистки - песколовки и первичные отстойники. В них происходит отделение очищаемой воды от грубых взвесей и нефтепродуктов, образующих пленку на поверхности воды.
Биологическая очистка воды происходит в аэротенках. Аэротенк представляет собой открытое железобетонное сооружение, через которое проходит сточная вода, содержащая органические загрязнения и активный ил. Суспензия ила в сточной воде на протяжении всего времени нахождения в аэротенке подвергается аэрации воздухом. Интенсивная аэрация суспензии активного ила кислородом приводит к восстановлению его способности сорбировать органические примеси.
В основе биологической очистки воды лежит деятельность активного ила (АИ) или биопленки, естественно возникшего биоценоза, формирующегося на каждом конкретном производстве в зависимости от состава сточных вод и выбранного режима очистки. Активный ил представляет собой темно-коричневые хлопья, размером до нескольких сотен микрометров. На 70% он состоит из живых организмов и на 30% - из твердых частиц неорганической природы. Живые организмы вместе с твердым носителем образуют зооглей - симбиоз популяций микроорганизмов, покрытый общей слизистой оболочкой. Микрооганизмы, выделенные из активного ила относятся к различным родам: Actynomyces, Azotobacter, Bacillus, Bacterium, Corynebacterium, Desulfomonas, Pseudomonas, Sarcina и др. Наиболее многочисленны бактерии рода Pseudomonas, о всеядности которых упоминалось ранее. В зависимости от внешней среды, которой в данном случае является сточная вода, та или иная группа бактерий может оказаться преобладающей, а остальные становятся спутниками основной группы.
Существенная роль в создании и функционировании активного ила принадлежит простейшим. Функции простейших достаточно многообразны; они сами не принимают непосредственного участия в потреблении органических веществ, но регулируют возрастной и видовой состав микроорганизмов в активном иле, поддерживая его на определенном уровне. Поглощая большое количество бактерий, простейшие способствуют выходу бактериальных экзоферментов, концентрирующихся в слизистой оболочке и тем самым принимать участие в деструкции загрязнений. В активных илах встречаются представители четырех классов простейших: саркодовые (Sarcodina), жгутиковые инфузории (Mastigophora), реснитчатые инфузории (Ciliata), сосущие инфузории (Suctoria).
Показателем качества активного ила является коэффициент протозойности, который отражает соотношение количества клеток простейших микроорганизмов к количеству бактериальных клеток. В высококачественном иле на 1 миллион бактериальных клеток должно приходиться 10-15 клеток простейших. При изменении состава сточной воды может увеличится численность одного из видов микроорганизмов, но другие культуры все равно остаются в составе биоценоза.
На формирование ценозов активного ила могут оказывать влияние и сезонные колебания температуры, обеспеченность кислородом, присутствие минеральных компонентов. Все это делает состав или сложным и практически невоспроизводимым. Эффективность работы очистных сооружений зависит также от концентрации микроорганизмов в сточных водах и возраста активного ила. В обычных аэротенках текущая концентрация активного ила не превышает 2-4 г/л.
Увеличение концентрации ила в сточной воде приводит к росту скорости очистки, но требует усиления аэрации, для поддержания концентрации кислорода на необходимом уровне. Таким образом, аэробная переработка стоков включает в себя следующие стадии: 1) адсорбция субстрата на клеточной поверхности; 2) расщепление адсорбированного субстрата внеклеточными ферментами; 3) поглощение растворенных веществ клетками; 4) рост и эндогенное дыхание; 5) высвобождение экскретируемых продуктов; 6) "выедание" первичной популяции организмов вторичными потребителями. В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. На практике очищенная вода и активный ил из аэротенка подаются во вторичный отстойник, где происходит отделение активного ила от воды. Часть активного ила возвращается в систему очистки, а избыток активного ила, образовавшийся в результате роста микроорганизмов, поступает на иловые площадки, где обезвоживается и вывозится на поля. Избыток активного ила можно также перерабатывать анаэробным путем. Переработанный активный ил может служить и как удобрения, и как корм для рыб, скота.
Система полной доочистки может состоять из множества элементов, которые определяются дальнейшим назначением сточной воды. Возможно применение биологических прудов, где биологически очищенная вода проходит осветление и насыщается кислородом. Пруды также относятся к системе биологической очистки, в которой под воздействием биоценоза активного ила происходит окисление органических примесей. Состав биоценозов биологических прудов определяется глубиной нахождения данной группы микроорганизмов. В верхних слоях развиваются аэробные культуры, в придонных - факультативные аэробы и анаэробы, способные осуществлять процессы метанового брожения или восстановление сульфатов. Насыщение воды кислородом происходит за счет процессов фотосинтеза, осуществляемого водорослями, из которых особенно широко представлены Clorella, Scenedesmus, встречаются эвгленовые, вольвоксовые и т.д. В прудах также в той или иной мере представлена микро- и макрофауна: простейшие, черви, коловратки,насекомые и др. В биопрудах из воды хорошо удаляются нефтепродукты, фенолы и другие органические соединения. В некоторых случаях воду после биологической очистки подвергают реагентной обработке - хлорированию или озонированию.
Интенсифицировать процессы биологической очистки можно путем аэрации суспензии активного ила чистым кислородом. Этот процесс можно осуществить в модифицированных аэротенках закрытого типа - окситенках, с принудительной аэрацией сточной воды. В отличие от аэротенков в биофильтрах (или перколяционных фильтрах) клетки микроорганизмов находятся в неподвижном состоянии, так как прикреплены к поверхности пористого носителя. Образовавшуюся таким образом биопленку можно отнести к иммобилизованным клеткам. В этом случае иммобилизована не монокультура, а целый консорциум, неповторимый по качественному и количественному составу и различающийся в зависимости от его местонахождения на поверхности носителя. Очищаемая вода контактирует с неподвижным носителем, на котором иммобилизованы клетки и за счет их жизнедеятельности происходит снижение концентрации загрязнителя.
Преимущество применения биофильтров состоит в том, что формирование конкретного ценоза приводит к практически полному удалению всех органических примесей. Недостатками этого метода можно считать:
нереальность использования стоков с высоким содержанием органических примесей;
необходимость равномерного орошения поверхности биофильтра сточными водами, подаваемыми с постоянной скоростью;
сточные воды перед подачей должны быть освобождены от взвешенных частиц во избежание заиливания.
В качестве носителей можно использовать керамику, щебень, гравий, керамзит, металлический или полимерный материал с высокой пористостью. Для биофильтров характерно наличие противотока воды, которая поступает сверху и воздуха, подающегося снизу. Оторвавшиеся частицы микробной пленки после отделения их во вторичном отстойнике не возвращаются обратно в биофильтр, а идут на иловые площадки или в анаэробную преработку.
Существуют также системы, сочетающие в себе как систему биофильтров, так и активного ила в аэротенках. Это так называемые аэротенки-вытеснители. В аэрируемую сточную воду помещают либо стеклоерши, либо создают систему сеток внутри тенка, в которые вкладываются прокладки из пористого полиэфира. В пустотах этих прокладок и на поверхности стеклоершей происходит накопление биоценоза активного ила. Носитель периодически удаляется из тенка, биомасса снимается, после чего носитель возвращается в реактор.
Система с иммобилизованными на мобильном носителе клетками отличается от биофильтров своей экономичностью, так как используются высокие концентрации микроорганизмов и нет необходимости осаждать конечные продукты. Такая система может найти применение в очистке локальных стоков, с узким спектром загрязнений. Их целесообразно очищать в самостоятельных биологических системах, не смешивая со стоками других производств. Это позволяет получить биоценозы микроорганизмов , адаптированные к данному узкому спектру загрязнений, при этом скорость и эффективность очистки резко возрастают.
3. Анаэробные системы очистки
Как уже упоминалось, избыток активного ила может перерабатываться двумя способами: после высушивания как удобрение или же попадает в систему анаэробной очистки. Такие же способы очистки применяют и при сбраживании высококонцентрированных стоков, содержащих большое количество органических веществ. Процессы брожения осуществляются в специальных аппаратах - метатенках.
Распад органических веществ состоит из трех этапов:
растворение и гидролиз органических соединений;
ацидогенез;
метаногенез.
На первом этапе сложные органические вещества превращаются в масляную, пропионовую и молочную кислоты. На втором этапе эти органические кислоты превращаются в усксусную кислоту, водород, углекислый газ. На третьем этапе метанообразующие бактерии восстанавливают диокись углерода в метан с поглощением водорода. По видовому составу биоценоз метатенков значительно беднее аэробных биоценозов.
Насчитывают около 50 видов микроорганизмов, способных осуществлять первую стадию - стадию кислотообразования. Самые многочисленные среди них - представители бацилл и псевдомонад. Метанообразующие бактерии имеют разнообразную форму: кокки, сарцины и палочки. Этапы анаэробного брожения идут одновременно, а процессы кислотообразования и метанообразования протекают параллельно. Уксуснокислые и метанообразующие микроорганизмы образуют симбиоз, считавшийся ранее одним микроорганизмом под названием Methanobacillus omelianskii.
Процесс метанообразования - источник энергии для этих бактерий, так как метановое брожение представляет собой один из видов анаэробного дыхания, в ходе которого электроны с органических веществ переносятся на углекислый газ, который восстанавливается до метана. В результате жизнедеятельности биоценоза метатенка происходит снижение концентрации органических веществ и образование биогаза, являющегося экологически чистым топливом. Для получения биогаза могут использоваться отходы сельского хозяйства, стоки перерабатывающих предприятий, содержащих сахар, бытовые отходы, сточные воды городов, спиртовых заводов и т.д.
Метатенк представляет собой герметичный ферментер объемом в несколько кубических метров с перемешиванием, который обязательно оборудуется газоотделителями с противопламенными ловушками. Метатенки работают в периодическом режиме загрузки отходов или сточных вод с постоянным отбором биогаза и выгрузкой твердого осадка после завершения процесса. В целом, активное использование метаногенеза при сбраживании органических отходов - один из перспективных путей совместного решения энергетических и экологических проблем, который позволяет агропромышленным комплексам перейти на автономное энергообеспечение.
4. Показатели загрязненности сточных вод
На всех этапах очистки сточных вод ведется строгий контроль за качественным составом воды. При этом проводится детальный анализ состава сточной воды с выяснением не только концентраций тех или иных соединений, но и более полное определение качественного и количественного состава загрязнителей. Необходимость такого анализа определяется спецификой системы переработки, так как в сточных водах могут присутствовать токсические вещества, способные привести к гибели микроорганизмов и вывести систему из строя.
Определение таких показателей, как органолептические (цвет, вид, запах, прозрачность, мутность), оптическая плотность, рН, температура не вызывает трудностей. Сложнее определить содержание органических веществ в сточной воде, которое необходимо знать для контроля работы очистных сооружений, повторного использования сточных вод в технологических процессах, выбора метода очистки и доочистки, окончания процесса очистки, а также оценки возможности сброса воды в водоемы.
При определении содержания органических веществ широко используются два способа: химическое потребление кислорода и биохимическое потребление кислорода. В первом случае методика основана на окислении веществ, присутствующих в сточных водах, 0,25% раствором дихромата калия при кипячении пробы в течение 2 часов в 50% (по объему) растворе серной кислоты. Для полноты окисления органических веществ используется катализатор - сульфат серебра. Дихроматный способ достаточно прост и легко автоматизируется, что обуславливает его широкое распространение.
Биохимическое потребление кислорода измеряется количеством кислорода, расходуемым микроорганизмами при аэробном биологическом разложении веществ, содержащихся в сточных водах при стандартных условиях за определенный интервал времени. Определение биохимического потребления кислорода требует специальной аппаратуры. В герметичный ферментер помещается определенное количество исследуемой сточной воды, которую засевают микроорганизмами. В процессе культивирования регистрируется изменение количества кислорода, пошедшего на окисление соединения, присутствующего в сточных водах. Лучше всего культивировать микроорганизмы из уже работающих биологических систем, адаптированных к данному спектру загрязнений.
Определение лишь одного из показателей качества сточной воды (химического или биохимического потребления кислорода) не всегда позволяет оценить как ее доступность для биологической очистки, так и степень конечной очистки. Так, например, имеется целые группы соединений, определение химического потребления кислорода для которых невозможно, хотя эти соединения вполне доступны для биохимического определения кислорода и наоборот. Все это говорит о том, что для оценки чистоты сточных воды необходимо использовать одновременно оба метода.
Биотехнология будет оказывать многообразное и все возрастающее влияние на способы контроля за окружающей средой и на ее состояние. Хорошим примером такого рода служит создание новых, более совершенных способов переработки отходов, однако применение биотехнологии в данной сфере отнюдь не ограничивается этим. Биотехнология будет играть все большую роль в химической промышленности и сельском хозяйстве, помогая создать замкнутые и полузамкнутые технологические циклы, решая хотя бы отчасти существующие здесь проблемы.
5. Аэротенки
Для полной биологической очистке сточных вод малых населенных пунктов применяются: аэрационные установки, работающие по методу полного окисления (аэротенки подлинной аэрации); аэрационные установки с аэробной стабилизацией избыточного активного ила. Установки обоих типов обеспечивают стабильную высокую эффективность очистки сточных вод, могут применятся в любых климатических, грунтовых и гидрогеологических условиях и не требую отвода больших площадей земли. Установки, работающие по методу полного окисления. Они предназначены для полной биологической очистки бытовых и близких к ним по составу производственных сточных вод. Полное окисление органических загрязнений протекает в три фазы. В первой фазе наличия большого количества органических веществ в сточной жидкости обеспечивает быстрое размножение микроорганизмов с непрерывным прогрессированием общего их количества. Во второй фазе нагрузка по органическим загрязнениям на активный значительно ниже и из-за недостаточного количества этих загрязнений размножение микроорганизмов несколько сдерживается. Устанавливается определенное соотношение мужду количеством поступивших органических веществ и приростом ила. В третей фазе размножение микроорганизмов активного ила замедляется из-за недостатка органических загрязнений. Ил как бы находится в «голодном» состоянии. Это заставляет микроорганизмы активного ила использовать не только органические вещества поступившие со сточными водами, но и большую часть органических веществ отмерших микроорганизмов, т.е. минерализовать органическую часть самого активного ила. В результате полного окисления органических загрязнений прирост активного ила настолько мал, что его можно удалять из сооружений через 1-4 месяца.
Компактные установки (КУ) производительностью 12 и 25 куб.м в сутки изготавливаются в заводских условиях в виде единого металлического блока. Все установки конструктивно выполнены в виде аэротенко-отстойников с принудительным возвратом активного ила. Установки производительностью 12 куб.м в сутки оборудованы механической системой аэрации, остальные - эжекторной или пневматической. Принцип работы установки сточные воды пропускают через решетку и без первичного отстаивания направляют в зону аэрации. Здесь происходит биологическая очистка сточных вод активным илом, который поддерживается во взвешенном состоянии за счет вращения роторного аэратора. Затем после полутора часового контакта в аэрационном объеме, смеси сточных вод и активного ила по дегазационному каналу поступает в зону отстаивания. Осевший ил через нижнюю щель отстойника возвращается в аэрационную зону. Сверху установка перекрывается щитами для предохранения от замерзания в зимний период. Принцип работы установок КУ -25 - КУ-200 до поступления на установку сточную воду пропускают через решетку-дробилку или решетку с ручной очисткой. На установку сточная жидкость поступает через входной патрубок и по подающему лотку перетекает в два распределительных лотка, проходящих по продольным стенкам. Для предотвращения осаждения взвешенных веществ в лоток подается сжатый воздух. Из распределительных лотков через отверстия с регулируемыми треугольными водосливами сточная вода переливается в аэротенк-отстойник. Аэрационные зоны расположены по продольным стенкам. Воздух в аэрационную зону подается от воздуходувок по воздухопроводам и распределяется через дырчатые трубы. В аэротенка возможно применение эжекционной аэрации. Отстойная зона расположена в центре установки. Смесь сточных вод и активного ила поступает в зону через нижнюю щель, проходит через взвешенный слой, образованный активным илом, где происходит разделение активного ила и очищенной сточной жидкости. Последняя поднимается к поверхности отстойной зоны, протекает через затопленные отверстия в сборный лоток и по нему отводится из установки. Активный ил увлекается потоком в бункеры отстойной зоны и перекачивается лифтами в аэрационные зоны. Избыточный активный ил периодически (1 раз в 1-4 месяца) удаляется из аэрационных зон на иловые площадки. Компактные установки КУ-12 - КУ-200 прошли длительные испытания на многих очистных станциях, качество очищенного стока БПК и взвешенным веществам составляет 12-15 мг/л, концентрация аммонийного азота снижается на 40%. Эффективность очистки сточных вод на этих сооружениях повышается, если во вторичных отстойниках использовать тонкослойные модули. ГПИ «Эстонпроект» была разработана установка БИО заводского изготовления. Она представляет собой аэротенк-отстойник, работающий в режиме продленной аэрации. Принцип работы БИО-25 аналогичен установкам КУ. Продолжительность аэрации около суток. В этих сооружениях использованы эжекторная или пневматическая система аэрации.
Институтом Уралагропромпроект в 1988 году был разработан проект очистных сооружений канализации. Биологическая очистка осуществляется в аэротенке-отстойнике, совмещенном с сооружением доочистки сточных вод. Одна секция рассчитана на расход 50 куб.м в сутки. Максимальная пропускная способность очистной станции 500 куб.м в сутки. В зоне аэрации принят режим полного окисления органических загрязнений. Аэрация - пневматическая, среденепузырчатая продолжительность ее в среднем 18-20 часов. Сточная вода поступает в зону аэрации по трубопроводу диаметром 100 мм, туда же попадает воздух от воздуходувки и циркуляционный активный ил с помощью эрлифта. По истечении периода биологической очистки активный ил со сточной водой поступает во вторичный отстойник, где происходит осветление стоков. Активный ил, находящийся главным образом в нижней части отстойника, эрлифтом подсасывается и перекачивается в зону аэрации. Избыточный активный ил периодически удаляется из зоны аэрации через илопровод диаметром 100 мм на иловые площадки. Осветленная вода поступает по трубопроводу из отстойной зоны в сооружения доочистки стоков. В качестве сооружения доочистки могут быт использованы биореакторы с затопленной загрузкой, либо эту часть сооружений можно использовать как нитрификатор - денитрификатор. Выбор сооружения доочистки зависит от местных условий и требований качества очищенного стока. В каждом конкретном случае необходима частичная реконструкция сооружения доочистки.
Установки, работающие по методу аэробной стабилизации избыточного активного ила. Аэробная стабилизация - это процесс окисления органических веществ в присутствии микроорганизмов и кислорода атмосферного воздуха, вводимого принудительно. Этот процесс, с точки зрения кинетики распада органики, аналогичен процессу окисления органических загрязнений в аэротенке. Аэробная стабилизация осадка приемлема до 1400 куб.м в сутки и более. Поскольку продолжительность процесса зависит от начальной концентрации органических загрязнений и объема образующегося осадка, то для малых расходов стабилизаторы получаются малыми и легко эксплуатируемыми.
В стабилизатора широко применяется как пневматическая (дырчатые трубы), так и механическая (турбинные или струйные аэраторы) аэрация. На процесс стабилизации осадков влияет наличие токсичных, агрессивных и трудно окисляемых веществ при концентрациях, превышающих допустимые.
Метод аэробной стабилизации избыточного ила по сравнению с методом анаэробной обработки осадка имеет такие существенные преимущества:
простота конструктивного исполнения сооружений;
отсутствие взрывоопасности;
хорошие санитарно-гигиенические показатели;
лучшие водоотдающие свойства;
легкость автоматизации процесса;
простота обслуживания сооружений.
Установки заводского изготовления разработаны для очистных станций, они представляют собой блок, объединяющий аэротенк, вторичный отстойник и стабилизатор избыточного активного ила. Система аэрации пневматическая.
Сточная вода, пройдя решетку-дробилку, установленную вне блока, и песколовку, поступает в падающий лоток с четырьмя треугольными регулируемыми водосливами и подаются в аэротенк. Аэротенк - квадратный в плане резервуар, по дну которого положены четыре плети перфорированных труб диаметром 150 мм. Аэротенк расчитан на продолжительность пребывания в нем сточных вод в течении 9 часов в часы максимального притока. С противоположной стороны аэротенка имеются затопленные окна для подачи сточных вод в отстойник. Отстойник - вертикально типа. В нем устанавливается перегородка, направляющая поток жидкости в нижнюю зону. Сборные лотки осветленной воды выполняют с регулируемыми треугольными водосливами. Осветленная сточная жидкость поступает из вторичных отстойников на сооружения доочистки и обеззараживания. В отстойнике имеются шесть приемников, каждый из которых снабжен эрлифтом с трубопроводом возврата активного ила в аэрационную зону; три приемника имеют эрлифты с трубопроводами, направленными в стабилизатор. Вдоль отстойника расположен мостик для обслуживания, куда вынесены вентили управления эрлифтами. Продолжительность пребывания стоков в отстойнике 1,5 часа. Поступление в стабилизатор свежих порций активного ила вызывает одновременное отделение такого же объема воды в отстойной зоне стабилизатора, которая отводится вместе с очищенными сточными водами из установки. Выгрузка из стабилизатора обработанного активного ила производится при достижении в нем предельной концентрации ила. Период выгрузки составляет 7-10 суток. Очистка стоков на это установке осуществляется без первичного отстаивания, БПК очищенного стока составляет 15 мг/л. На рис.11 показана схема установки с аэробной стабилизацией активного ила и механическими аэраторами. Эти сооружения выполняют в блочном варианте что позволяет набирать необходимую производительность (700-400 куб.м в сутки и более). Установка работает следующим образом: сточная вода после решеток-дробилок и песколовки без отстаивания поступает в аэрационную часть сооружения. Аэрация смесь активного ила и сточных вод осуществляется механическим аэратором, установленным исключительно в центре аэрационной части. Обработанная жидкость в смеси с активным илом через затопленный водослив поступает в дегазационную камеру и в отстойник. Возврат активного ила в аэрационную зону осуществляется из бункерной части отстойника через циркуляционный трубопровод за счет гидростатического напора механического аэратора. Одновременное поступление сточных вод и возвратного ила обеспечивает их хорошее смешение, а это в свою очередь приводит к эффективному изъятию загрязнений. Осветленные сточные воды собираются в отводной лоток вторичного отстойника, устроенного на поверхности жидкости, и отводится на сооружения доочистки и обеззараживания.
6. Биофильтры
Биологический фильтр -- сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой, образованной колониями микроорганизмов. Биофильтр состоит из следующих основных частей:
а)фильтрующей загрузки (тело фильтра) из шлака, гравия, керамзита, щебня, пластмасс, асбестоцемента, помещенной обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;
б)водораспределительного устройства, обеспечивающего равномерное с небольшими интервалами орошение сточной водой поверхности загрузки биофильтра;
в) дренажного устройства для удаления отфильтровавшейся воды;
г)воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.
Процессы окисления, происходящие в биофильтре, аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.
Проходя через загрузку биофильтра, загрязненная вода оставляет в ней не растворенные примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, абсорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда черпают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и в то же время увеличивается масса активной биологической пленки в теле биофильтра. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.
Классификация биофильтров
Биофильтры классифицируются по различным признакам.
1. По степени очистки --на биофильтры, работающие на полную и неполную биологическую очистку. Высокопроизводительные биофильтры могут работать на полную или неполную очистку в зависимости от необходимой степени очистки. Малопроизводительные биофильтры работают только на полную очистку.
2. По способу подачи воздуха -- на биофильтры с естественной и искусственной подачей воздуха. Во втором случае они часто носят название аэрофильтров. Наибольшее применение в настоящее время имеют биофильтры с искусственной подачей воздуха.
3. По режиму работы -- на биофильтры, работающие с рециркуляцией и без нее. Если концентрация загрязнений в поступающих на биофильтр сточных водах невысока и они могут быть поданы на биофильтр в таком объеме, который достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При очистке концентрированных сточных вод рециркуляция желательна, а в некоторых случаях обязательна. Рециркуляция позволяет понизить концентрацию сточных вод до необходимой величины, так же как и предварительная их обработка в аэротенках -- на неполную очистку.
4. По технологической схеме -- на биофильтры одноступенчатые и двухступенчатые. Двухступенчатые биофильтры применяются при неблагоприятных климатических условиях, при отсутствии возможности увеличивать высоту биофильтров и при необходимости более высокой степени очистки.
Иногда предусматривается переключение фильтров, т. е. периодическая эксплуатация каждого из них в качестве фильтра первой и второй ступени.
5. По пропускной способности -- на биофильтры малой пропускной способности (капельные) и большой пропускной способности (высоко-нагружаемые).
6. По конструктивным особенностям загрузочного материала -- на биофильтры с объемной загрузкой и с плоскостной загрузкой.
Биофильтры с объемной загрузкой можно подразделить на: капельные биофильтры (малой пропускной способности), имеющие крупность фракций загрузочного материала 20--30 мм и высоту слоя загрузки 1--2 м;
высоко нагружаемые биофильтры, имеющие крупность загрузочного материала 40--60 мм и высоту слоя загрузки 2--4 м;биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60--80 мм и высоту слоя загрузки 8--16 м. Биофильтры с плоскостной загрузкой подразделяются на: биофильтры с жесткой загрузкой в виде колец, обрезков труб и других элементов. В качестве загрузки могут быть использованы керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100--600 кг/м8, пористость 70--90%, высота слоя загрузки 1--6 м;биофильтры с жесткой загрузкой в виде решеток или блоков, собранных из чередующихся плоских и гофрированных листов. Блочные загрузки могут выполняться из различных видов пластмассы (поливинилхлорид, полиэтилен, полипропилен, полистирол и др.), а также из асбестоцементных листов. Плотность пластмассовой загрузки 40-- 100 кг/м3, пористость 90--97%, высота слоя загрузки 2--16 м. Плотность асбестоцементной загрузки 200--250 кг/м3, пористость 80--90%, высота слоя загрузки 2--6 м;биофильтры с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5--60 кг/м3, пористость 94--99%, высота слоя загрузки 3--8 м.
К биофильтрам с плоскостной загрузкой следует отнести и погружные биофильтры, представляющие собой резервуары, заполненные сточной водой и имеющие днище вогнутой формы. Вдоль резервуара несколько выше уровня сточной воды устанавливается вал с насаженными пластмассовыми, асбестоцементными или металлическими дисками диаметром 0,6--3 м. Расстояние между дисками 10--20 мм, частота вращения вала с дисками 1--40 мин-1.
Плоскостные биофильтры с засыпной и мягкой загрузкой рекомендуется применять при расходах до 10 тыс. м3/сутки, с блочной загрузкой-- до 50 тыс. м3/сутки, погружные биофильтры -- для малых расходов до 500 м3/сутки.
Союзводоканалниипроектом составлен экспериментальный проект биофильтров пропускной способностью 200--1400 м3/сутки с загрузкой из пеностекольных блоков 375X375 мм, из гофрированных листов полиэтилена размером 500X500 мм типа «сложная волна» и асбестоцементных листов размером 974X2000 мм.
Основные типы биофильтров
Капельные биофильтры. В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха происходит через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде; обычно она колеблется от 0,5 до 1 м3 воды на 1 м3 фильтра.
Капельные биофильтры рекомендуется применять при расходе сточных вод не более 1000 м3/сутки. Они предназначаются для полной (до БПКго=Ю …15 мг/л) биологической очистки сточной воды.
Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, отфильтровавшаяся через толщу биофильтра, попадает в дренажную систему и далее по сплошному непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых выносимая пленка отделяется от очищенной воды.
При нагрузке по загрязнениям больше допустимой поверхность капельных биофильтров быстро заиливается, и работа их резко ухудшается.
Проектируются они круглыми или прямоугольными в плане со сплошными стенками и двойным дном: верхним в виде колосниковой решетки и нижним -- сплошным.
Высота между донного пространства должна быть не менее 0,6 м для возможности периодического его осмотра. Дренаж биофильтров выполняют из железобетонных плит, уложенных на бетонные опоры. Общая площадь отверстий для пропуска воды в дренажную систему должна составлять не менее 5--8% площади поверхности биофильтров. Во избежание заиливания лотков дренажной системы скорость движения воды в них должна быть не менее 0,6 м/с.
Уклон нижнего днища к сборным лоткам принимается не менее 0,01, продольный уклон сборных лотков (максимально возможный по конструктивным соображениям) -- не менее 0,005.
Стенки биофильтров выполняются из сборного железобетона и возвышаются над поверхностью загрузки на 0,5 м для уменьшения влияния ветра на распределение воды по поверхности фильтра. При наличии дешевого загрузочного материала и свободной территории небольшие биофильтры можно устраивать без стенок; фильтрующий материал в этом случае засыпается под углом естественного откоса. Наилучшими материалами для засыпки биофильтров являются щебень и галька.
Все примененные для загрузки естественные и искусственные материалы должны удовлетворять следующим требованиям: при плотности до 1000 кг/м3 загруженный материал в естественном состоянии должен выдерживать нагрузку на поперечное сечение не менее 0,1 МПа, не менее 10 циклов испытаний на морозостойкость; кипячение в течение 1 ч в 5%-ном растворе соляной кислоты; материал не должен получать заметных повреждений или уменьшаться в весе более чем на 10% первоначальной загрузки биофильтров; загрузка биофильтров по высоте должна быть одинаковой крупности, и только для нижнего поддерживающего слоя высотой 0,2 м следует применять более крупную загрузку (диаметром 60--100 мм).
Высоко нагружаемые биофильтры. В начале текущего столетия появились биофильтры, которые у нас в стране получили название аэрофильтры, а за рубежом -- биофильтры высокой нагрузки. Отличительной особенностью этих сооружений является более высокая, чем в обычных капельных биофильтрах, окислительная мощность, что обусловлено незаиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря более крупному загрузочному материалу и повышенной в несколько раз нагрузке по воде.
Повышенная скорость движения сточной воды обеспечивает постоянный вынос задержанных трудно окисляемых нерастворимых примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела фильтра.
В СССР конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции.
Конструктивными отличиями высоко нагружаемых биофильтров являются большая высота слоя загрузки, большая крупность ее зерен и особая конструкция днища и дренажа, обеспечивающая возможность искусственной продувки материала загрузки воздухом.
Между донное пространство должно быть закрытым, и туда подается вентиляторами воздух. На отводных трубопроводах должны быть предусмотрены гидравлические затворы глубиной 200 мм.
Особенностями эксплуатационного характера являются необходимость орошения всей поверхности биофильтра с возможно малыми перерывами в подаче воды и поддержание повышенной нагрузки по воде на 1 м2 площади поверхности фильтра (в плане). Только при этих условиях обеспечивается промывка фильтров.
Высоко нагружаемые биофильтры могут обеспечить любую заданную степень очистки сточных вод, поэтому применяются как для частичной, так и для полной их очистки.
Как показали исследования, в одинаковых условиях (одинаковая высота и крупность загрузки, характер загрязнений, степень очистки сточных вод и т. д.) высоко нагружаемые биофильтры по сравнению с капельными имеют большую пропускную способность по объему пропускаемой через них воды, а не по количеству переработанных (окисленных) загрязнений. Повышенная же эффективность этих биофильтров по извлечению из сточных вод загрязняющих веществ достигается при увеличении высоты слоя загрузки, увеличении крупности зерен загрузки и лучшем воздухообмене.
Башенные биофильтры. Эти биофильтры имеют высоту 8--16 м и применяются для очистных станций пропускной способностью до 50 000 м3/сутки при благоприятном рельефе местности и при БПКго очищенной воды 20--25 мг/л. В отечественной практике они распространения не получили.
Вентиляция биофильтров
Естественная вентиляция в биофильтрах происходит вследствие разницы температур наружного воздуха и тела биофильтра.
Основная масса воздуха поступает в тело биофильтра через между донное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то устанавливается восходящий (от дренажа к поверхности) поток воздуха, при обратном соотношении---нисходящий; при равенстве температур вентиляция может совсем прекратиться. Интенсивность вентиляции биофильтров зависит также от высоты слоя фильтрующей загрузки, размеров ее зерен и высоты между донного пространства. Чем мельче загрузка, тем хуже условия вентиляции.
Подобные документы
Основные процессы производства сульфитной целлюлозы. Общие показатели загрязненности сточных вод от окорки древесины. Состав промышленных сточных вод кислотного цеха. Сооружения биологической очистки. Локальная и централизованная очистка сточных вод.
реферат [92,7 K], добавлен 09.02.2014Определение расчётных расходов сточных вод и концентрации загрязнений. Расчёт требуемой степени очистки сточных вод. Расчёт и проектирование сооружений механической и биологической очистки, сооружений по обеззараживанию сточных вод и обработке осадка.
курсовая работа [808,5 K], добавлен 10.12.2013Вода, ее свойства и значение. Виды сточных вод и характеристика методов их очистки. Ситуация с очисткой сточных вод в городе Салават Республики Башкортостан. Характеристика очистных сооружений предприятия ООО "Промводоканал", пути их реконструкции.
дипломная работа [1,3 M], добавлен 06.05.2014Характеристика сточных вод. Тяжелые металлы и специфические органические соединения. Основные способы очистки сточных вод, физические и химические методы. Параметры биологической очистки. Бактериальное сообщество очистных сооружений, их строение.
курсовая работа [3,6 M], добавлен 31.03.2014Разработка схемы очистки сточных вод на правобережных очистных сооружениях г. Красноярска. Выбор методов очистки сточных вод. Комплекс очистных сооружений, позволяющие повысить эффективность очистки до нормативов, удовлетворяющим условиям выпуска стоков.
дипломная работа [274,5 K], добавлен 23.03.2019Исследование качественного и количественного состава сточных вод, поступающих на очистку, и сбрасываемых в водоем. Определение показателей реки Сухона в связи со спуском в нее сточных вод г. Тотьма. Анализ технологических процессов очистки сточных вод.
дипломная работа [89,8 K], добавлен 12.06.2010Основные методы и сооружения для очистки промышленных сточных вод от нефтепродуктов. Закономерности биохимического окисления органических веществ. Технологическая схема биологической очистки сточных вод, деструкция нефтепродуктов в процессе ее проведения.
дипломная работа [681,6 K], добавлен 27.06.2011Физико-химические, химические, биологические и термические методы очистки сточных вод. Характеристика хлебопекарных дрожжей. Приготовление растворов питательных солей. Схема очистки сточных вод на производстве. Расчет гидроциклона и отстойника.
курсовая работа [592,4 K], добавлен 14.11.2017Классификация сточных вод и основные методы их очистки. Гидромеханические, химические, биохимические, физико-химические и термические методы очистки промышленных сточных вод. Применение замкнутых водооборотных циклов для защиты гидросферы от загрязнения.
курсовая работа [63,3 K], добавлен 01.04.2011Понятие и назначение гальванического покрытия металлов, этапы проведения данного процесса. Характеристика сточных вод, образующихся в результате гальваники, методы их очистки. Выбор оборудования, описание и критерии выбора технологии очистки сточных вод.
курсовая работа [4,9 M], добавлен 24.11.2010