Оценка качества очистки сточных вод
Исследование качественного и количественного состава сточных вод, поступающих на очистку, и сбрасываемых в водоем. Определение показателей реки Сухона в связи со спуском в нее сточных вод г. Тотьма. Анализ технологических процессов очистки сточных вод.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.06.2010 |
Размер файла | 89,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Российской Федерации
Дипломная работа
на тему:
«Оценка качества очистки сточных вод»
Выполнил:
студент 5 курса Астепкин Р.Е.
Челябинск - 2006 г
Введение
Вода - самое распространенное неорганическое соединение на нашей планете. Это ценнейший природный ресурс. Она играет исключительно важную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производствах. Общеизвестна необходимость ее для бытовых потребностей. Вода входит в состав организма человека, всех растений и животных. Для многих живых существ она служит средой обитания.
Вода - непременный агент фотосинтеза. Она имеет высокую диэлектрическую проницаемость, благодаря чему присоединяет и удерживает почти все вещества. Это отличительный теплоноситель и охладитель. Вода обладает таким уникальным качеством, как большое поверхностное натяжение, вследствие чего способна подниматься по капиллярам в почве.
Совершая круговорот в природе, вода участвует в формировании поверхности Земли. Она разрушает, растворяет и транспортирует неорганические вещества, способствует отложению осадочных пород и образованию почвы.
Вода оказывает существенное влияние на климат и погоду, так как обладает высокой теплоемкостью и низкой теплопроводностью. Аккумулируя солнечное тепло, она при больших скоплениях выравнивает годичные и суточные колебания температуры.
В мире на одного человека ежегодно расходуется в среднем 30 м3 воды, из них 1 м3 для питья. В некоторых странах на одного человека приходится всего 2 м3 воды в год. Здесь она оказывается одним из самых дорогих ресурсов. В нашей стране в мелких населенных пунктах потребление воды не превышает 30 л в сутки на 1 человека, в некоторых районах - даже 5-6 л. В жилищах с канализацией и водопроводом оно достигает 200 л/сут, а в домах, оборудованных горячим водоснабжением, - еще выше.
Водная среда, водоемы в зависимости от санитарного состояния могут быть местами развития организмов, которые по-разному приспособлены к уровню загрязнения и процессам, происходящим в этих условиях.
Речная вода более или менее постоянного состава, однако, во время весенних паводков, ливневых дождей в результате большого стока вода делается мутной, в ней нередко появляются химические вещества, используемые для удобрения. Качество зависит от сезона года, а так же местности, в которой протекают реки.
Соленые воды составляют 94,2 % всех водных ресурсов Земли. Они занимают свыше 70% поверхности земного шара, но используются недостаточно. Запасы же пресной воды на Земле незначительны: с учетом части подземных вод их около 30 млн км3. Причем большая часть этой воды (97%) приходится не ледники Антарктиды, Гренландии, полярных островов и гор. Если бы весь лед распределить равномерно по поверхности Земли, то образовался бы слой толщиной 53 м.
Цель работы - оценить качество очистки сточных вод МУП «Водоканал» г. Тотьма.
Задачи:
· Исследовать качественный и количественный состав сточных вод, поступающих на очистку, и сбрасываемых в водоем.
· Определить качественные показатели реки Сухона в связи со спуском в нее сточных вод г. Тотьма.
1. Литературные сведения
Санитарно - гигиеническое значение воды
Вода является основным компонентом любой живой ткани. Вода в организме находится в трех жидкостных фазах: внутриклеточной, внеклеточной, трансцеллюлярной. Содержание воды в различных тканях и секретах колеблется в очень широких пределах: в скелете-22%, в печени, мышцах, мозге, сердце, коже и соединительной ткани 70-80%, в плазме крови 90%, в поте, слюне 99,5%. Таким образом, вода является основной составной частью многих тканей и секретов организма.
Обмен веществ тесно связан с водой. Она является растворителем для большинства соединений и служит средой, в которой протекают все реакции обмена веществ. Основные процессы, связанные с обменом веществ (ассимиляция, диссимиляция, диффузия, осмос, резорбция, фильтрация и другие), протекают только в водных растворах органических и неорганических веществ. В водной среде осуществляются пищеварение и усвоение пищи в желудочно-кишечном тракте, транспортировка питательных веществ к различным тканям. Вода является непосредственным участником процессов окисления, гидролиза и других реакций обмена. Она необходима для выведения различных вредных веществ, образующихся в результате обмена. В связи с этим при недостаточном поступлении воды возникает интоксикация организма. Испаряясь с поверхности кожных покровов и дыхательных путей, она играет важную роль в процессах терморегуляции организма.
Вода участвует в обмене веществ, непрерывно выделяется из организма через почки, легкие, кишечник и кожу (готовые железы).
При дефиците воды наступает расстройство многих физиологических функций организма: нарушается обмен веществ, нарастает количество молочной кислоты, в тканях снижаются окислительные процессы, увеличивается вязкость крови, повышается температура тела, учащается дыхание и резко снижается аппетит.
Вода в организме выполняет механическую роль, облегчая скольжение трущихся поверхностей (суставы, связки, серозные и слизистые покровы.
Загрязнение поверхностных вод
Поверхностные водные системы -- ручьи, реки, озера, пруды -- загрязняются в основном бытовыми промстоками. На чистоту поверхностных вод в сельской местности влияют стоки, смывающие с полей, ядохимикаты, удобрения, а зачастую бытовой мусор и навоз из сел и ферм. Качество воды большинства водных объектов не отвечает нормативным требованиям. Многолетние наблюдения за динамикой качества поверхностных вод обнаруживают тенденцию увеличения числа створов с высоким уровнем загрязненности (более 10 ПДК) и числа случаев экстремально высокого содержания (Свыше 100 ПДК) загрязняющих веществ в водных объектах.
Состояние водных источников и систем централизованного водоснабжения не может гарантировать требуемого качества питьевой воды, а в ряде регионов (Южный Урал, Кузбасс, некоторые территории Севера) это состояние достигло опасного уровня для здоровья человека. Службы санитарно-эпидемиологического надзора постоянно отмечают высокое загрязнение поверхностных вод.
Около 1/3 всей массы загрязняющих веществ вносится в водоисточники с поверхностными и ливневыми стоками с территории санитарно неблагоустроенных населенных мест, сельскохозяйственных объектов и угодий, что влияет на сезонное, в период весеннего паводка, ухудшение качества питьевой воды. В связи с этим проводится гиперхлорирование питьевой воды, что, однако небезопасно для здоровья населения в связи с образованием хлорорганических соединений. Наиболее распространенными загрязняющими веществами поверхностных вод остаются нефтепродукты, фенолы, легкоокисляемые органические вещества, соединения металлов, аммонийный и нитридный азот. Основным источником загрязнения являются сточные воды различных производств, предприятий сельского и коммунального хозяйства, поверхностный сток.
Из-за нестабильной работы большинства предприятий, их тяжелого финансового положения, а также неудовлетворительного бюджетного финансирования выполнение водоохранных мероприятий в стране ведется крайне низкими темпами.
Неблагополучное состояние малых рек, особенно в зонах крупных промышленных центров, из-за поступления в них с поверхностным стоком и сточными водами больших количеств загрязняющих веществ. Значительный ущерб малым рекам наносится в хозяйственной деятельности из-за нарушения режима хозяйственной деятельности в водоохранных зонах и попадания в водотоки органических и минеральных загрязнении, а также смыва почвы в результате водной эрозии.
Огромное количество загрязняющих веществ вносится в поверхностные воды со сточными водами предприятий черной и цветной металлургии, химической, нефтехимической, нефтяной, газовой, угольной, лесной и целлюлозно-бумажной промышленности, предприятий сельского и коммунального хозяйства, поверхностным стоком с прилегающих территорий. Существенное влияние оказывают сельскохозяйственные угодья, а так же пастбища и животноводческие фермы.
Размеры бытовых городских стоков, подобно промышленности, сбрасываемые в канализацию. Концентрация органических веществ в этих отходах зачастую выше, чем в бытовых. Особенно много сточных вод образуется на бойнях, молочных фермах, пивоваренных и винных заводах, кондитерских фабриках. За счет загрязнения промышленными водами ослабляется жизнедеятельность организмов. Сточные воды промышленных, кожевенных предприятий и текстильных фабрик не только отравляют воду но и расходуют содержащийся в ней кислород. Сточные воды каменоломен делают воду мутной, в результате ухудшается проникновение света, а в связи с этим падает биологическая продукция кислорода. Современный уровень очистки сточных вод таков, что даже в водах, прошедших биологическую очистку, содержание нитратов и фосфатов достаточно для интенсивного эвтрофирования водоемов.
Эвтрофикация - обогащение водоема биогенами, стимулирующее рост фитопланктона. От этого вода мутнеет, гибнут бентосные растения, сокращается концентрация растворенного кислорода, задыхаются обитающие на глубине рыбы и моллюски.
Под загрязнением водоемов понимают снижение их биосферных функций и экологического значения в результате поступления в них вредных веществ. Загрязнение вод проявляется в изменении физических и органолептических свойств, увеличение содержание сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращение растворенного в воде кислорода воздуха, появление болезнетворных бактерий и других загрязнителей
Россия обладает одним из самых высоких водных потенциалов в мире. На каждого жителя России приходится свыше 30 000 мі/год воды. Однако в настоящее время из - за загрязнения или засорения около 70% рек и озер России утратили свои качества питьевого водоснабжения, в результате около половины населения потребляют загрязненную воду. Установлено, что более 400 видов веществ могут вызвать загрязнение вод.
В случае превышения нормы допустимой хотя бы по одному из трех показателей вредности: санитарно - токсикологическому, общесанитарному или органолептическому, вода считается загрязненной.
Различают естественные и антропогенные источники загрязнения вод. Первые в отличие от вторых сбалансированы процессами самоочищения вод за счет круговорота веществ в природе. Этим механизмом природа пользуется в течение всей истории существования биосферы. Антропогенные загрязнения связано с хозяйственной деятельностью человека. Сюда относят биологическое, химическое и физическое загрязнение.
Биологическое загрязнение вызывается микроорганизмами и способными к брожению органическими веществами. Такое загрязнение приводит к бактериологическому заражению (инфекционный гепатит, холера, тиф, дизентерия, кишечная инфекция). Здесь возникает проблема гигиены.
Бактериологические показатели питьевой воды. Питьевая вода не должна содержать болезнетворных микробов. Санитарным показателем качества воды по ГОСТ 2874- является титр (колититр) кишечной палочки, т. е наименьшее количество воды, в которой обнаруживается одна кишечная палочка.
Для водопроводной воды титр 300. это означает, что в 300 мл воды допускается 1 кишечная палочка.
Определяется индекс кишечной палочки (наименьшее количество кишечных палочек в 1л воды). Для водопроводной воды он должен равняться 3м. Большое количество их указывает на возможность попадания в воду болезнетворных микробов, которые вызывают кишечное инфекционное заболевание.
Общее количество микробов в воде так же служит показателем её санитарного качества. В одном мл питьевой воды по ГОСТ 2874-82 «вода питьевая допускается не более 100 микробов».
Источниками загрязнения органикой являются пищевые предприятия, молочные сахарные заводы, сыроварни, животноводство и т.д. Например, один целлюлозно-бумажный комбинат загрязняет воду, что и город с населением 500 тыс. человек. Химическое загрязнение природных вод представляет собой изменение естественных химических свойств воды за счет увеличения в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глиняные частицы) так и органической природы (нефть, нефтепродукты, ПАВ, пестициды).
Органическое загрязнение обычно оценивается биохимическим потреблением кислорода БПК 5,10,25 суток. Это, позволяет определить какое, количество кислорода необходимо организмам - деструкторам для полной минерализации всего нестойкого органического вещества, содержащегося в 1л воды в течение 5-10 или 25 суток .
Вынос в гидросферу органического вещества оценивается в 300-380 млн. т. Сточные воды, содержащие суспензии органического происхождения или растворенное органическое вещество, пагубно влияют на состояние водоемов. Осаждаясь, суспензии заливают дно и задерживают развитие или полностью прекращают жизнедеятельность донных микроорганизмов, участвующих в процессе самоочищения вод. При гниении донных осадков могут образовываться вредные соединения и отравляющие вещества, такие как сероводород, которые приводят к полному загрязнению воды в реке. Наличие суспензий затрудняет так же проникновение света на глубину и замедляет процессы фотосинтеза.
Значительный объем органических веществ, большинство которых не свойственно природным водам, сбрасывается в реки вместе с промышленными и бытовыми стоками. Нарастающие загрязнения водоемов и водостоков наблюдается во всех промышленных странах.
Хлориды: в воде могут быть минерального и органического происхождения. В некоторых зонах повышенное содержание их в воде (до 100-300 мг/л) связано с засоленностью грунтов, богатых хлористыми соединениями. Такая вода не является опасной в санитарном отношении и пригодна для поения животных и хозяйственных целей.
В питьевой воде содержание хлоридов органического происхождения не должно превышать 20-30 мг/л. при отсутствии других загрязнений в воде допускается содержание хлоридов минерального происхождения до 350мг/л. вода, в которой хлоридов содержится более 500 мг/л, имеет солоноватый привкус и неблагоприятно влияет на желудочную секрецию.
Питьевая вода при содержании хлоридов 500 мг/л и выше усиливает эвакуаторную деятельность желудка и уменьшает количество, кислотность и переваривающую способность желудочного сока, что приводит к нарушению процессов пищеварения. При длительном потреблении воды с наличием хлоридов в количестве 1.0- 2.5г/л у животных изменяются некоторые показатели водно-солевого обмена, повышается артериальное давление и наблюдается расстройство пищеварения.
Сульфаты: (соли серной кислоты) могут быть в воде органического происхождения, что свидетельствует о ее загрязнении. Однако в некоторых зонах в воде содержится большое количество (до 2000-3000 мг/л) сульфатов минерального происхождения. Они придают воде горький вкус и вызывают расстройства деятельности желудочно-кишечного тракта (обладают слабительным действием, угнетают деятельность желудочных желез и др.). оптимальное содержание сульфатов в воде составляет около 50 мг/л. однако при отсутствии других показателей загрязнения допускается наличие в воде сульфатов минерального происхождения до 500 мг/л.
Активная реакция или рН: обуславливают наличием в ней органических солей животного и растительного происхождения, процессами их гниения, а так же содержанием минеральных веществ. Вода хорошего качества чаще всего нейтральной реакции, а иногда слабощелочной рН (6.5-8.5). Если в воде повышено содержание органического происхождения, а тем более имеются процессы животного происхождения, гниения, то она приобретает, кислую реакцию. Повышенное содержание солей, жесткость воды способствует сдвигам к щелочной реакции.
Неорганическое загрязнение. Основными неорганическими (минеральными) загрязнителями пресных и морских вод являются разнообразные химические соединения, токсичные для обитателей водной среды. Это соединение свинца, кадмия, ртути, хрома, меди, фтора. Большинство из них попадают в воду в результате человеческой деятельности. Тяжелые металлы поглощаются фитопланктоном, а затем передаются по пищевой цепи организмом. Среди основных источников загрязнения гидросферы минеральными веществами и биогенными элементами следует упоминать предприятия пищевой промышленности и сельского хозяйства. Например, с орошаемых земель ежегодно вымывается около 12 млн.т солей.
В связи с быстрыми темпами урбанизации и несколько замедленным строительством очистных сооружений водные бассейны и почва загрязняются бытовыми отходами. Особенно ощутимо загрязнение в водоемах с замедленным течением или непроточным (водохранилища, озера). Ежегодно в реки сбрасывается около 160 кмі промышленных стоков, а так как большая часть сточных вод не очищается или очищается недостаточно, то они загрязняют 4000 кмі речных вод - более 12% всего речного стока.
Значительных размеров достигает концентрация загрязнений дождевых сточных вод - ливневых и талых. Текущие по улицам дождевые стоки бывают более ядовитыми, чем в сточных трубах промышленных предприятий. Попадая через канализационную сеть в открытые водоемы эти стоки отравляют природные воды.
Физическое загрязнение. Связано со сбросом тепла в воду, что приводит к потрясению всего биоценоза водоема. К физическим относят также радиоактивное загрязнение вод, попадание в водные системы различных взвесей, что приводит к изменению прозрачности воды. Неприятный запах, вкус так же относят к физическому загрязнению.
Источником теплового загрязнения служат подогретые сбросные воды теплоэлектростанций и промышленности. Повышение температуры природных вод изменяет естественные условия для водных организмов, снижает количество растворенного кислорода, изменяет скорость обмена веществ.
Прозрачность: воды зависит от наличия или отсутствия в ней взвешенных частиц различных веществ. Вода хорошего качества должна иметь прозрачность не менее 25 см, через который свободно читается шрифт Снеллена. Большая мутность воды (как от повышенной концентрации взвешенных минеральных и органических веществ, так и от растворенных в воде солей) нередко требует специальных методов обработки, улучшающих её качество.
Cточные воды и санитарные условия спуска сточных
Сточными называются воды, которые были использованы для тех или иных нужд и получили при этом дополнительные примеси (загрязнения), изменившие их первоначальный химический состав и физические свойства.
В зависимости от происхождения, вида и качественной характеристики примесей сточные воды подразделяются на три основные категории: бытовые (хозяйственно-фекальные); производственные (промышленные); атмосферные или дождевые.
Состав и свойства воды, водных объектов должны контролироваться в створе, расположенном на водотоках на 1 км выше ближайших по течению пунктов водопользования (водозабор для хозяйственно-питьевого водоснабжения, места купания, организованного отдыха, населенные пункты и тому подобное), а на непроточных водоемах и водохранилищах - на 1 км в обе стороны от пункта водопользования.
Запрещается сбрасывать в водные объекты сточные воды, содержащие возбудителей инфекционных заболеваний. Сточные воды, опасные в эпидемическом отношении, могут сбрасываться в водные объекты только после соответствующей очистки и обеззараживания.
Запрещается сброс в водные объекты, на поверхность ледяного покрова водосбора пульпы, концентрированные кубовые остатки образующееся в результате обезвреживания сточных вод, в том числе содержащие радионуклиды, другие технологические и бытовые отходы.
Сброс сточных вод в водные объекты в черте населенных пунктов запрещается.
Место выпуска сточных вод должно быть расположено ниже по течению реки от границы населенного пункта и всех мест водопользования населения с учетом возможности обратного течения при нагонных ветрах.
Сброс сточных вод в водные объекты в черте населенного пункта через существующие выпуски допускается лишь в исключительных случаях при соответствующем технико-экономическом обосновании и по согласованию с органами государственного санитарного надзора. В этом случае нормативные требования, установленные к составу и свойствам воды водных объектов, должны быть отнесены к самим сточным водам.
Условия отведения сточных вод в водные объекты определяются с учетом: а) степени возможного смещения и разбавления сточных вод водой водного объекта на участке от места выпуска сточных вод до расчетных (контрольных) створов ближайших пунктов хозяйственно-питьевого, культурно-бытового водопользования населения; б) фонового качества воды водного объекта выше места рассматриваемого выпуска сточных вод по анализам не более двухлетней давности; при наличии других - существующих и (или) проектируемых - выпусков сточных вод между рассматриваемым и ближайшим пунктом водопользования в качестве фонового применяется уровень загрязнения воды водного объекта с учетом вклада указанных выпусков сточных вод; в) нормативов качества воды водных объектов (ПДК).
Виды очистки сточных вод
Строительство очистных сооружений предусматривается в полном объеме с полной механической и биологической очисткой сточных вод.
На сооружениях механической очистки происходит осветление сточной жидкости за счет удаления из нее крупных взвесей, песка, жира и других нерастворимых веществ, путем пропуска через решетки и отстаивания при малых скоростях притока.
В состав сооружений механической очистки входят: решетки, песколовки с круговым движением сточных вод и первичные отстойники.
Состав сооружений биологической очистки:
Аэротенки предназначенные для биологического окисления органических веществ с помощью активного ила и продуваемого через сточную жидкость воздуха;
вторичные отстойники, которые служат для задержания ила после аэротенков.
В биологической очистке выделяют следующие стадии.
На первой стадии, сразу же после смешения сточных вод с активным илом, на его поверхности происходят адсорбция загрязняющих веществ и их коагуляция (укрупнение частиц несущих органические вещества), причем адсорбция обеспечивается как хемосорбцией, так и биосорбцией с помощью полисахаридного геля активного ила и благодаря огромной поверхности ила, один грамм которого занимает 100 м2. Таким образом, на первой стадии очистки, загрязняющие вещества в сточных водах удаляются благодаря механическому изъятию их активным илом из воды и началу процесса биоокисления наиболее легкоразлагающейся органики. На первой стадии за 0,5-2,0 часа содержание органических загрязняющих веществ, характеризуемых показателем БПК5, снижается на 50-60%
На второй стадии продолжается биосорбция загрязняющих веществ и идет их активное окисление экзоферментами (ферментами, выделяемыми активным илом в окружающую среду). Благодаря снизившейся концентрации загрязняющих веществ, начинает восстанавливаться активность ила. Продолжительность этой стадии составляет от 2,0 до 4,0 часов.
На третьей стадии очистки происходит окисление загрязняющих веществ эндоферментами (внутри клетки), доокисление сложноокисляемых соединений, превращение азота аммонийных солей в нитриты и нитраты, регенерация активного ила. Именно на этой стадии (стадии внутриклеточного питания активного ила) происходит образование полисахаридного геля, выделяемого бактериальными клетками. Продолжительность третьей стадии от 4-6 часов при очистке бытовых сточных вод и может удлиняться до 15 часов для сточных вод сложного промышленного состава.
§ 2 Исследовательская часть
Исследования проводили в лаборатории МУП «Водоканал» г. Тотьма.
Материалом для исследований служили пробы сточных вод, сбрасываемых в систему канализации г. Тотьма, и очищенных сточных вод до и после сброса в р. Сухона. Отбор проб проводили в соответствии с требованиями ГОСТ РФ 5.592-2000 «Вода. Общие требования к отбору проб».
Результаты анализа сравнивали с перечнем ПДК вредных веществ в водных объектах согласно СанПиН 2.1.5.980-00. «Гигиенические требования к охране поверхностных вод» и нормативами ПДС загрязняющих веществ в р. Сухона.
Для определения качества речной воды и степени очистки сточных вод путем определения контролируемых показателей были выбраны из числа органолептических - прозрачность, запах, цветность; из гидрохимических - взвешенные вещества, водородный показатель (рН), азот аммония, нитраты, нитриты, фосфаты, сульфаты, хлориды, биохимическое потребление кислорода (БПКполн), содержание растворенного кислорода, перманганатная окисляемость, тяжелые металлы.
Цветность определяли в пробе воды после ее центрифугирования фотометрически по 100-градусной хромово-кобальтовой шкале цветности и выражали в градусах цветности. Степень прозрачности определяли по высоте столба жидкости в см, через который отчетливо виден специальный шрифт.
Запах определяли качественно и описывали как фекальный, гнилостный, керосиновый, фенольный и т.д. Интенсивность запаха оценивали в баллах по 5-бальной шкале.
Содержание взвешенных веществ определяли гравиметрическим методом (ПНД Ф 14.1:2.110-97), который основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.
Концентрацию водородных ионов (pH) устанавливали потенциометрическим методом с помощью pH-метра. Метод основан на измерении разности потенциалов, возникающих на границах между внешней поверхностью стеклянной мембраны электрода и исследуемым раствором, с одной стороны, и внутренней поверхностью мембраны и стандартным раствором - с другой. Внутренний стандартный раствор стеклянного электрода имеет постоянную концентрацию ионов водорода, поэтому потенциал на внутренней поверхности мембраны не меняется. Измеряемая разность потенциалов определяется потенциалом, возникающим на границе внешней поверхности электрода и исследуемого раствора.
Концентрацию ионов аммония определяли методом фотометрии по реакции с реактивом Несслера (ПНД Ф 14.1.1- 95). Принцип метода основан на том, что аммоний с реактивом Несслера образует йодид меркураммония, который окрашивает раствор в желто-коричневый цвет. Интенсивность окраски пропорциональна содержанию аммония в воде.
Массовую концентрацию нитрат-ионов определяли фотометрическим методом с салициловой кислотой (ПНД Ф 14.1:2.4- 95). Фотометрический метод основан на взаимодействии нитрат-ионов с салициловой кислотой с образованием комплексного соединения желтого цвета.
Содержание нитритов определяли фотометрическим методом с реактивом Грисса (ПНД Ф 14.1:23-95). Определение основано на способности нитритов диазотировать сульфаниловую кислоту и на образовании красно-фиолетового красителя диазосоеденения с б - нафталамином. Интенсивность окраски пропорциональна концентрации нитритов. Протекание реакции в значительной степени зависит от pH-среды.
Измерение массовой концентрации сульфат-ионов проводили турбидиметрическим методом (ПНД Ф 14.1:2.159-2000). Метод измерения массовой концентрации сульфат-ионов основан на образовании стабилизированной суспензии сульфата бария в солянокислой среде с последующим измерением светорассеяния в направлении падающего луча ( в единицах оптической плотности).
Измерение содержания хлоридов проводили аргентометрическим методом (ПНД Ф 14.1:2.96-97). Титриметрический метод определения массовой концентрации хлоридов основан на образовании трудноратворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором - хроматом калия - с образованием красновато - оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (pH=7-10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag2О.
Измерение массовой концентрации фосфат-ионов проводили фотометрическим методом восстановлением аскорбиновой кислотой ( ПНД Ф 14.1:2.112- 97). Метод определения основан на взаимодействий фосфат-ионов в кислой среде с молибдатом аммония и образованием фосфорно-молибденовой гетерополикислоты, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет.
Метод перманганатной окисляемости основан на окислении органических загрязнений (с помощью кислорода, который эквивалентен загрязнению) перманганатом калия в мягких условиях при кипячении, которое проводят только в очищенное воде.
Измерение массовой концентрации общего железа проводили фотометрическим методом с сульфосалициловой кислотой (ПНД Ф 14.1:2.50 -96). Фотометрический метод определения массовой концентрации общего железа основан на образовании сульфосалициловой кистой и ее натриевой солью с солями железа окрашенных комплексных соединений, причем, в слабокислой среде сульфосалициловая кислота реагирует только с солями железа (3+) (красное окрашивание), а в слабощелочной среде - солями железа (2+) и (3+) (желтое окрашивание).
Выполнение измерений биохимического потребления кислорода (ПНД Ф 14.1:2:3:4.123- 97) основано на способности микроорганизмов потреблять кислород при биохимическом окислении органических веществ и неорганических веществ в воде. Биохимическое потребление кислорода определяют количеством кислорода в мг/дмі, которое требуется для окисления находящихся в воде углеродосодержащих органических веществ в аэробных условиях в результате биохимических процессов.
Содержание растворенного кислорода устанавливали йодометрическим методом (ПНД Ф 14.1:2.101- 97), в основе которого лежит реакция кислорода с гидроксидом марганца (II) в щелочной среде. Последний количественно связывает кислород, переходя при этом в соединения марганца (IV). При подкислении пробы в присутствии избытка иодида калия образуется йод, количество которого эквивалентно содержанию растворенного кислорода и определяется титрованием раствором тиосульфата натрия .
Концентрацию тяжелых металлов устанавливали методом атомно-абсорбционной спектрофотометрии. Способ основан на полном разложении органических веществ путем сжигания пробы сырья или продукта в электропечи при контролируемом температурном режиме и атомизации распыленного раствора (ГОСТ 26929-94) [4, 26].
Характеристика технологических процессов очистки сточных вод
Приемником очищенных сточных вод является река Сухона. Выпуск сточных вод расположен на правом берегу реки.
Тотьма канализована частично. Протяженность главных канализационных коллекторов - 18,3 км, уличной канализационной сети - 35,7 км, внутриквартальной канализационной сети - 24,1 км. На сети расположено 8 канализационных насосных станций, которые перекачивают сточные воды на главную канализационную насосную станцию (ГКНС), откуда они поступают в приемную камеру очистных сооружений канализации (ОСК) г. Тотьма.
Сточные воды из выгребов на очистные сооружения канализации вывозятся ассенизационными машинами. Вывозом сточных вод занимается МУП «Водоканал» г. Тотьма.
Площадка очистных сооружений канализации расположена в черте города и имеет полный цикл механической и биологической очистки сточных вод. Проектная мощность ОСК - 20 тыс. м3/сут., фактическая - 12 тыс. м3/сут.
Сточные воды через главную канализационную насосную станцию перекачиваются в приемную камеру очистных сооружений по коллектору диаметром 1000 мм. Камера оборудована аварийным переливным трубопроводом. Из камеры сточные воды поступают по лоткам в здание решеток, где происходит удаление крупных примесей решеткой РМУ-2 и агрегатом механической очистки сточных вод ХЖ 2.966.021 ПС (г. Владимир). Из здания решеток сточные воды, проходя лоток Вентури, поступают на горизонтальные песколовки с круговым движением воды.
Песколовки предназначены для выделения тяжелых минеральных примесей из сточной воды. Осадок из песколовок удаляется гидроэлеваторами и направляется в песковые бункеры (2 бункера), размещенные в сливной станции, откуда по мере наполнения вывозится грузовой машиной за пределы станции. Из песколовок сточные воды по лоткам поступают в распределительные камеры, и подаются на первичные отстойники.
Первичные отстойники входят в состав технологических сооружений блока емкостей, состоящего из нескольких секций шириной 15 м каждая и объединяющего в себе илоперегниватели, аэротенки, аэробные минерализаторы, вторичные отстойники и контактные резервуары. Первичные отстойники служат для дальнейшего удаления неосевших в песколовках минеральных и органических веществ, способных к осаждению путем длительного отстаивания. Отстойники радиального типа, квадратные в плане (10х10 м), четырехконусные, без скребковых механизмов. Сточная вода подается в центральную часть отстойника и собирается периферийным лотком. Выпадающий в отстойнике сырой осадок удаляется из конусов эрлифтами и направляется в илоперегниватель, где происходит анаэробное сбраживание осадка. Из первичных отстойников сточная вода отводится в аэротенки.
Аэротенки предназначены для биологического окисления органических веществ с помощью активного ила и воздуха. Аэротенки - двухкоридорные с регенерацией 50 % активного ила. Подача стоков осуществляется рассредоточено через впускные окна распределительного лотка. Циркуляционный активный ил подается в аэротенк сосредоточенно. Распределение воздуха в аэротенках осуществляется дырчатыми полимерными аэраторами (мелкопузырчатая аэрация).
Пройдя биологическую очистку, иловая смесь по дюкеру подается в центральную часть вторичного отстойника, где происходит отделение очищенной воды от ила. Выпадающий ил удаляется из конусной части эрлифтами и направляется в аэротенк (циркуляционный ил), избыточный активный ил сбрасывают в аэробный минерализатор. Аэробные минерализаторы - сооружения, где происходит аэробное сбраживание избыточного ила. Воздух распределяется дырчатыми трубами. Для удаления осадка и отделения иловой воды предусматривается зона отстаивания. Отстоянная жидкость отводится в регенератор аэротенка. Минерализованный ил насосами перекачивается на иловые поля.
Из сборного лотка вторичного отстойника очищенная сточная жидкость поступает в контактный резервуар. Емкость контактных резервуаров определена из расчета контакта хлора со сточной водой в резервуаре не менее 30 минут. Обеззараживание не производится.
Иловые поля - площадки - уплотнители, представляют собой железобетонные резервуары, в которые осадок 98%-й влажности подается по лотку. После отстаивания иловая вода выпускается через отверстия, снабженные шиберами и расположенные в продольной стенке уплотнителя на разных глубинах в открытый лоток, размещенный в продольной галерее. Из галереи иловая вода поступает самотеком в сеть и подается иловой насосной станцией на полный цикл очистки. Осадок складируется на иловые поля очистных сооружений. Иловый осадок нетоксичен и относится к 5 классу опасности.
Эксплуатируемые очистные сооружения находятся в аварийном состоянии, требуют капитального ремонта и реконструкции.
Характеристика поступающих на очистку сточных вод
При оценке сточных вод, сбрасываемых в водоемы, большое внимание уделяется органолептическим и физико-химическим показателям.
Одним из таких показателей является прозрачность сточных вод, мерой которой служит высота столба воды, при которой сквозь нее можно читать шрифт определенного размера и типа. Хозяйственно-бытовые сточные воды поступающие на очистку должны иметь прозрачность не менее 10 см. Прозрачность сточной воды обусловлена наличием в ней нерастворенных и коллоидных примесей.
Результаты органолептических исследований представлены в таблице 1.
1. Органолептические показатели сточных вод
Показатель |
Сезон года |
Норматив (СанПиН 2.1.5.980-00) |
||||
Зима |
Весна |
Лето |
Осень |
|||
Прозрачность, см |
2 |
7 |
5 |
6 |
Не < 10 |
|
Запах, балл |
5 |
5 |
5 |
5 |
Не > 5 (обнаруживаемый непосредственно) |
|
Цвет |
Серый (11 см) |
Серый (6 см) |
Серый (8 см) |
Серый (11 см) |
Не должен обнаруживаться в столбике 10 см |
Из данных таблицы видно, что сточные воды, поступающие на очистку, имели прозрачность 2 - 7 см на протяжении всего периода исследований. Самыми прозрачными сточные воды были в весенний, наиболее мутными - в зимний период. Значение данного показателя во всех исследованных пробах не соответствовало требованиям СанПиН. По запаху не наблюдалось отклонений от нормативных требований.
Серый цвет соответствует хозяйственно-бытовым сточным водам, однако окраска не должна обнаруживаться в столбике глубиной 10 см. Весной и летом сточные воды имели цветность выше требуемой на 40 и 20 % соответственно.
Одним из значимых факторов, воздействующих на скорость изъятия загрязняющих веществ при механическом отстаивании, интенсивность обмена веществ у организмов активного ила, потребление растворенного кислорода, а следовательно, на эффективность процесса биохимического окисления, является температура очищаемой сточной воды. Существенное воздействие температуры на процесс очистки наблюдается при отсутствии горячего водоснабжения. Оптимальные значения для удовлетворительного процесса биологической очистки находятся в диапазоне 16 - 23?С. От температуры сточной воды зависит эффект первичного отстаивания. С повышением температуры степень содержания взвешенных веществ увеличивается от 5 до 10%. Работа вторичных отстойников ухудшается зимой на 20 - 30% в связи с понижением температуры воды, поступающей на очистку.
2. Физико-химические показатели сточных вод
Показатель |
Сезон года |
ПДК |
||||
Зима |
Весна |
Лето |
Осень |
|||
Температура, ?С |
17 |
21 |
23 |
20 |
16,0 - 23,0 |
|
рН |
7,8 |
7,3 |
7,9 |
8,1 |
6,5 - 8,5 |
Результаты исследований показали, что температура поступающей сточной воды в весенний, летний и осенний сезоны года не имела отклонений от оптимальных величин. При оптимальной реакции среды это является очень важным условием для успешной очистки сточных вод. Однако необходимо отметить, что минимальное значение температуры (17?С) наблюдалось в зимний период и было на уровне нижнего предела требуемой величины, максимальное - в летний (23?С).
Концентрацию водородных ионов сточных вод необходимо определять потому, что стоки канализации имеют кислую реакцию. В результате чего создается опасность гибели микроорганизмов биологической пленки, а после сброса таких стоков в водоем возникает угроза гибели в нем флоры и фауны, снижения его самоочищающей способности.
При рН 6,0 жизнедеятельность микроорганизмов на биологических фильтрах снижается, а при рН менее 5,0 в ряде случаев прекращается совсем.
Как показывают данные таблицы 2, рН сточных вод во все исследуемые периоды составил 7,3 - 8,1, что соответствует значению ПДК.
Среди основных загрязняющих веществ, прежде всего органической природы, присутствующих в сточных водах очистных сооружений, по физическому состоянию (размеру составляющих частиц), выделяют соединения в нерастворенном, коллоидном и растворенном состояниях. По мере изменения степени дисперсности частиц загрязняющих веществ происходит последовательное их изъятие на всех ступенях биологической очистки. Среди них для характеристики работы сооружений механической очистки большое значение имеют взвешенные вещества, т.е. частицы нерастворимого твердого вещества, плавающие по всему объему жидкости (грубые суспензии). Они являются показателем загрязнения водоема хозяйственно-бытовыми сточными водами.
3. Содержание взвешенных и оседающих веществ в сточных водах, мг/дм3
Показатель |
Сезон года |
ПДК |
||||
Зима |
Весна |
Лето |
Осень |
|||
Взвешенные вещества |
32,39±0,90 |
56,43±1,50 |
21,94±0,80 |
36,58±1,10 |
10,45 |
|
Оседающие вещества |
22,02±1,30 |
39,50±1,50 |
15,36±1,20 |
26,70±1,10 |
6,79 |
Содержание взвешенных веществ в сточных водах во все периоды года превышало допустимую концентрацию в 3,1; 5,4; 2,1; 3,5 раза по сезонам соответственно. Это означает, что степень очистки сточных вод по взвешенным веществам после аэротенков и биофильтров неудовлетворительна. В аротенках наблюдаются буруны, что говорит о необходимости замены системы аэрации, так как неравномерная подача воздуха в аротенки приводит к ухудшению качества очистки и лишнему расходу воздуха .
При анализе сезонной динамики содержания взвешенных веществ в сточных водах системы канализации г. Тотьма установлено, что наибольший уровень их зарегистрирован в весенний период (56,43±2,50 мг/дм3), что было выше в 1,74 раза, чем зимой, в 2,57; 1,54 раза - по сравнению с летним и осенним периодами соответственно.
Необходимость определения содержания этой группы веществ в сточных водах обусловлена присутствием в них одного из наиболее вредных взвешенных веществ органического происхождения лигнина. Большая часть его извлекается из сточных вод в процессе очистки. При высоких концентрациях взвешенных веществ в сточных водах лигнин на очистных сооружениях, как правило, не полностью выпадает в осадок в отстойниках и может поступать со сточными водами в водоемы. Попадая в жабры рыб, лигнин вызывает их закупорку, затрудняет дыхание и приводит к гибели рыбы.
Для характеристики работы сооружений механической очистки большое значение имеет содержание не только взвешенных, но и количество оседающих веществ. Оседающие вещества - это часть взвешенных веществ, выпадающих в осадок за 2 ч отстаивания в лабораторном цилиндре; они рассчитываются по объему (см/дм3) и весу (мг/ дм3).
Из данных таблицы 3 видно, что уровень содержания оседающих веществ максимальным был весной, в другое время года он снижался: осенью - в 1,48, летом - в 2,57, зимой - в 1,79 раза. Все эти значения превышали ПДК в 3,24; 5,82; 2,26; 3,9 раза за год.
Количество оседающих веществ, выраженное в процентах от количества взвешенных, - это теоретически возможный предел эффективности отстаивания взвеси в условиях первичных отстойников. В бытовых неочищенных сточных водах оседающие вещества составляют 65 - 75% взвешенных по массе. Это не подтверждается нашими исследованиями и свидетельствует, во-первых, о высокой степени загрязненности хозяйственно-бытовых сточных вод, прежде всего, органическими соединениями, во-вторых, что очень важно, указывает на возможность не полного отстаивания взвеси в условиях первичных отстойников.
Перед сооружениями биологической очистки ставится задача глубокого удаления всех форм азотсодержащих соединений. В сточных водах азот представлен, в основном, в виде минеральной (NH4+ , NО2-, NО3-) и органической (аминокислоты и др. органические соединения) составляющих.
4. Содержание азота в сточных водах, мг/ дм3
Показатель |
Сезон года |
ПДК |
||||
Зима |
Весна |
Лето |
Осень |
|||
Азот аммонийный |
0,51±0,03 |
0,80±0,01 |
0,88±0,05 |
0,56±0,02 |
0,40 |
|
Нитриты |
0,18±0,02 |
0,27±0,01 |
0,41±0,03 |
0,28±0,02 |
0,08 |
|
Нитраты |
12, 96±0,92 |
20,64±0,85 |
21,27±0,79 |
11,04±0,67 |
40,00 |
Как показывают данные таблицы 4, наибольшее поступление азота аммонийного наблюдалось в летний период (0,88±0,13 мг/ дм3), в другие периоды года оно снижалось: осенью - в 1,57 раз, весной - на 10 %, зимой - в 1,57 раз. В первом квартале года значение этого показателя было самым невысоким и превышало ПДК на 7,5%, тогда как осенью оно превышало ПДК на 27,5 %; весной - в 2 раза; летом - в 2,2 раза. Аммонийный азот в большом количестве образуется при гидролизе мочевины -- продукта жизнедеятельности человека. Процесс аммонификации белковых соединений приводит к образованию аммония. Следовательно, в теплое время года в сточные воды поступает большее количество фекалий, в том числе и из выгребных ям.
В хозяйственно-бытовых сточных водах до их очистки азот в окисленных формах -- нитриты и нитраты -- как правило, отсутствует. Окисленные формы азота отсутствуют даже в том случае, если в производственных стоках имелись нитриты и нитраты. Денитрификация примесей сточной воды объясняется процессами анаэробиоза при транспортировании сточных вод по системе водоотведения, действием бактерий, денитрифицирующих окисленные формы азота до молекулярной формы. Окисленные формы азота появляются после биологической очистки сточных вод, свидетельствуя о полной завершенности процесса.
Азот служит питательной средой для многих микроорганизмов, применяемых при биологической очистке в аэротенках и необходим для нормальной работы биологической пленки очистных канализационных сооружений. В случае его значительного количества в сточных водах, а также после биологической очистки и разбавления в водоеме его содержание увеличивается, усиливается разрастание сине-зеленых водорослей (цветение воды), что часто наблюдается в летний период.
Содержание нитратов во все исследуемые периоды в сточных водах находилось в пределах нормативных значений. Самым высоким оно было также в летний, самым низким - в зимний период, весной и осенью занимало промежуточное значение.
Концентрация нитритов в течение всего года превышала ПДК: зимой - в 1,8; весной - в 2,9; летом - в 4; осенью - в 2,8 раза, что является признаком промышленных загрязнений стоков канализации г. Тотьма и нарушения технологии биологической очистки сточных вод.
Хлориды и сульфаты -- примеси сточных вод, не влияющие на скорость и эффективность процесса очистки, если их концентрация невелика; при этом их концентрация в сточных водах не изменяется. Хлориды не влияют на биохимические процессы даже при концентрациях 10 г/л, но во избежание засоления воды водоемов -- приемников сточных вод следует предотвращать сброс высокоминерализованных производственных сточных вод в поселковую систему водоотведения.
Концентрация сульфатов может изменяться лишь в анаэробных условиях при очистке сточных вод в двухъярусных отстойниках и сбраживании осадка в метантенках. В этих процессах сульфаты восстанавливаются до сульфидов и при концентрации более 1 г/дм3 могут нарушать процесс метанового брожения.
5. Содержание анионов в сточных водах, мг/дм3
Показатель |
Сезон года |
ПДК |
||||
Зима |
Весна |
Лето |
Осень |
|||
Сульфаты |
124,2±12,3 |
178,1±4,5 |
235,8±18,2 |
190,65±2,9 |
500,0 |
|
Хлориды |
52,3±0,7 |
115,0±9,4 |
264,6±10,8 |
121,6±5,1 |
300,0 |
|
Фосфаты (по фосфору) |
1,34±0,01 |
2,38±0,01 |
3,3±0,01 |
1,56±0,02 |
0,2 |
Как показывают результаты исследований, представленные в таблице 5, содержание сульфатов в сточных водах в течение всего периода наблюдений находилось в пределах 78,1- 235,8 мг/дм3 при ПДК 500 мг/дм3 (СанПиН 2.1.5.980 - 00) . Концентрация хлоридов имела значительно больший диапазон колебаний (52,3- 264,6 мг/дм3), но также не превышала допустимой величины. При изучении сезонной динамики данных показателей установлено, что максимальные их значения установлены в летний период, минимальные - в зимний, весной и осенью - удерживались примерно на одном уровне.
Источником фосфора в сточных водах являются физиологические выделений людей, отходы хозяйственной деятельности человека и некоторые виды производственных сточных вод. Содержание азота и фосфора в сточных водах характеризует качество процесса биологической очистки. Азот и фосфор -- компоненты материала клеток микроорганизмов. Их называют биогенными элементами, при отсутствии азота и фосфора в сточных водах процесс биологического окисления примесей сточной воды невозможен. На очистных сооружениях фосфаты применяют в технологии производства для выращивания дрожжей, а также для нормальной работы биологической пленки очистных сооружений. При поступлении сточных вод для предварительной механической очистки в отстойнике концентрация фосфатов заметно задерживает осаждение взвешенных веществ.
Данные таблицы 5 показывают, что содержание фосфатов, поступающих со сточными водами на очистку, превышает ПДК. При допустимой величине 0,2 мг/дм3, концентрация фосфатов составила летом 3,3 мг/дм3, что выше ПДК в 16,5 раз. Зимой, весной и осенью значение этого показателя понижалось, но также оставалось значительно выше критического уровня в 6,7; 11,9; и 7,8 раз соответственно.
Наиболее полную информацию о загрязненности сточных вод легкоокисляемыми органическими веществами возможно получить только после определения БПК в натуральной (взболтанной) пробе. БПК пробы сточных вод -- кислородный эквивалент степени загрязненности сточных вод биохимически окисляемыми органическими веществами. БПК устанавливает количество кислорода, необходимое для жизнедеятельности микроорганизмов, участвующих в окислении и деструкции органических соединений примесей сточной воды. БПК характеризует часть органических примесей, окисляемых биохимически и находящихся в растворенном и коллоидном состояниях, и часть примесей во взвешенном состоянии, которая способна расщепляться под действием экзоферментов.
6. Окислительные свойства сточных вод, мг/дм3
Показатель |
Сезон года |
ПДК |
||||
Зима |
Весна |
Лето |
Осень |
|||
БПКполн |
4,8±0,05 |
29,1±0,9 |
52,7±3,6 |
4,9±0,03 |
6,0 |
Из данных таблицы 6 видно, что зимой и осенью биохимическое потребление кислорода было в пределах допустимых величин. Однако весной оно возрастало по сравнению с этими значениями в 6,1 раза и превышало допустимое значение в 4,8 раза. Летом БПК продолжало расти, что составило 52,7 мг/дм3. Данное значение было максимальным за весь период исследований, оно превысило ПДК в 8,8 раза. Это свидетельствует о высоком содержании в сточных водах углеродсодержащей органики, окисляющейся биологическим способом и выполняющей роль активного субстрата для микроорганизмов.
Бытовые и промышленные сточные воды являются одним из источников поступления тяжелых металлов в природные водоемы. Все промышленные примеси, присутствующие в сточных водах, в той или иной мере неблагоприятно воздействуют на нормальное функционирование и жизнеспособность активного ила. Особую проблему представляют токсичные (ядовитые) сточные воды, убивающие активный ил. Сточные воды содержат большое количество разнообразных токсикантов, из которых можно выделить два основных типа: ксенобиотики (органические токсины) и тяжелые металлы.
Тяжелые металлы извлекаются из сточных вод при биологической очистке путем их активной сорбции илом. Данные по содержанию тяжелых металлов в сточных водах, поступающих на очистные сооружения, приведены в таблице 7.
7. Содержание тяжелых металлов в сточных водах, мг/дм3
Показатель |
Сезон года |
ПДК |
||||
Зима |
Весна |
Лето |
Осень |
|||
Железо общее |
0,120±0,020 |
0,190±0, 010 |
0,350±0,010 |
0,270±0,010 |
0,100 |
|
Никель |
0,017±0,001 |
0,018±0,001 |
0,018±0,001 |
0,017±0,001 |
0,010 |
|
Хром |
0,08±0,001 |
0,09±0,002 |
0,09±0,001 |
0,08±0,001 |
0,070 |
Анализ результатов исследований показал, что содержание тяжелых металлов во все периоды года превышает ПДК: по железу общему - в 1,2 - 3,5 раза, по никелю - 1,7 - 1,8 раза, по хрому - на 35 % весной и летом, зимой и осенью - на 18 %.
Тяжелые металлы - наиболее распространенная группа токсичных трудноокисляемых загрязнений, присутствующих в сточных водах. В неочищенных сточных водах металлы представлены разнообразными химическими соединениями во взвешенной, коллоидной, растворенной и нерастворенной формах. Некоторые из солей тяжелых металлов, например, меди, цинка, трехвалентного хрома в щелочной среде выпадают в осадок. Другие, гидролизуясь, значительно подкисляют сточные воды. Как правило, тяжелые металлы и их соли действуют на активный ил как токсиканты, угнетая его окислительную способность. Они вызывают денатурацию ферментов активного ила, это ингибирует их активность и нарушает проницаемость мембран у организмов ила, что приводит к его гибели .
Подобные документы
Принципиальная схема очистных сооружений. Показатели загрязненности сточных вод и технология их очистки. Классификация биофильтров и их типы, процесс вентиляции и распределение сточных вод по биофильтрам. Биологические пруды для очистки сточных вод.
реферат [134,5 K], добавлен 15.01.2012Определение расчётных расходов сточных вод и концентрации загрязнений. Расчёт требуемой степени очистки сточных вод. Расчёт и проектирование сооружений механической и биологической очистки, сооружений по обеззараживанию сточных вод и обработке осадка.
курсовая работа [808,5 K], добавлен 10.12.2013Характеристика сточных вод. Тяжелые металлы и специфические органические соединения. Основные способы очистки сточных вод, физические и химические методы. Параметры биологической очистки. Бактериальное сообщество очистных сооружений, их строение.
курсовая работа [3,6 M], добавлен 31.03.2014Понятие и назначение гальванического покрытия металлов, этапы проведения данного процесса. Характеристика сточных вод, образующихся в результате гальваники, методы их очистки. Выбор оборудования, описание и критерии выбора технологии очистки сточных вод.
курсовая работа [4,9 M], добавлен 24.11.2010Подбор методов и этапы расчета аппарата для очистки сточных вод от нефтепродуктов, которые могут быть использованы, как для очистки производственных сточных вод, так и в системах оборотного водоснабжения. Методы иммобилизации клеток микроорганизмов.
курсовая работа [2,3 M], добавлен 19.12.2010Основные методы и сооружения для очистки промышленных сточных вод от нефтепродуктов. Закономерности биохимического окисления органических веществ. Технологическая схема биологической очистки сточных вод, деструкция нефтепродуктов в процессе ее проведения.
дипломная работа [681,6 K], добавлен 27.06.2011Классификация сточных вод и основные методы их очистки. Гидромеханические, химические, биохимические, физико-химические и термические методы очистки промышленных сточных вод. Применение замкнутых водооборотных циклов для защиты гидросферы от загрязнения.
курсовая работа [63,3 K], добавлен 01.04.2011Основные процессы производства сульфитной целлюлозы. Общие показатели загрязненности сточных вод от окорки древесины. Состав промышленных сточных вод кислотного цеха. Сооружения биологической очистки. Локальная и централизованная очистка сточных вод.
реферат [92,7 K], добавлен 09.02.2014Вода, ее свойства и значение. Виды сточных вод и характеристика методов их очистки. Ситуация с очисткой сточных вод в городе Салават Республики Башкортостан. Характеристика очистных сооружений предприятия ООО "Промводоканал", пути их реконструкции.
дипломная работа [1,3 M], добавлен 06.05.2014Определение концентрации загрязнений в сточной воде перед очистными сооружениями. Требуемые показатели качества очищенных сточных вод. Горизонтальные песколовки с круговым движением воды. Гидромеханизированный сбор песка. Схема очистки бытовых вод.
контрольная работа [741,0 K], добавлен 03.11.2014