Надежность технологических машин
Свойства изделий, заключающиеся в приспособленности их к хранению и транспортировке. Надежность, безотказность, долговечность, ремонтопригодность и сохраняемость. Сочетание неблагоприятных факторов и внешних воздействий при неправильной эксплуатации.
Рубрика | Производство и технологии |
Вид | тест |
Язык | русский |
Дата добавления | 20.11.2009 |
Размер файла | 167,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Надежность технологических машин
1.1 Состояние изделия, при котором оно способно выполнять заданные функции (с параметрами, установленными в технической документации) это:
A) долговечность;
B) работоспособность;
C) сохраняемость;
D) безотказность;
E) исправность.
1.2 Что характеризует данная формулировка: «Свойство изделий, заключающееся в приспособленности его к хранению и транспортировке»?
A) надежность;
B) безотказность
C) долговечность;
D) ремонтопригодность;
E) сохраняемость.
2.1 Гамма процентный ресурс относится к показателям:
A) безотказности;
B) ремонтопригодности;
C) долговечности;
D) сохраняемости;
E) отдельный показатель.
3.1 Событие, заключающееся в потере работоспособности, будет называться
A) предельным состоянием;
B) дефектом;
C) отказом;
D) износом;
E) правильный ответ отсутствует.
4.1 Отказ это:
A) каждое отдельно несоответствие детали, узла установленным требованием;
B) состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных технической документации;
C) состояние объекта, при котором его дальнейшая эксплуатация должна быть прекращена;
D) событие, заключающееся в потере работоспособности;
E) событие, при котором объект работает с перегрузками.
5.1 Интенсивность отказов относится к показателям:
A) безотказности;
B) ремонтопригодности;
C) долговечности;
D) сохраняемости;
E) отдельный показатель.
6.1 Что характеризует данная формулировка: «Свойство изделий сохранять работоспособность в течении некоторой наработки без вынужденных перерывов»:
A) надежность;
B) безотказность;
C) долговечность;
D) ремонтопригодность;
E) сохраняемость.
6.2 Коэффициент готовности относится к показателям:
A) безотказности;
B) ремонтопригодности;
C) долговечности;
D) сохраняемости;
E) комплексным.
6.3 Какими основными показателями характеризуется надежность:
A) работоспособность, безотказность, долговечность, сохраняемость;
B) долговечность, безотказность, износостойкость, сохраняемость;
C) безотказность, долговечность, ремонтопригодность, сохраняемость;
D) износостойкость, ремонтопригодность, долговечность, работоспособность;
E) безотказность, износостойкость, долговечность, ремонтопригодность.
6.4 Что характеризует данная формулировка: «Свойства изделий в приспособленности его к предупреждению, обнаружению к устранению отказов»:
A) безотказность;
B) долговечность;
C) работоспособность;
D) сохраняемость;
E) ремонтопригодность.
7.1 Наработка от начала эксплуатации объекта до наступления его предельного состояния это:
A) межремонтный ресурс;
B) полный ресурс;
C) эксплуатационный ресурс;
D) срок эксплуатации;
E) правильный ответ отсутствует.
8.1 Предельное состояние деталей, образующих сопряжения, определяют по:
A) предельной величине износа каждой детали в отдельности;
B) величине предельного зазора;
C) предельной величине износа одной из деталей входящей в сопряжение;
D) полному ресурсу;
E) правильный ответ отсутствует.
9.1 По причинам возникновения отказы делятся на:
A) конструкционные, технологические, эксплуатационные;
B) коррозионные, конструкционные, технологические;
C) технологические, экономические, эксплуатационные;
D) геометрические, физико-механические, химические;
E) правильный ответ отсутствует.
10.1 Изнашивание при фреттинг-коррозии это:
A) изнашивание при наличии на поверхностях трения защитных пленок;
B) изнашивание соприкасающихся тел при малых колебательных перемещениях;
C) изнашивание в результате схватывания и глубинного вырывания материала;
D) изнашивание поверхности в результате воздействия потока жидкости или газа;
E) изнашивание в результате повторного деформирования микрообъемов материала.
11.1 К коррозионно-механическому виду изнашивания относятся:
A) абразивное;
B) усталостное;
C) эрозионное;
D) кавитационное;
E) окислительное.
11.2 К коррозионно-механическому виду изнашивания относятся:
A) абразивное;
B) усталостное;
C) эрозионное кавитационное;
D) фреттинг-коррозия;
E) коррозия.
12.1 Отказы, по причине возникновения бывают:
A) постепенные и внезапные;
B) естественные и преднамеренные;
C) первой, второй и третьей группы сложности;
D) исследовательские и расчетно-конструкторские;
E) эксплуатационные и ресурсные.
12.2 Отказы, в зависимости от причин их вызывающих, бывают:
A) естественные и преднамеренные;
B) постепенные и внезапные;
C) первой, второй и третьей группы сложности;
D) производственно-технологические и расчетно-конструкторские;
E) эксплуатационные и ресурсные.
13.1 Окислительное изнашивание это:
A) изнашивание при наличии на поверхностях трения защитных пленок;
B) изнашивание соприкасающихся тел при малых колебательных перемещениях;
C) изнашивание в результате схватывания и глубинного вырывания материала;
D) изнашивание поверхности в результате воздействия потока жидкости или газа;
E) изнашивание в результате повторного деформирования микрообъемов материала.
14.1 Какой метод непригоден для измерения величины износа конкретной изношенной детали:
A) интегральный;
B) метод микрометража;
C) метод искусственных баз;
D) метод измерения кругломером;
E) метод отпечатков.
14.2 Существуют следующие методы измерения величины износа:
A) диагностический, параметрический;
B) технический, экономический, технологический;
C) технологический, диагностический;
D) интегральный, микрометража;
E) дифференциальный, технологический.
15.1 Каждое отдельное несоответствие детали, узла установленным требованиям называется:
A) предельным состоянием;
B) дефектом;
C) отказом;
D) износом;
E) качеством.
16.1 Предельный износ устанавливают по следующим критериям:
A) технологический, качества, надежности;
B) технологический, экономический, надежности;
C) технический и технологический;
D) экономический и надежности;
E) технический, качества, экономический.
17.1 Эрозионное изнашивание это:
A) изнашивание при наличии на поверхностях трения защитных пленок;
B) изнашивание соприкасающихся тел при малых колебательных перемещениях;
C) изнашивание в результате схватывания и глубинного вырывания материала;
D) изнашивание в результате воздействия потока жидкости или газа;
E) изнашивание в результате повторного деформирования микрообъемов материала.
18.1 Изнашивание поверхности при движении твердого тела и жидкости в условиях кавитации это:
A) абразивное;
B) усталостное;
C) эрозионное;
D) кавитационное;
E) фреттинг-коррозия.
19.1 Отказы, по природе происхождения бывают:
A) естественные и преднамеренные;
B) эксплуатационные и ресурсные;
C) первой, второй и третьей группы сложности;
D) постепенные и внезапные;
E) исследовательские и расчетно-графические.
20.1 Усталостное изнашивание это:
A) изнашивание при наличии на поверхностях трения защитных пленок;
B) изнашивание соприкасающихся тел при малых колебательных перемещениях;
C) изнашивание в результате схватывания и глубинного вырывания материала;
D) изнашивание поверхности в результате воздействия потока жидкости или газа;
E) изнашивание в результате повторного деформирования микрообъемов материала.
21.1 При каком виде нагружения детали «эффект Ребиндера» оказывает влияние на ее прочность:
A) ударная нагрузка;
B) равномерное кручение;
C) статистические изгибающие нагрузки;
D) растягивающие нагрузки;
E) циклические усталостные нагрузки.
22.1 Какой вид изнашивания наиболее распространен у нагруженных подшипников качения:
A) при заедании;
B) усталостное;
C) эрозионное;
D) окислительное;
E) газообразивное.
23.1 Какой вид изнашивания наиболее распространен у нагруженных подшипников качения:
A) при заедании;
B) усталостное;
C) эррозионное;
D) окислительное;
E) газообразивное.
24.1 Изнашивание при заедании это:
A) изнашивание при наличии на поверхностях трения защитных пленок;
B) изнашивание соприкасающихся тел при малых колебательных перемещениях;
C) изнашивание в результате схватывания и глубинного вырывания материала;
D) изнашивание поверхности в результате воздействия потока жидкости или газа;
E) изнашивание в результате повторного деформирования микрообъемов.
25.1 Какой вид изнашивания относится к группе механического:
A) кавитационное;
B) окислительное;
C) фреттинг-коррозия;
D) при заедании;
E) коррозионное.
26.1 Формула х=w1*x1+w2*x2+…+wn*xn=wixi служит для определения:
A) среднего арифметического;
B) среднего взвешенного;
C) медианы распределения;
D) моды распределения;
E) коэффициента вариации распределения.
27.1 Значение Хi, которое соответствует максимальному значению плотности вероятностей (наибольшее значение ординаты кривой) - это:
A) размах;
B) медиана;
C) мода;
D) дисперсия;
E) среднеквадратичное отклонение.
28.1 Мера рассеивания отдельных значений случайной величины относительно среднего значения - это:
A) размах;
B) медиана;
C) мода;
D) дисперсия;
E) среднеквадратичное отклонение.
29.1 Xi max-Xi min = … это:
A) размах;
B) медиана;
C) мода;
D) дисперсия;
E) среднеквадратичное отклонение.
29.2 Значение Хi, при котором вероятность больших или меньших его значений одинакова - это:
A) размах;
B) медиана;
C) мода;
D) дисперсия;
E) среднеквадратичное отклонение.
30.1 Число отказов, возникших в течение какого-либо интервала времени - это:
A) случайная дискретная величина;
B) случайная непрерывно-дискретная величина;
C) случайная непрерывная величина;
D) случайная вариационная величина;
E) случайная статистическая величина.
31.1 Величина износа деталей в партии - это:
A) случайная дискретная величина;
B) случайная непрерывно-дискретная величина;
C) случайная непрерывная величина;
D) случайная вариационная величина;
E) случайная статистическая величина.
32.1 Совокупность значений случайных величин расположенных в возрастающем порядке, с указанием их вероятностей или частостей - это:
A) мода;
B) вариационный ряд распределения;
C) распределение случайных величин;
D) коэффициент вариации;
E) медиана.
33.1 К мерам рассеяния случайной величины относятся:
A) размах, мода, медиана;
B) дифференциальная, интегральная функции;
C) размах, дисперсия, средняя арифметическая;
D) размах, дисперсия, среднее квадратическое отклонение;
E) средняя взвешенная.
34.1 Вероятность безотказной работы машины Р(t) при совместном действии износных и внезапных отказов может быть определена по теореме:
A) Р(t) = Ри(t)*Рв(t)
B) Р(t) = Ри(t)/Рв(t)
C) Р(t) = Ри(t)-Рв(t)
D) Р(t) = Ри(t)+Рв(t)
E) Р(t) = Ри(t)*(-Рв(t))
35.1 Какому закону распределения чаще всего подчиняются внезапные отказы:
A) Ребиндера;
B) нормальному закону распределения;
C) логарифмическому;
D) экспоненциальному;
E) Релея.
36.1 Вероятность любого случайного события - есть величина лежащая на участке:
A) от -1 до +1
B) от 0 до +1
C) от -1 до 0
D) от 0 до +100
E) от 0 до +10
37.1 Среднее значение случайной величины, при небольшом количестве исходной информации, не объединённой в статистический ряд, определяется как
A) среднее взвешенное;
B) среднее квадратическое отклонение;
C) мода;
D) среднее арифметическое;
E) медиана.
38.1 При наличии статистического ряда среднее значение случайной величины находится как
A) среднее взвешенное;
B) среднее квадратическое отклонение;
C) мода;
D) среднее арифметическое;
E) медиана.
39.1 Формула х=w1*x1+w2*x2+…+wn*xn=wixi служит для определения:
A) среднего арифметического;
B) среднего взвешенного;
C) медианы распределения;
D) моды распределения;
E) коэффициента вариации распределения.
40.1 Значение Хi, которое соответствует максимальному значению плотности вероятностей (наибольшее значение ординаты кривой) - это:
A) размах;
B) медиана;
C) мода;
D) дисперсия;
E) среднеквадратичное отклонение.
41.1 Значение Хi, при котором вероятность больших или меньших его значений одинакова - это:
A) размах;
B) медиана;
C) мода;
D) дисперсия;
E) среднеквадратичное отклонение.
42.1 Величина износа деталей в партии - это:
A) случайная дискретная величина;
B) случайная непрерывно-дискретная величина;
C) случайная непрерывная величина;
D) случайная вариационная величина;
E) случайная статистическая величина.
43.1 Совокупность значений случайных величин расположенных в возрастающем порядке, с указанием их вероятностей или частостей - это:
A) мода;
B) вариационный ряд распределения;
C) распределение случайных величин;
D) коэффициент вариации;
E) медиана.
44.1 Виды испытаний с/х техники бывают:
A) полные и не полные;
B) нагруженные и ненагруженные;
C) сложные и простые;
D) определительные и контрольные;
E) постоянные и сезонные.
45.1 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до определенной наработки:
A) NVr
B) NVN
C) NRT
D) NRr
E) NVT
45.2 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до появления определенного количества отказов:
A) NVr
B) NVN
C) NRT
D) NRr
E) NVT
45.3 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до отказа всех изделий:
A) NVr
B) NVN
C) NRT
D) NRr
E) NVT
45.4 В каком из приведенных планов испытаний отказавшие изделия заменяются новыми или ремонтируются, а испытания ведутся до появления определенного количества отказов:
A) NVr
B) NVN
C) NRT
D) NRr
E) NVT
45.5 В каком из приведенных планов отказавшие изделия заменяются новыми или ремонтируются, а испытания ведутся до получения определенной наработки:
A) NVr
B) NVN
C) NRT
D) NRr
E) NVT
46.1 При формировании испытаний методом усиления режимов работы необходимо, чтобы выполнялось условие, которое записывается так: Р (tу) = Р (tэ). Как называется это условие:
A) условие равенства коэффициентов вариации;
B) условие физического подобия;
C) условия равенства нагрузок;
D) условие равенства режима работы;
E) условие математического подобия.
47.1 При проведении стендовых испытаний какой используется метод определения величины износа деталей?
A) интегральный;
B) микрометража;
C) отпечатков;
D) лунки;
E) снимков.
48.1 Какие методы испытаний машин на надежность дают наиболее достоверные результаты:
A) стендовые испытания;
B) эксплуатационные;
C) полигонные;
D) ускоренные;
E) форсированные.
49.1 При испытании свойств материалов, определяющих надёжность изделий, в качестве объёктов могут быть:
A) образцы;
B) сопряжения и кинематические пары;
C) узлы машин;
D) машина в целом;
E) система машин.
50.1 При изучении взаимодействия отдельных механизмов и элементов конструкции на показатели работоспособности, в качестве объёктов могут быть:
A) образцы;
B) сопряжения и кинематические пары;
C) узлы машин;
D) машина в целом;
E) система машин.
51.1 При изучении влияния различных факторов на срок службы сопряжений, в качестве объёктов могут быть:
A) образцы;
B) кинематические пары;
C) узлы машин;
D) машина в целом;
E) система машин.
52.1 Виды испытаний с/х техники бывают:
A) полные и не полные;
B) нагруженные и ненагруженные;
C) сложные и простые;
D) определительные и контрольные;
E) постоянные и сезонные.
53.1 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до определенной наработки:
A) NVr
B) NVN
C) NRT
D) NRr
E) NVT
54.1 В качестве объектов испытаний могут быть:
A) образцы;
B) сопряжения;
C) узлы машин;
D) машины в сборе;
E) все вышеперечисленные.
55.1 План NUN используют для сбора:
A) полной информации;
B) усеченной информации;
C) сокращенной информации;
D) многократно усеченной;
E) неполной.
56.1 В плане испытаний NUN буква N означает:
A) число отказов;
B) число предельных состояний;
C) число замен;
D) число изделий, поставленных под наблюдение;
E) число запасных частей.
56.2 В плане испытаний NUr, буква r означает:
A) число отказов;
B) число замен;
C) число изделий, поставленных под наблюдение;
D) число запасных частей;
E) запасное число.
57.1 Какая технологическая операция повышает сопротивляемость деталей абразивному изнашиванию:
A) чистовое точение;
B) алмазное выглаживание;
C) хонингование;
D) ультразвуковое упрочнение;
E) гальваническое хромирование.
58.1 Резервирование бывает:
A) комплексное и техническое;
B) постоянно нагруженное и ненагруженное;
C) циклическое и пульсирующее;
D) полное и неполное;
E) сложное и простое.
59.1 Какая технологическая операция повышает сопротивляемость усталостному изнашиванию:
A) чистовое шлифование;
B) наплавка износостойких материалов;
C) алмазное выглаживание;
D) борирование;
E) дробеструйный наклеп.
59.2 Какая технологическая операция повышает сопротивляемость деталей абразивному изнашиванию:
A) чистовое точение;
B) алмазное выглаживание;
C) хонингование;
D) ультразвуковое упрочнение;
E) гальваническое хромирование.
60.1 Внутренние поверхности упрочняют:
A) пескоструйной обработкой;
B) раскаткой или дорнованием;
C) алмазным выглаживанием;
D) дробеструйным наклепом;
E) косточковой крошкой.
61.1 Для повышения надежности машин обкатка является:
A) ремонтным мероприятием;
B) организационным мероприятием;
C) эксплуатационным мероприятием;
D) показательным мероприятием;
E) общественным мероприятием.
62.1 Статистический контроль надежности проводят по следующим признакам:
A) техническому и технологическому;
B) экономическому и техническому;
C) альтернативному и количественному;
D) постепенному и последовательному;
E) все вышеперечисленные.
63.1 Одним из требований, предъявляемых к подшипниковым сплавам является:
A) упругость;
B) твердость;
C) коррозионная стойкость;
D) пластичность;
E) жесткость.
64.1 Легкая прирабатываемость относится к:
A) деталям шестерен;
B) медным сплавам;
C) алюминиям;
D) подшипниковым сплавам;
E) всем материалам.
65.1 Низкий коэффициент трения предъявляется к:
A) медным сплавам;
B) всем материалам;
C) сплавам алюминия;
D) деталям шестерен;
E) подшипниковым сплавам.
66.1 Высокое сопротивление изнашиванию и схватыванию предъявляется к:
A) подшипниковым сплавам;
B) всем материалам;
C) медным сплавам;
D) сплавам алюминия;
E) бронзе.
67.1 Для повышения надежностей деталей используется:
A) нарезание резьбы;
B) полимерные материалы;
C) подтяжка креплений;
D) их испытания;
E) контрольное взвешивание.
68.1 Резервирование применяется с целью:
A) повышение точности;
B) повышение количества испытуемых объектов;
C) понижение надежности сложных систем;
D) повышение надежности сложных систем;
E) увеличение факторов испытаний.
69.1 При резервировании замещение резервные элементы находятся в:
A) рабочем состоянии;
B) нагруженном состоянии;
C) обрабатываемом состоянии;
D) тяжелом состоянии;
E) отключенном состоянии.
70.1 При ненагруженном резервировании, резервные элементы находятся в:
A) отключенном состоянии;
B) рабочем состоянии;
C) легком состоянии;
D) тяжелом состоянии;
E) отсутствии.
71.1 При ненагруженном резервировании подразумевается:
A) рабочие детали;
B) запасные части;
C) дублирующие элементы;
D) измерительные части;
E) измерительный инструмент.
71.2 При резервировании размещением подразумевается:
A) рабочие детали;
B) запасные части;
C) дублирующие элементы;
D) измерительные части;
E) измерительный инструмент.
72.1 При постоянном резервировании элементы располагаются:
A) последовательностью;
B) прерывисто;
C) параллельно;
D) перпендикулярно;
E) на складе.
73.1 Элементы располагаются параллельно при резервировании:
A) замещением;
B) ненагруженном;
C) постоянном;
D) сложном;
E) простом.
74.1 При нагруженном резервировании элементы располагаются:
A) последовательно;
B) прерывисто;
C) перпендикулярно;
D) параллельно;
E) на складе.
75.1 Резервирование дает возможность создать:
A) надежные системы из элементов высокой надежности;
B) сложные машины;
C) простые машины;
D) надежные системы из элементов невысокой надежности;
E) всякие машины.
76.1 Техническое обслуживание это:
A) комплекс операций для восстановления полного или близкого к полному ресурса объекта с заменой или восстановлением любых деталей, включая базовые;
B) комплекс операций для восстановления работоспособности или исправности объекта;
C) комплекс операций по поддержанию работоспособности или исправности объекта
D) комплекс операций по замене масла в машинах;
E) комплекс операций по восполнению регулировочных работ, как отдельных агрегатов, так и машины в целом.
77.1 Что характеризует данная формулировка: «Свойство изделия сохранять работоспособность до предельного состояния с некоторыми перерывами для ТО и ремонта:
A) надежность;
B) долговечность;
C) ремонтопригодность;
D) безотказность;
E) износостойкость.
78.1 Наработка изделия, при достижении которой эксплуатация его должна быть прекращена независимо от технического состояния это:
A) полный технический ресурс;
B) остаточный технический ресурс;
C) назначенный ресурс;
D) суммарный технический ресурс;
E) эксплуатационный ресурс.
78.2 Наработка от начала до конца эксплуатации для невосстанавливаемого изделия или до ремонта для восстанавливаемого это:
A) полный технический ресурс;
B) остаточный технический ресурс;
C) назначенный ресурс;
D) доремонтный технический ресурс;
E) эксплуатационный ресурс.
78.3 Наработка восстанавливаемого изделия на протяжении его срока службы до списания это:
A) остаточный технический ресурс;
B) суммарный технический ресурс;
C) назначенный ресурс;
D) доремонтный технический ресурс;
E) эксплуатационный ресурс.
79.1 Состояние объекта, при котором он соответствует требованиям установленным технической документацией - это:
A) работоспособность;
B) исправность;
C) функциональность;
D) ремонтопригодность;
E) неисправность.
79.2 Состояние объёкта, при котором он способен выполнять заданные функции, сохраняя основные параметры в пределах значений, установленных технической документацией - это:
A) исправность;
B) функциональность;
C) ремонтопригодность;
D) работоспособность;
E) неисправность.
79.3 Величина, при которой детали (сопряжения), будучи оставленными, без изменения, проработают не менее одного межремонтного срока это:
A) календарный срок службы;
B) допустимый без ремонта размер;
C) межремонтный интервал;
D) срок службы до списания;
E) средний срок эксплуатации.
80.1 Наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от состояния объекта - это:
A) полный ресурс;
B) межремонтный ресурс;
C) назначенный ресурс;
D) межремонтная наработка;
E) интервал между капитальными ремонтами.
81.1 Состояние изделия, при котором оно способно выполнять заданные функции в течение некоторого времени (с параметрами, установленными в технической документации) это:
A) долговечность;
B) работоспособность;
C) сохраняемость;
D) безотказность;
E) исправность.
82.1 К молекулярно- механическому виду изнашивания относятся:
A) абразивное;
B) усталостное;
C) эрозионное;
D) кавитационное;
E) изнашивание при заедании.
82.2 К механическим видам изнашивания относятся:
A) абразивное;
B) усталостное;
C) эрозионное;
D) кавитационное;
E) все.
83.1 При усталостном изнашивании смазка оказывает влияние на:
A) уменьшение процесса изнашивания;
B) расширение трещин и откалывание частиц;
C) удаление продуктов износа;
D) создание масляного клина;
E) смягчение ударных нагрузок.
84.1 Какой фактор в наибольшей степени влияет на усталостную прочность деталей
A) наличие канавок, выточек, дефектов внутренней структуры металла;
B) эффект Ребиндера (наличие на поверхности ПАВ);
C) предел текучести металла;
D) температурный режим;
E) наличие влаги в окружающей среде.
85.1 Основной характеристикой внешнего трения является:
A) сила трения;
B) коэффициент трения;
C) вид трения;
D) наличие смазочного материала между трущимися поверхностями;
E) нагрузка на поверхность трения.
86.1 На усталостную прочность деталей оказывают влияние следующие факторы:
A) характер циклических нагрузок;
B) наличие на поверхностях деталей концентраторов напряжений;
C) дефекты внутренней структуры;
D) А, В, С;
E) твердость.
87.1 Отказы, по последствиям или затратам бывают:
A) постепенные и внезапные;
B) естественные и преднамеренные;
C) первой, второй и третьей группы сложности;
D) исследовательские и расчетно-графические;
E) эксплуатационные и ресурсные.
88.1 Отношение величины износа ко времени, в течение которого он возник это:
A) временная износостойкость;
B) интенсивность изнашивания;
C) износостойкость;
D) величина износа;
E) скорость изнашивания.
89.1 Последствием сочетания неблагоприятных факторов и внешних воздействий, при неправильной эксплуатации являются
A) постепенные отказы;
B) внезапные отказы;
C) кратковременные отказы;
D) конструкторские отказы;
E) непостоянные отказы.
90.1 Поверхностное разрушение металла детали вследствие его окисления - это
A) изнашивание;
B) усталостное разрушение;
C) электроэрозия;
D) варьирование;
E) коррозия.
91.1 Изнашивание при фреттинг-коррозии это:
A) изнашивание при наличии на поверхностях трения защитных пленок;
B) изнашивание соприкасающихся тел при малых колебательных перемещениях;
C) изнашивание в результате схватывания и глубинного вырывания материала;
D) изнашивание поверхности в результате воздействия потока жидкости или газа;
E) изнашивание в результате повторного деформирования микрообъемов материала.
92.1 К коррозионно - механическому виду изнашивания относятся:
A) абразивное;
B) усталостное;
C) эрозионное;
D) кавитационное;
E) окислительное.
93.1 Отказы, по причине возникновения бывают:
A) постепенные и внезапные;
B) естественные и преднамеренные;
C) первой, второй и третьей группы сложности;
D) исследовательские и расчетно-конструкторские;
E) эксплуатационные и ресурсные.
94.1 Отказы, в зависимости от причин их вызывающих, бывают:
A) естественные и преднамеренные;
B) постепенные и внезапные;
C) первой, второй и третьей группы сложности;
D) производственно-технологические и расчетно-конструкторские;
E) эксплуатационные и ресурсные.
95.1 Какой метод непригоден для измерения величины износа конкретной изношенной детали:
A) интегральный;
B) метод микрометража;
C) метод искусственных баз;
D) метод измерения кругломером;
E) метод отпечатков.
96.1 Какой вид изнашивания относится к группе механического:
A) кавитационное;
B) окислительное;
C) фреттинг-коррозия;
D) при заедании;
E) коррозионное.
96.2 К молекулярно- механическому виду изнашивания относятся:
A) абразивное;
B) усталостное;
C) эрозионное;
D) кавитационное
E) изнашивание при заедании;
96.3 К механическому виду изнашивания относится:
A) окислительное;
B) при заедании;
C) абразивное;
D) при фретинг- коррозии;
E) ускоренное.
96.4 К молекулярно- механическому виду изнашивания относится:
A) окислительное;
B) абразивное;
C) эрозионное;
D) при заедании;
E) кавитационное.
96.5 К коррозионно- механическому виду изнашивания относится:
A) абразивное;
B) эрозионное;
C) кавитационное;
D) при заедании;
E) окислительное.
96.6 К механическому виду изнашивания относится:
A) кавитационное;
B) при заедании;
C) окислительное;
D) при фретинг- коррозии;
E) неполное.
97.1 К механическому виду изнашивания относится:
A) при заедании;
B) окислительное;
C) при фретинг- коррозии;
D) гидроабразивное;
E) полное.
98.1 К механическому виду изнашивания относится:
A) газоабразивное;
B) при заедании;
C) окислительное;
D) при фретинг- коррозии;
E) неполное.
98.2 К механическому виду изнашивания относится:
A) при заедании;
B) усталостное;
C) окислительное;
D) полное;
E) неполное.
98.3 К механическому виду изнашивания относится:
A) при заедании;
B) окислительное;
C) эрозионное;
D) полное;
E) неполное.
98.4 К коррозионно- механическому виду изнашивания относится:
A) при фретинг- коррозии;
B) абразивное;
C) эрозионное;
D) полное;
E) неполное.
98.5 Абразивное изнашивание относится к:
A) молекулярно- механическому;
B) механическому;
C) коррозионно- механическому;
D) полному;
E) неполному.
98.6 Гидроабразивное изнашивание относится к:
A) коррозионно- механическому;
B) молекулярно- механическому;
C) механическому;
D) полному;
E) неполному.
98.7 Газоабразивное изнашивание относится к:
A) ускоренному;
B) полному;
C) неполному;
D) механическому;
E) молекулярно- механическому.
98.8 Усталостное изнашивание относится к:
A) ускоренному;
B) полному;
C) неполному;
D) молекулярно- механическому;
E) механическому.
98.9 Эрозионное изнашивание относится к:
A) механическому;
B) ускоренному;
C) полному;
D) неполному;
E) сокращенному.
98.10 Кавитационное изнашивание относится к:
A) полному;
B) механическому;
C) неполному;
D) ускоренному;
E) сокращенному.
98.11 Изнашивание при заедании относится к:
A) полному;
B) неполному;
C) ускоренному;
D) молекулярно- механическому;
E) механическому.
98.12 Окислительное изнашивание относится к:
A) молекулярно- механическому;
B) коррозионно- механическому;
C) механическому;
D) полному;
E) ускоренному.
98.13 Изнашивание при фретинг- коррозии относится к:
A) механическому;
B) молекулярно- механическому;
C) коррозионно- механическому;
D) ускоренному;
E) полному.
99.1 Что означает буква в формуле F=:
A) толщина масляного слоя;
B) скорость;
C) площадь контакта;
D) вязкость масла;
E) сила трения.
100.1 По этой формуле определяется F=f*p:
A) коэффициент трения;
B) сила трения;
C) давление;
D) сила скольжения;
E) сила покоя.
101.1 По этой формуле определяется F=f*
A) сила трения скольжения;
B) сила трения качения;
C) сила трения покоя;
D) сила давления;
E) сила сопротивления.
102.1 К мерам рассеяния случайной величины относятся:
A) размах, мода, медиана;
B) дифференциальная, интегральная функции;
C) размах, дисперсия, средняя арифметическая;
D) размах, дисперсия, среднее квадратическое отклонение;
E) средняя взвешенная.
103.1 Основой характеристикой случайного события является:
A) число;
B) случайная величина;
C) вероятность;
D) теория вероятностей;
E) теория надежности.
104.1 Важнейшей характеристикой случайной величины является:
A) случайное событие;
B) вероятность;
C) число;
D) теория распределения;
E) распределение.
105.1 Мерой совпадения или расхождения опытной и теоретической вероятностей является:
A) критерий согласия;
B) случайное событие;
C) случайная величина;
D) распределение;
E) число.
106.1 Случайная величина бывает:
A) событие и вероятность;
B) целым и дробным;
C) дискретная и непрерывная;
D) знаменателем и числителем;
E) длинным и коротким.
107.1 Доверительный интервал характеризует:
A) точность оценки;
B) надежность;
C) безотказность;
D) долговечность;
E) сохраняемость.
108.1 По этой формуле Q(t)=1-P*(t) определяют:
A) вероятность безотказной работы;
B) коэффициент надежности;
C) среднюю наработку на отказ;
D) вероятность отказа;
E) параметр потока отказа.
108.2 По этой формуле определяют:
A) интенсивность отказов;
B) поток отказов;
C) параметр потока отказов;
D) вероятность отказов;
E) наработка на отказ.
109.1 По этой формуле определяют:
A) интенсивность отказов;
B) наработку на отказ;
C) параметр потока отказов;
D) вероятность отказа;
E) средний ресурс.
110.1 Величина относительной ошибки определяется по формуле:
A) ;
B) ;
C) ;
D) ;
E)
111.1 Точность оценки определяется:
A) доверительным интервалом;
B) надежностью;
C) безотказностью;
D) наработкой на отказ;
E) долговечностью.
112.1 Формула Q(t)=1-P*(t) означает:
A) вероятность безотказной работы;
B) коэффициент надежности;
C) параметр потока отказа;
D) средняя наработка на отказ;
E) вероятность отказа.
113.1 Вероятность отказа определяют по формуле:
A) p(t)=1-Q(t);
B) p(t)+Q(t)=1;
C) p(t)=;
D) Q(t)=1-p(t);
E) Q(t)=.
114.1 Формула означает:
A) поток отказов;
B) параметр потока отказов;
C) интенсивность отказов;
D) наработка на отказ;
E) вероятность отказа.
115.1 3 2 (D)Вероятность того, что искомый параметр находится в пределах назначенной точности выражают:
A) доверительный интервал;
B) доверительный отказ;
C) доверительная погрешность;
D) доверительная вероятность;
E) безотказность.
116.1 Доверительный интервал имеет границы:
A) простую и сложную;
B) техническую;
C) экономическую;
D) технологическую;
E) нижнюю и верхнюю.
117.1 При изучении надежности машин имеют дело с случайными событиями:
A) совместимыми;
B) непрерывными;
C) несовместимыми;
D) дискретными;
E) сложными.
118.1 Наибольшее применение в технических расчетах случайных величин получил закон распределения:
A) экспоненциальный
B) показательный;
C) нормальный;
D) не нормальный;
E) Релея.
119.1 Что такое полигон распределения:
A) ломаная кривая, характеризующая плотность;
B) ступенчатый многоугольник;
C) дифференциальная функция;
D) интегральная кривая;
E) прямая линия.
119.2 Ломаная кривая, характеризующая плотность распределения это:
A) гистограмма;
B) полигон;
C) дифференциальная функция;
D) интегральная функция;
E) кривая накопленных частот.
119.3 Что такое гистограмма распределения?
A) ломаная кривая, характеризующая плотность распределения;
B) дифференциальная функция;
C) ступенчатый многоугольник;
D) интегральная функция;
E) кривая накопленных частот.
119.4 Ступенчатый многоугольник распределения это:
A) полигон;
B) интегральная функция;
C) дифференциальная функция;
D) гистограмма;
E) кривая накопленных частот.
120.1 Вариационный ряд строится:
A) в порядке уменьшения абсолютной величины;
B) горизонтально;
C) вертикально;
D) под углом;
E) в порядке возрастания абсолютной величины.
121.1 В порядке возрастания абсолютной величины строится:
A) вариационный ряд;
B) статистический ряд;
C) ряд наблюдений;
D) одинарный ряд;
E) бинарный ряд.
122.1 Сумма частот по интервалам должна быть равна:
A) общему числу значений случайной величины;
B) единице;
C) нулю;
D) 100%
E) половине числа значений случайной величины.
123.1 Среднеквадратическое отклонение показывает
A) среднее значение случайной величины;
B) максимальное значение случайной величины;
C) минимальное значение случайной величины;
E) степень рассеивания случайной величины.
124.1 Различают виды испытаний:
A) постепенные и последовательные;
B) объективные и субъективные;
C) технические и технологические;
D) определительные и контрольные;
E) простые и сложные.
124.2 Испытания машин бывают:
A) технические и технологические;
B) простые и сложные;
C) объективные и субъективные;
D) постепенные и последовательные;
E) полигонные и стендовые.
125.1 Для сбора полной информации используется план:
A) NRT;
B) NUR;
C) NUT;
D) NRr;
E) NUN.
125.2 Для сбора информации о безотказности машин используют план:
A) NUR;
B) NUN;
C) NUT;
D) NRT;
E) NRr.
125.3 Для ресурсных испытаний используют план:
A) NUR;
B) NUN;
C) NUT;
D) NRT;
E) NRr.
125.4 План NRT используется для сбора информации:
A) безотказности;
B) долговечности;
C) ремонтопригодности;
D) сохраняемости;
E) надежности.
125.5 План NUT используют для испытаний:
A) долговечных;
B) ресурсных;
C) безотказных;
D) полных;
E) усеченных.
126.1 Испытания ограниченной продолжительности проводятся:
A) с заменой отказавших деталей;
B) без замены отказавших деталей;
C) с ограниченным числом отказов;
D) без отказов;
E) без длительной продолжительности.
126.2 При каких видах испытаний проверяется достигнет ли он заданный уровень:
A) эксплуатационных;
B) контрольных;
C) полигонных;
D) стендовых;
E) простых.
126.3 При контрольных испытаниях проверяется:
A) достигнет ли он предел;
B) достигнет ли он высоту;
C) достигнет ли он заданный уровень;
D) количество факторов;
E) количество деталей.
126.4 Контрольные испытания проводятся с целью определить:
A) достигнет ли он заданный уровень;
B) достигнет ли он предел;
C) достигнет ли он высоты;
D) количество факторов;
E) количество деталей.
127.1 С целью сокращения времени проводят испытания:
A) полигонные;
B) эксплуатационные;
C) стендовые;
D) простые;
E) сложные.
128.1 Стендовые испытания проводят с целью:
A) точности измерений;
B) скорости измерений;
C) увеличения вязкости;
D) уменьшения времени;
E) увеличения времени.
129.1 Увеличивая точность измеряемых параметров можно:
A) увеличить время испытаний;
B) ужесточить испытания;
C) упростить испытание;
D) не проводить испытание;
E) формировать испытание.
130.1 Метод последовательных испытаний проводят с:
A) контролем;
B) фиксацией их отказов;
C) безотказностью;
D) долговечностью;
E) ремонтопригодностью.
131.1 С фиксацией отказов используется метод:
A) простой;
B) сложный;
C) последовательных испытаний;
D) параллельных испытаний;
E) контрольных испытаний.
132.1 Альтернативный метод испытаний проводят для деталей:
A) крупногабаритных;
B) простых;
C) сложных;
D) малогабаритных;
E) ответственных.
133.1 Для испытания малогабаритных деталей применяется метод:
A) количественный;
B) качественный;
C) простой;
D) сложный;
E) альтернативный.
134.1 С целью повышения надежности сложных систем применяют:
A) испытания;
B) увеличение точности параметров;
C) резервирование;
D) наклеп;
E) увеличение количества факторов.
135.1 Эксплуатационные испытания обладают недостатком:
A) краткостью;
B) неточностью;
C) длительностью;
D) простотой;
E) сложностью.
136.1 Длительность является недостатком испытаний:
A) стендовых;
B) полигонных;
C) эксплуатационных;
D) контрольных;
E) альтернативных.
137.1 План NRT используют для сбора информации о:
A) долговечности;
B) ремонтопригодности;
C) сохраняемости;
D) безотказности;
E) работоспособности.
138.1 Форсирование испытаний можно проводить:
A) эксплуатационными испытаниями;
B) планированием испытаний;
C) повышением надежности;
D) ужесточением по нагружению;
E) снижением нагрузки.
139.1 При испытаниях сокращение простоев обеспечивает:
A) хорошую обкатку;
B) функционирование элементов;
C) усиление режима работы;
D) повышение качества;
E) формирование испытаний.
140.1 Для сбора информаций о безотказности машин используют план:
A) NUN;
B) NUr;
C) NUT;
D) NRr;
E) NRT.
141.1 Для ресурсных испытаний лучше использовать план:
A) NUT;
B) NUN;
C) NUr;
D) NRr;
E) NRT.
142.1 План NUT проводят для испытаний:
A) ресурсных;
B) о сроках службы;
C) кратковременных;
D) форсированных;
E) простых.
143.1 Полную информацию получают с помощью плана:
A) NRT;
B) NUN;
C) NUT;
D) NUr;
E) NRr.
144.1 Несущая способность деталей оценивается:
A) твердостью;
B) пределом текучести;
C) упругостью;
D) пластичностью;
E) хрупкостью.
145.1 С помощью плана испытаний NUN получают информацию, которую называют:
A) усеченной;
B) полной;
C) многократно усеченной;
D) простой;
E) сложной.
146.1 Достигнет ли объект заданный уровень надежности определяется с помощью испытаний:
A) простых;
B) сложных;
C) контрольных;
D) форсированных;
E) NUN.
147.1 Хорошую сопротивляемость абразивному виду изнашивания оказывает:
A) механическая обработка;
B) наклеп;
C) цементация;
D) поверхностно-пластическая деформация (ППД)
E) притирка.
148.1 Сопротивляемость усталостному изнашиванию оказывает:
A) механическая обработка;
B) цементация;
C) поверхностно-пластическая деформация(ППД)
D) азотирование;
E) гальванопокрытия.
149.1 К химико- термической обработке относятся:
A) механическая обработка;
B) чистовое выглаживание
C) гальванопокрытия;
D) цианирование;
E) наклеп.
150.1 При нагруженном резервировании резервные элементы:
A) постоянно присоединены к основным;
B) находятся в отключенном состоянии;
C) находятся на складе;
D) работают в другом режиме работы;
E) это запасные части.
151.1 Ненагруженное резервирование это когда резервные элементы:
A) находятся в отключенном состоянии;
B) постоянно присоединены к основным;
C) работают в одинаковом режиме работы;
D) работают в другом режиме работы;
E) простые.
152.1 Для противодействия абразивному изнашиванию необходимо:
A) улучшать механическую обработку;
B) снижать скорости потоков жидкости;
C) снижать скорости потоков газа;
D) применять материалы высокой твердости;
E) повышать коррозионную стойкость.
153.1 Для противодействия абразивному изнашиванию необходимо:
A) улучшать механическую обработку;
B) снижать скорость потоков жидкости;
C) снижать скорость потоков газа;
D) повышать коррозионную стойкость;
E) герметизировать узлы.
153.2 Для противодействия абразивному изнашиванию необходимо:
A) улучшать механическую обработку;
B) снижать скорость потоков жидкости;
C) снижать скорость потоков газа;
D) повышать коррозионную стойкость;
E) фильтрация исходных материалов.
154.1 Для противодействия усталостному изнашиванию необходимо:
A) применять материалы с высоким пределом текучести;
B) применять материалы высокой твердости;
C) герметизировать узлы;
D) фильтрация исходных материалов;
E) повышать коррозионную стойкость.
154.2 Для противодействия усталостному изнашиванию необходимо:
A) улучшать механическую обработку;
B) применять материалы высокой твердости;
C) герметизировать узлы;
D) фильтрация исходных материалов;
E) повышать коррозионную стойкость.
154.3 Для противодействия усталостному изнашиванию необходимо:
A) применять материалы высокой твердости;
B) уменьшать динамические нагрузки;
C) герметизировать узлы;
D) фильтрация исходных материалов;
E) повышать коррозионную стойкость.
155.1 Для противодействия эрозионному изнашиванию необходимо:
A) герметизировать узлы;
B) уменьшать динамические нагрузки;
C) снижать скорость потоков жидкости и газа;
D) улучшать механическую обработку;
E) использовать более вязкие сорта масел.
155.2 Для противодействия эрозионному изнашиванию необходимо:
A) герметизировать узлы;
B) применять твердые материалы;
C) уменьшать динамические нагрузки;
D) фильтрация исходных материалов;
E) использовать более вязкие сорта масел.
155.3 Для противодействия эрозионному изнашиванию необходимо:
A) герметизировать узлы;
B) повышать коррозионную стойкость;
C) уменьшать динамические нагрузки;
D) фильтрация исходных материалов;
E) использовать более вязкие сорта масел.
156.1 Для противодействия изнашиванию при заедании необходимо:
A) применять материалы высокой твердости;
B) герметизировать узлы;
C) улучшать качество обработки поверхностей;
D) фильтрация исходных материалов;
E) повышать коррозионную стойкость.
156.2 Для противодействия изнашиванию при заедании необходимо:
A) применять твердые материалы;
B) герметизировать узлы;
C) фильтрация исходных материалов;
D) стремиться к жидкостному трению;
E) повышать коррозионную стойкость.
156.3 Для противодействия изнашиванию при заедании необходимо:
A) применять твердые материалы;
B) герметизировать узлы;
C) фильтрация исходных материалов;
D) производить приработку;
E) повышать коррозионную стойкость.
156.4 Для противодействия изнашиванию при заедании необходимо:
A) применять твердые материалы;
B) герметизировать узлы;
C) фильтрация исходных материалов;
D) регулировать зазоры;
E) повышать коррозионную стойкость.
157.1 Для противодействия окислительному изнашиванию необходимо:
A) применять твердые материалы;
B) фильтрация исходных материалов;
C) герметизировать узлы;
D) повышать коррозионную стойкость;
E) применять малоактивные металлы.
157.2 Для противодействия окислительному изнашиванию необходимо:
A) применять твердые материалы;
B) фильтрация исходных материалов;
C) герметизировать узлы;
D) повышать коррозионную стойкость;
E) улучшать качество обработки поверхностей.
158.1 Для противодействия изнашиванию при фретинг-коррозии необходимо:
A) своевременная подтяжка соединений;
B) фильтрация исходных материалов;
C) герметизировать узлы;
D) применять твердые материалы;
E) уменьшать динамические нагрузки.
159.1 Для противодействия изнашиванию при фретинг-коррозии необходимо:
A) подвергать защите;
B) фильтрация исходных материалов;
C) герметизировать узлы;
D) применять твердые материалы;
E) уменьшать динамические нагрузки.
160.1 Интегральный метод измерения даёт возможность определить:
A) величину износа в каждой точке;;
B) суммарный износ на поверхностях;
C) размер детали;
D) размер износа;
E) габариты детали.
161.1 Что характеризует данная формулировка: «Свойство изделий, заключающееся в приспособленности его к хранению и транспортировке”:
A) надежность;
B) безотказность;
C) долговечность;
D) ремонтопригодность;
E) сохраняемость.
162.2 Гамма процентный ресурс относится к показателям:
A) безотказности;
B) ремонтопригодности;
C) долговечности;
D) сохраняемости;
E) отдельный показатель.
163.1 Вероятность восстановления работоспособного состояния и среднее время восстановления работоспособного состояния объекта характеризуют
A) ремонтопригодоность;
B) сохраняемость;
C) долговечность;
D) безотказность;
E) восстанавливаемость.
164.1 Средний срок сохраняемости и гамма процентный срок сохраняемости характеризуют
A) ремонтопригодоность;
B) сохраняемость;
C) долговечность;
D) безотказность;
E) восстанавливаемость.
165.1 Вероятность того, что объект окажется работоспособным в произвольный момент времени, кроме планируемых периодов, в течение которых его использование по назначению не предусматривают - это
A) коэффициент годности;
B) коэффициент градации;
C) коэффициент безотказности;
D) коэффициент готовности;
E) гамма-ресурс.
166.1 Календарная продолжительность эксплуатации объекта от её начала или возобновления после ремонта определённого вида до перехода в предельное состояние - это
A) технический ресурс;
B) наработка;
C) срок службы.
D) долговечность;
E) средний срок эксплуатации.
167.1 Интенсивность отказов относится к показателям:
A) безотказности;
B) ремонтопригодности;
C) долговечности;
D) сохраняемости;
E) отдельный показатель.
168.1 Наработка от начала эксплуатации объекта до наступления его предельного состояния это:
A) межремонтный ресурс;
B) полный ресурс;
C) эксплуатационный ресурс;
D) срок эксплуатации;
E) срок службы.
169.1 Предельное состояние деталей, образующих сопряжения, определяют по:
A) предельной величине износа каждой детали в отдельности;
B) величине предельного зазора;
C) предельной величине износа одной из деталей входящей в сопряжение;
D) полным ресурсом;
E) по сроку службы.
170.1 Наработка изделия, при достижении которой эксплуатация его должна быть прекращена независимо от технического состояния это:
A) полный технический ресурс;
B) остаточный технический ресурс;
C) назначенный ресурс;
D) суммарный технический ресурс;
E) эксплуатационный ресурс.
171.1 Что понимают под внешней средой в теории надежности?
A) окружающую природу;
B) физические, химические, магнитно-электрические, тепловые процессы сопровождающие работу машин;
C) технологические характеристики машины;
D) элементы, вызывающие коррозию металлов;
E) воздух, кислород, водород.
172.1 Что означает буква S в формуле F=:
A) толщина масляного слоя;
B) скорость;
C) вязкость масла;
D) сила трения;
E) площадь контакта.
172.2 Что означает буква в формуле F=:
A) толщина масляного слоя;
B) скорость;
C) вязкость масла;
D) сила трения;
E) площадь контакта.
173.1 Критериями установления предельных износов является:
A) полный, неполный;
B) технический, качественный и экономический;
C) ускоренный, сокращенный;
D) простой, сложный;
E) стационарный, динамический.
173.2 Характер циклических нагрузок бывает:
A) полный, неполный;
B) простой, сложный, средний;
C) симметричный, ассиметричный, пульсирующий;
D) ускоренный, сокращенный;
E) технический, качественный.
174.1 Характерным признаком постепенных отказов является:
A) вероятность его возникновения не зависит от времени предыдущей работы;
B) вероятность его возникновения зависит от времени предыдущей работы;
C) их большая скорость;
D) их внезапность;
E) их долговечность.
175.1 Характерным признакам внезапных отказов является:
A) вероятность его возникновения не зависит от времени предыдущей работы;
B) вероятность его возникновения зависит от времени предыдущей работы;
C) их большая скорость;
D) их долговечность;
E) их сохраняемость.
176.1 Буква в этой формуле означает Fск=:
A) вязкость масла;
B) скорость перемещения;
C) коэффициент трения;
D) площадь контакта;
E) толщина масленого слоя.
176.2 Буква S в этой формуле Fск= означает:
A) вязкость масла;
B) скорость перемещения;
C) коэффициент трения;
D) площадь контакта;
E) толщина масленого слоя.
176.3 Буква в этой формуле Fск= означает:
A) вязкость масла;
B) скорость перемещения;
C) коэффициент трения;
D) площадь контакта;
E) толщина масленого слоя.
177.1 Буква p в формуле F=f*p означает:
A) коэффициент трения;
B) давление;
C) сила трения;
D) сила скольжения;
E) сила покоя.
177.2 Буква f в формуле F=f*p означает:
A) сила трения;
B) коэффициент трения;
C) коэффициент скольжения;
D) коэффициент давления;
E) скорость.
178.1 Скорость изнашивания деталей зависит от:
A) вида изнашивания;
B) способа изнашивания;
C) окружающей среды;
D) влажности;
E) твердости материала.
179.1 Усталостное изнашивание может проходить:
A) при качении и скольжении;
B) при наличии абразивного материала;
C) при наличии жидкости;
D) при наличии газа;
E) при колебаниях.
180.1 При скольжении усталостный износ наблюдается тогда, когда появляются:
A) ударные нагрузки;
B) абразивный материал;
C) жидкость;
D) газы;
E) наклеп.
181.1 Условие кавитации это когда происходит:
A) накопление влаги;
B) разрыв потока жидкости;
C) ударные нагрузки;
D) качение;
E) трение.
182.1 Кавитационному изнашиванию подвергается:
A) коленчатые валы;
B) гильзы;
C) поршня;
D) поршневые кольца;
E) шатуны.
183.1 Для снижения изнашивания при заедании необходимо:
A) производить наклеп;
B) регулировать зазоры;
C) улучшать качество обработки поверхности;
D) повышать твердость;
E) уменьшать колебания.
184.1 Для снижения окислительного изнашивания необходимо:
A) регулировать зазор;
B) улучшать качество резьбы;
C) применять малоактивные металлы;
D) подвергать защите;
E) производить наклеп.
185.1 Предельные значения износа назначаются:
A) произвольно;
B) по изнашиванию;
C) по срокам службы;
D) по критериям;
E) не назначаются.
186.1 Разрушения металлов при усталостных явлениях не сопровождаются:
A) наклепом;
B) ударными нагрузками;
C) наличием жидкости;
D) заметной пластической деформацией;
E) скольжением.
187.1 Причина усталости металлов заключается в образовании:
A) трещин;
B) сколов;
C) наклепа;
D) твердости;
E) линий скольжения внутри зеркального металла.
188.1 Влияние на усталостную прочность оказывают:
A) ударные нагрузки;
B) смазка;
C) жидкость;
D) трещины;
E) характер циклических нагрузок.
189.1 Усталостная прочность деталей оценивается:
A) пределом выносливости;
B) твердостью;
C) износостойкостью;
D) наклепом;
E) силой трения.
190.1 Из коррозий наиболее опасная:
A) объемная газовая;
B) жидкостная;
C) электрохимическая;
D) инерционная;
E) техническая.
191.1На интенсивность электрохимической коррозии оказывают влияние:
A) твердость;
B) активность металлов;
C) величина наклепа;
D) сила тока;
E) сопротивление.
192.1 Электрическую коррозию усиливает:
A) твердость;
B) концентрация ионов водорода;
C) сила тока;
D) напряжение;
E) сопротивление.
193.1 Наиболее сложной причиной выхода деталей из строя являются:
A) поломка;
B) деформация;
C) изгиб;
D) разрушение;
E) износ.
194.1 Отказ наступает через промежуток времени, который предугадать невозможно это:
A) простой;
B) сложный;
C) естественный;
D) постепенный;
E) внезапный.
195.1 Коэффициент вариации является:
A) скоростью изнашивания;
B) средним значением;
C) предельным значением;
D) вероятность износа;
E) безразмерной числовой характеристикой.
196.1 Гамма-процентный ресурс можно определить по графику:
A) интегральной функции распределения;
B) дифференциальной функции распределения;
C) полигона;
D) гистограммы;
E) кривой износа.
197.1 Величина, которая может принимать лишь определение значения называется:
A) случайной;
B) вероятностью;
C) сложной;
D) непрерывной;
E) дискретной.
198.1 Совокупность значений случайных величин расположенных в возрастающем порядке с указанием их вероятностей называется:
A) распределением случайных величин;
B) закон распределения;
C) вариационный ряд;
D) плотность распределения;
E) интегральная функция распределения.
199.1 Мерой рассеивания, но для сравнения разнородных величин служит:
A) коэффициент вариации;
B) среднеквадратическое отклонение;
C) дисперсия;
D) математическое ожидание;
E) медиана.
200.1 Мерой совпадения или расхождения служат:
A) коэффициент вариации;
Подобные документы
Сохраняемость как свойство объекта сохранять значение показателей безотказности, долговечности и ремонтопригодности, рассмотрение особенностей количественной оценки свойства. Характеристика факторов, определяющих ремонтопригодность машин и оборудования.
реферат [184,5 K], добавлен 27.04.2015Понятие металлоконструкции( МК). Стальные конструкции в современном строительстве. Надежность, технологичность, ремонтопригодность, долговечность, экономичность стальных конструкций, скорость их изготовления и яркая индивидуальность. Объекты из МК.
презентация [676,7 K], добавлен 01.11.2010Надежность машин и механизмов как важнейшее эксплуатационное свойство. Методы проектирования и конструирования, направленные на повышение надежности. Изучение влияния методов обработки на формирование физико-механических свойств поверхностного слоя.
реферат [303,6 K], добавлен 18.04.2016Показатели ремонтопригодности: вероятность, среднее и гамма-процентное время восстановления. Сохраняемость объекта и комплексные показателей эксплуатационной надежности. Функции распределения случайных величин, сбор и обработка статистической информации.
презентация [4,6 M], добавлен 04.12.2013Место вопросов надежности изделий в системе управления качеством. Структура системы обеспечения надежности на базе стандартизации. Методы оценки и повышения надежности технологических систем. Предпосылки современного развития работ по теории надежности.
реферат [29,8 K], добавлен 31.05.2010Основные показатели долговечности. Виды ремонтов, их назначение. Долговечность деталей двигателей внутреннего сгорания и других машин, способы ее повышения. Методы и средства улучшения надежности деталей. Процесс нормализации или термоулучшения.
реферат [72,2 K], добавлен 04.05.2015Надежность как один из основных показателей качества, ее характерные свойства и предъявляемые требования. Классификационные группы системы стандартов "Надежность в технике". Показатели надежности и методика их определения для различных объектов.
лекция [36,8 K], добавлен 19.04.2011Уровень надежности. Надежность станков. Надежность промышленных роботов. Быстрое и многократное усложнение машин. Важнейшие тенденции развития станкостроения. Повышение точности, производительности и уровня автоматизации станков.
реферат [22,5 K], добавлен 20.01.2007Требования, предъявляемые к надежности изделия. Анализ надежности дублированных систем. Вероятность безотказной работы по заданному критерию. Распределение отказов по времени. Основы расчета резьбовых и болтовых соединений при постоянной нагрузке.
контрольная работа [443,8 K], добавлен 09.11.2011Надежность машин и критерии работоспособности. Растяжение, сжатие, кручение. Физико-механические характеристики материала. Механические передачи вращательного движения. Сущность теории взаимозаменяемости, подшипники качения. Конструкционные материалы.
курс лекций [2,8 M], добавлен 13.06.2012