Расчет стационарного теплового поля в двумерной пластине

Расчет стационарного теплового поля в двумерной пластине. Вычислительные методы для инженеров. Применение метода конечных элементов. Триангуляция. Метод конечных элементов.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 31.10.2002
Размер файла 268,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

13

Московский Государственный Технический Университет им. Н.Э. Баумана

КУРСОВАЯ РАБОТА

ПО СЕТОЧНЫМ МЕТОДАМ

Расчет стационарного теплового поля в двумерной пластине

Преподаватель: Станкевич И.В.

Группа: ФН2-101

Студент: Смирнов А.В.

Москва 2002

Содержание

Постановка задачи 3

Решение 4

Триангуляция. 5

Метод конечных элементов 6

Список литературы: 12

Постановка задачи

Рассчитать установившееся температурное поле в плоской пластине, имеющей форму криволинейного треугольника с тремя отверстиями (см. рисунок).

К внешним границам пластины подводится тепловой поток плотностью . На внутренних границах конструкции происходит теплообмен со средой, характеризующийся коэффициентом теплообмена и температурой среды . Коэффициент теплопроводности материала пластины

Рис. 1 Решение

Введем декартову систему координат , выбрав начало координат и направим оси x и y так, как показано на рис.2.

Рис. 2

Задача теплопроводности в пластине запишется в виде

(1)

(2)

(3)

где - направляющие косинусы вектора внешней нормали к граничной поверхности, - граничная поверхность, на которой происходит теплообмен с коэффициентом теплообмена , - граничная поверхность, на которой задан тепловой поток плотности .

Решение уравнения (1) с граничными условиями (2) и (3) можно заменить задачей поиска минимума функционала

. (4)

Решать поставленную задачу будем с помощью метода конечных элементов. Для этого сначала проведем триангуляцию нашей области.

Триангуляция.

Результат триангуляции представлен на рис.3.

Рис. 3

Все выбранные узлы заносятся в список, который содержит информацию о координатах узлов. Номер узла определяется его номером в списке. Кроме списка вершин будем вести еще список треугольников. В глобальном списке треугольников будет храниться информация о каждом построенном треугольнике: номера (Top1, Top2, Top3) трех узлов, составляющих данный элемент и номер границы. Номер треугольника определяется его номером в списке. Договоримся, что у каждого треугольника границе может принадлежать только одна сторона и если такая сторона есть, то вершины, которые она соединяет, будут стоять на первых двух позициях (Top1 и Top2). Обход треугольника совершается против часовой стрелки.

Метод конечных элементов

Выберем произвольный треугольник (с номером e). Обозначим его вершины и . Каждому узлу треугольника поставим в соответствие функцию формы

, (5)

где , A - площадь треугольника. Тогда температуру в пределах треугольника можно определить с помощью функций форм и значений температуры в узловых точках

. (6)

Функционал (4) можно представить в виде суммы функционалов , каждый из которых отражает вклад в функционал (4) элемента с номером e

. (7)

Минимум функционала (4) находим из условия

(8)

Функционал можно представить в виде

(9)

Здесь , глобальный вектор температур , - матрица градиентов, которая для функций формы (5) примет вид , . Локальный вектор температур . Здесь матрица геометрических связей имеет размерность . Элементы этой матрицы определяются следующим образом: ; все остальные элементы равны нулю.

Продифференцируем функционал (9):

Из выражения (8) с учетом последнего соотношения получаем , где матрица теплопроводности элемента ; вектор нагрузки элемента .

В силу особенностей проведенной триангуляции можно выделить три группы конечных элементов. В первую входят треугольники, у которых сторона i - j принадлежит одной из внешних границ. Во вторую - те, у которых та же сторона принадлежит одной из внутренних границ. И, наконец, третью группу составляют элементы, стороны которых лежат внутри рассматриваемой области.

В зависимости от того, к какой группе принадлежит конечный элемент с номером e, матрица и вектор будут определяться несколько различным образом.

Обозначим

.

Поверхностные интегралы можно посчитать с помощью относительных координат . Отрезки, соединяющие любую фиксированную точку P треугольника e c его вершинами, разбивают этот элемент на три треугольные части площадью . Координаты определяются из соотношений .

Используя относительные координаты, можно получить следующие соотношения:

Если конечный элемент с номером e принадлежит к первой группе, то . Если ко второй, то . Наконец, если элемент принадлежит к третьей группе, то .

Вектор температур, удовлетворяющий условию (8) минимума функционала (4), находим решением системы линейных алгебраических уравнений

, (10)

где глобальная матрица теплопроводности K и глобальный вектор нагрузки F определяются по формулам

, . (11)

Для решения задачи (10) применялся следующий алгоритм:

Вычисление разложения матрицы ().

Оценка числа обусловленности. Если число обусловленности больше ( определяется точностью вычислительной машины), то выдается предупреждение, так как малые отклонения в коэффициентах матрицы могут привести к большим отклонениям в решении.

. .

Реализация описанного выше метода проводилась на языке программирования С++ и FORTRAN в среде интегрированной среде разработки Microsoft Visual C++ 6.0. Конечные результаты данной работы приведены на рис.4 - 7.

Рис.4

Рис.5

Рис.6

Рис.7

Список литературы:

1. Амосов А.А, Дубинский Ю.А, Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. - М.: Высш. шк., 1994. - 544 с.

2. Сегерлинд Л. Применение метода конечных элементов. - М.: Мир, 1979. - 392 с.

3. Станкевич И. В. Сеточные методы (лекции и семинары 2002 года).


Подобные документы

  • Основная идея метода конечных элементов. Пространство конечных элементов. Простейший пример пространства. Однородные граничные условия и функции. Построение базисов в пространствах. Свойства базисных функций. Коэффициенты системы Ритца–Галеркина.

    лекция [227,9 K], добавлен 30.10.2013

  • Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.

    курсовая работа [19,2 K], добавлен 18.12.2011

  • Изучение конструкции и простейших свойств конечных полей, степень расширения поля разложения. Определение и свойства фундаментальной группы топологического пространства. Способ построения клеточного комплекса путем последовательного приклеивания клеток.

    контрольная работа [926,4 K], добавлен 26.12.2010

  • Метод сеток (конечных разностей) - вид численного анализа. Расчет стержней и пластин на прочность, устойчивость и колебания. Формулы для приближенного вычисления производных от функций переменных, расчет упругих систем и разномерных краевых задач.

    учебное пособие [4,2 M], добавлен 30.12.2011

  • Решение линейной краевой задачи методом конечных разностей. Сопоставление различных вариантов развития процесса с применением анализа графиков, построенных на базе полученных данных. Графическое обобщение нескольких вариантов развития процесса.

    лабораторная работа [23,3 K], добавлен 15.11.2010

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Описание абстрактных, структурных и частичных конечных автоматов. Работа синхронных конечных автоматов, содержащих различные типы триггеров, определение сигналов их возбуждения. Пример канонического метода структурного синтеза. Схема дверного замка.

    учебное пособие [19,6 M], добавлен 07.06.2009

  • Обработка одномерной и двумерной случайных выборок. Нахождение точечных оценок. Построение гистограммы функций распределения, корреляционной таблицы. Нахождение выборочного коэффициента корреляции. Построение поля рассеивания, корреляционные отношения.

    курсовая работа [1,3 M], добавлен 10.06.2013

  • Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.

    дипломная работа [239,8 K], добавлен 14.12.2009

  • Построение квадратичной двумерной стационарной системы, нахождение состояний равновесия, исследование бесконечно-удаленной части плоскости. Необходимые и достаточные условия существования у системы двух частных интегралов. Построение траектории в круге.

    дипломная работа [118,3 K], добавлен 07.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.