Фундаментальная группа. Конечные поля

Изучение конструкции и простейших свойств конечных полей, степень расширения поля разложения. Определение и свойства фундаментальной группы топологического пространства. Способ построения клеточного комплекса путем последовательного приклеивания клеток.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 26.12.2010
Размер файла 926,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Конечные поля

Цель работы: Изучить конструкцию и простейшие свойства конечных полей. В частности, изучить на примерах конечных полей понятие степени расширения, конструкцию и однозначную определенность поля разложения, простые поля, понятие примитивного элемента, строение конечной, мультипликативной подгруппы поля. Познакомиться с арифметикой конечных полей. Решить упражнение.

Докажем, что многочлен

неприводим над

.

.

Корней нет. => Многочлен неприводим.

Построим расширение поля степени . Пусть - корень , т.е.

,

тогда

Получим : .

расширение степени 3.

Разделим

.

.=

Cоставим систему:

=> Пусть , тогда =>

При в=3 => г=2

От сюда получаем, что

следовательно . Если порождает - то, он примитивный. Найдем порядок . Так как порядок элемента делит порядок группы, порядок может быть 2, 4, 31, 62, 124.

.

Элемент и - не является примитивным элементом GF(125), т.к не выполняются условия. Программа, проверяющая, будет ли примитивным элементом поля .

TForm1 *Form1;

class Polynom

{ public:

int *coef;

int deg;

Polynom();

Polynom(char *);

Polynom(int);

Polynom(Polynom *);

~Polynom();

Polynom operator =(string);

Polynom *operator *(Polynom *);

Polynom operator /(Polynom);

Polynom *operator %(Polynom *);

int operator [](int);

void operator ++();

bool operator <(Polynom *);

bool operator ==(Polynom *);

Polynom *norm();

int coef_count();

char *print();

};

Polynom :: Polynom()

{ coef = new int[1];

coef[0] = 0;

deg = 0;

}

Polynom *Polynom :: norm()

{ int f = 0;

for(int i = 0; i <= deg; i++)

if( coef[i] != 0 )

{ f = i;

break;

}

int deg_tmp = deg - f;

Polynom *tmp = new Polynom(deg_tmp+1);

for(int i = f; i <= deg; i++)

tmp->coef[i-f] = coef[i];

return tmp;

}

Polynom :: Polynom(char *str)

{ deg = strlen(str)-1;

coef = new int[deg+1];

for(int i = 0; i <= deg; i++)

coef[i] = str[i] - 48;

}

Polynom :: Polynom(int d)

{ deg = d-1;

coef = new int[d];

for(int i = 0; i <= deg; i++)

coef[i] = 0;

}

Polynom :: Polynom(Polynom *p)

{ coef = p->coef;

deg = p->deg;

}

Polynom :: ~Polynom()

{ delete coef;

}

int Polynom :: operator[](int it)

{ return ( coef[it] );

}

int Polynom :: coef_count()

{ int count = 0;

for(int i = 0; i <= deg; i++)

{ if( coef[i] > 0 )

count++;

}

return count;

}

Polynom *Polynom :: operator*(Polynom *B)

{ Polynom *A = this;

Polynom *C = new Polynom(A->deg + B->deg + 1);

for(int i = A->deg; i >= 0; i--)

{ for(int j = B->deg; j >= 0; j--)

{ C->coef[i+j] += A->coef[i] * B->coef[j];

C->coef[i+j] %= 5;

}

}

return C;

}

bool Polynom :: operator <(Polynom *b)

{ if( deg < b->deg )

return true;

else

return false;

}

bool Polynom :: operator ==(Polynom *B)

{ Polynom *A = this;

if( A->deg != B->deg )

return false;

for(int i = 0; i <= A->deg; i++)

if( A->coef[i] != B->coef[i] )

return false;

return true;

}

int obr(int a)

{ a = 5 - a;

a %= 5;

return a;

}

Polynom *Polynom :: operator %(Polynom *B)

{ Polynom *tmp = this;

if( tmp->deg < B->deg )

{ return tmp;

}

for(int i = 0; i <= B->deg-tmp->deg; i++)

if(tmp->coef[i] >= 1)

{ int tmp_coef = tmp->coef[i];

tmp->coef[i] = 0;

for(int j = 1; j <= B->deg; j++)

{ tmp->coef[j] += obr(B->coef[j])*tmp_coef;

tmp->coef[j] %= 5;

}

}

tmp = tmp->norm();

return tmp;

}

void Polynom :: operator++()

{ bool flag = false;

for(int i = deg; i >= 0; i--)

{ coef[i]++;

coef[i] %= 5;

if( coef[i] == 0 )

{ flag = true;

}

else

flag = false;

if( flag == false )

break;

}

if( flag )

{ int *tmp = new int[deg+2];

tmp[0] = 1;

for(int i = 1; i <= deg+1; i++)

{ tmp[i] = coef[i-1];

}

coef = tmp;

deg = deg+1;

}

}

char *Polynom :: print()

{ char *s = new char[deg*3+(deg-1)*3 + deg*3 + deg*3];

int i = 0, f = 0;

s[0] = 0;

while ( i <= deg )

{ if (coef[i])

{ if(f)

strcat(s," + ");

f = 1;

switch(deg-i)

{ case 0:

wsprintfA(s, "%s%d", s, coef[i]);

break;

case 1:

if( coef[i] == 1 )

wsprintfA(s, "%sq", s);

else

wsprintfA(s, "%s%d*q", s, coef[i]);

break;

default:

if( coef[i] == 1)

wsprintfA(s, "%sq^%d", s, deg-i);

else

wsprintfA(s, "%s%d*q^%d", s, coef[i], deg-i);

};

}

i++;

}

if(!f)

strcat(s, "0");

return s;

}

bool TestPrimitive(Polynom *poly, Polynom *irr)

{ Polynom *tmp = poly;

Polynom *one = new Polynom("1");

for(int i = 2; i < pow((double)5, irr->deg); i++)

{ poly = (*poly) * tmp;

poly = (*poly) % irr;

Form1->Memo1->Text = Form1->Memo1->Text + "q^" + i + " =" + ' ';

Form1->Memo1->Text = Form1->Memo1->Text + poly->print();

Form1->Memo1->Lines->Add("");

if( *poly == one && i != pow((double)5, irr->deg)-1 )

{

Form1->Memo1->Text = Form1->Memo1->Text + i;

Form1->Memo1->Lines->Add("");

return false;

}

}

return true;

}

Polynom *DecToBin(int q)

{ string m = "";

int a;

do

{ if( q % 2 == 0 )

m += "0";

else

m += "1";

q /= 2;

} while( q != 0 );

Polynom *poly = new Polynom(m.size());

for(int i = 0; i < m.size(); i++)

poly->coef[i] = m[m.size()-i-1] + 48;

return poly;

}

Polynom *FindPrimitiveElement(Polynom *irr)

{ Polynom *test = new Polynom("4");

while( test->deg <= irr->deg )

{

(*test)++;

Form1->Memo1->Text = Form1->Memo1->Text + "q^" + 1 + " =" + ' ';

Form1->Memo1->Text = Form1->Memo1->Text + test->print();

Form1->Memo1->Lines->Add("");

if( TestPrimitive(test, irr) )

break;

}

return test;

}

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

}

void __fastcall TForm1::Button1Click(TObject *Sender)

{ Polynom *IrrPoly = new Polynom(LabeledEdit1->Text.c_str()); // Считываем многочлен

Memo1->Text = Memo1->Text + "Неприводимый многочлен: " + IrrPoly->print(); // Вывожу

Memo1->Lines->Add("");

Polynom *prim = FindPrimitiveElement(IrrPoly); // Находим примитивный элемент поля

LabeledEdit2->Text = prim->print(); Результаты выполнения программы:

Фундаментальная группа

Цель работы: изучить определение и свойства фундаментальной группы топологического пространства. Познакомиться с понятием клеточного комплекса, со способом построения клеточного комплекса путем последовательного приклеивания клеток. Научиться задавать группы с помощью образующих и их соотношений (т. е. с помощью копредставлений) и распознавать группы по их копредставлениям. Научиться применять алгоритм вычисления фундаментальной группы клеточного комплекса.

Список групп-эталонов:

1. Циклические группы:

< x / =1>, x - любое

2. Бинарные группы диэдра:

= < x, y /== >, n ? 2

3. Бинарные группы тетраэдра и октаэдра:

= < x, y / ==, >, n =1, 2

4. Группы вида:

= < x, y / >, k ? 2,

5. Прямые произведения вышеуказанных групп на циклические.

Во всех случаях индекс внизу показывает число элементов групп.

На рисунке условно изображен двумерный клеточный комплекс, т.е. топологическое пространство, получающееся приклеиванием нескольких двумерных клеток (дисков) к одномерному комплексу (графу). Рисунок нужно понимать так: каждая «деталь» вида символизирует вершину графа, каждая склейка «отростков» вида

1. - ребро. Например, рисунок А символизирует граф на рисунке В.

Далее требуется получить копредставление фундаментальной группы, для этого проделаем следующее:

1) По очереди разрезаем рёбра графа, обозначая их буквами и указывая направления до тех пор, пока не получится дерево (связанный граф без циклов), см. рис. ниже. Эти буквы будут служить образующими группы:

2) Выписываем соотношения (слова), которые показывают, как кривые проходят по разрезанным рёбрам. Эти соотношения таковы: 1. 2. =1 3. =1 4. =1 5. =1 6. =1 3)Приводим выписанное копредставление к копредставлению одной из эталонных групп.

Введём В итоге получается , а именно


Подобные документы

  • Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.

    курсовая работа [19,2 K], добавлен 18.12.2011

  • История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

    реферат [50,0 K], добавлен 28.05.2014

  • Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.

    курсовая работа [634,5 K], добавлен 24.11.2021

  • Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.

    курсовая работа [260,7 K], добавлен 06.06.2012

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.

    курсовая работа [546,1 K], добавлен 26.09.2009

  • Характеристика и определение общих свойств слабо нормальных подгрупп и их конечных групп. Доказательство новых критериев принадлежности группы насыщенной формации. Критерии разрешимости и метанильпотентности групп в терминах слабо нормальных подгрупп.

    курсовая работа [176,0 K], добавлен 02.03.2010

  • Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.

    курсовая работа [1,1 M], добавлен 22.09.2009

  • Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.

    курсовая работа [427,2 K], добавлен 18.09.2009

  • Группа, как совокупность преобразований, замкнутая относительно их композиции. Изучение нильпотентных групп, их простейших свойств и признаков. Особенности доказывания теорем Силова, Лагранжа, Виланда. Подгруппа Фраттини конечной группы нильпотентна.

    курсовая работа [553,1 K], добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.