Построение математической модели оптимального управления, обеспечивающего мягкую посадку при минимальном расходе топлива
Составление гамильтониан Н с учетом необходимых условий оптимальности для задачи Майера. Определение оптимального управления из условия максимизации. Получение конической системы уравнений и ее разрешение. Анализ необходимых условий оптимальности.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.09.2010 |
Размер файла | 113,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
2
Исходные данные к курсовому проекту
Рассматривается последний этап посадки космического аппарата (КА) на планету. При построении математической модели предположим:
посадка осуществляется по нормали к поверхности планеты, планета неподвижна и в районе посадки плоская;
на КА действуют сила тяжести G=mg, причем g=const и сила тяги , где с=const, а в - секундный расход массы m, ;
аэродинамические силы отсутствуют.
Уравнения движения КА могут быть представлены в виде:
; ; , где h - текущая высота;
или в нормальной форме:
; ; ; .
Здесь введены обозначения:
; ; ; ; .
Граничные условия имеют вид:
; ; ; ; ,
причем Т заранее неизвестно. Требуется найти программу управления u*(t), обеспечивающую мягкую посадку при минимальном расходе топлива, то есть .
Исходные данные для расчетов
Начальная масса КА , кг. |
Начальная высота , км. |
Начальная скорость , км/с |
Отношение силы тяги к начальной массе , м/с2 |
|
500 |
190 |
2,65 |
42,5 |
|
=190000 м. |
=2650 м/с |
Ускорение силы тяжести для планеты g=1,62 м/с2, величина с=3000 м/с.
Задание к курсовому проекту
Составить гамильтониан Н, воспользовавшись необходимыми условиями оптимальности для задачи Майера.
Из условия максимизации Н по u найти оптимальное управление.
Получить каноническую систему уравнений и в результате прийти к краевой задаче, для которой в момент t=0 заданы компоненты x0, x1, x2, а в момент t=T_компоненты x1, x2, ш0.
Из условия Н(Т)=0 получить соотношение для определения неизвестного времени Т.
Произвести анализ необходимых условий оптимальности, начав с исследования возможности существования особого вырожденного управления, то есть случая, когда функция переключения
.
Доказать, что Кu не может обратиться в нуль на конечном интервале времени и, следовательно, особого управления в данной задаче не существует.
Показать, что Кu есть монотонная функция t.
Рассмотреть четыре возможных случая:
а) Ku>0 для всех ;
б) Ku<0 для всех ;
в) Ku>0 для , Ku<0 для ;
г) Ku<0 для , Ku>0 для .
Показать, в каких случаях (из физических соображений) мягкая посадка невозможна, в каком из реализуемых случаев расход топлива меньше.
Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива.
Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление u*=0, и когда , u*=umax.
Приравнивая х1(Т) и х2(Т) нулю, получить два уравнения относительно t1 и Т. Таким образом, краевую задачу свести к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t1, Т. Составить программу расчета. Получив решение этой системы, решить полностью исходную задачу программирования оптимального управления мягкой посадкой КА на планету. В заключение следует построить фазовую траекторию спуска КА и определить конечную массу m(Т).
Выполнение задания курсового проекта
Нам известно, что
, где с - сила тяги двигателя,
m - масса космического аппарата;
- ускорение аппарата.
То есть, масса ? ускорение = сумме сил, действующих на аппарат.
в - секундный расход массы m: .
Расход массы обеспечивает силу тяги двигателя (P=c?в), ее можно менять в пределах .
можно найти из исходных данных - выразив из отношения силы тяги к начальной массе Pmax/m(0):
;
;
кг/с.
Наш критерий оптимизации . Введем принятые в исходных данных обозначения:
; .
Начальный момент времени t=0, конечный момент времени - момент посадки КА (момент столкновения с планетой) t=T.
;
Тогда критерий оптимизации:
;
. (Здесь .)
Теперь необходимо написать уравнение состояния системы. Для этого нужно ввести переменные состояния и входную переменную.
Порядок дифференциального уравнения n=3, отсюда 3 уравнения состояния:
;
;
.
Выберем управление:
;
Подставляем уравнения состояния, получим:
так как и , отсюда
;
;
.
Критерий оптимизации:
.
Введем переменные х0 и хn+1 (то есть х4).
, где t - текущее время.
.
Тогда основные уравнения состояния:
Составим гамильтониан Н:
;
.
Оптимальному управлению соответствует максимум функции Гамильтона в заданной области возможных управлений. Причем этот максимум равен нулю.
То есть нужно добиться максимума этой функции, меняя u1. Это и будет оптимальное управление.
Для функций шi тоже получим сопряженные уравнения, которые имеют вид :
- так как функция не зависит от х0,
следовательно производная равна нулю;
- аналогично, так как функция не зависит от х1.
Итак, нужно найти максимум гамильтониана:
Функция переключения:
Используя для вычислений Mathcad, получим оптимальное управление:
Таким образом оказалось, что оптимальное управление должно осуществляться на предельных ресурсах. То есть либо двигатель должен быть совсем выключен (при Ku<0), либо включен на максимальную мощность (при Ku>0).
Посмотрим, как меняется функция переключения Кu во времени:
;
Для определения ш1 и ш2 решаем сопряженные уравнения:
, следовательно, ш1 = const, обозначим ш1=с1.
, следовательно, , где c2 = const.
Итак,
Масса КА всегда положительна, а с=3000 = const - величина постоянная, поэтому производная имеет всегда постоянный (один и тот же) знак. То есть величина Ku либо всё время монотонно возрастает, либо всё время монотонно убывает. А это означает, что она может пройти через ноль только один раз.
Рассмотрим четыре возможных случая:
а) Ku>0 для всех ;
б) Ku<0 для всех ;
в) Ku>0 для , Ku<0 для ;
г) Ku<0 для , Ku>0 для .
В случаях б) (когда двигатель КА выключен на всем протяжении посадки) и в) (когда двигатель включен на максимальную мощность до какого-то момента времени t=t*, а затем полет происходит с выключенным двигателем до самой посадки) - говорить о мягкой посадке не приходится. Эти варианты означают падение КА на планету. Поэтому оптимальными (и вообще допустимыми) их считать нельзя.
Следовательно, остаются два реализуемых варианта - а) и г). И оптимальное управление предполагает либо всё время включенный на максимальную мощность двигатель, либо полет с выключенным двигателем до какого-то момента t=t*, а затем полет с двигателем, включенным на максимальную мощность до момента посадки. Естественно, что во втором случае (г) расход топлива меньше, так как часть пути проделывается с выключенным двигателем.
Поэтому оптимальным управлением в данной ситуации можно считать полет с выключенным двигателем, затем происходит включение двигателя и полет продолжается с двигателем, включенным на максимальную мощность.
Итак, оптимальному управлению соответствует
На первом участке полета, на котором u1=0:
; ; ;
;
;
.
Рассмотрим второй участок полета u1=7,083:
Зададимся условием, что при t=t* (в момент включения двигателя):
;
;
.
На отрезке полета со включенным двигателем:
;
так как , запишем:
.
Теперь, зная х3, можно выразить х2:
.
Теперь, зная х2 выразим х1:
;
На отрезке пути h(t):
В момент посадки t=T высота и скорость должны быть равны нулю, то есть и . На основании этого утверждения приравняем х1(T) и х2(Т) нулю и получим таким образом два уравнения относительно t* и T. Таким образом, краевая задача у нас свелась к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t* и Т:
Из второго уравнения системы выразим момент времени, на котором включается двигатель:
;
Подставим это выражение в первое уравнение системы, получим уравнение для нахождения времени полета T (оно же время посадки):
Для расчета времени полета Т воспользуемся программой Mathcad. На следующем листе приведены эти вычисления Все дальнейшие вычисления также производились в программе Mathcad:
Теперь, зная Т и t*, можно определить конечную массу космического аппарата m(T):
кг.
Можно рассчитать высоту h (t*), на которой КА должен включить двигатели:
м.
Таким образом, включение двигателей происходит на 3317-ой секунде полета на высоте около 67 км. от поверхности планеты. Тот же результат мы наблюдаем и на графике.
Подобные документы
Описание газлифтного процесса с помощью системы дифференциальных уравнений с частными производными гиперболического типа. Конечно-разностная аппроксимация производных функций и решение дискретной линейно-квадратичной задачи оптимального управления.
статья [41,4 K], добавлен 17.10.2012Задачи оптимального управления системами обыкновенных дифференциальных уравнений. Системы уравнений, определяющие дифференциальную связь между состоянием и управлением. Решение задачи о прилунении космического корабля при помощи дискретных методов.
курсовая работа [188,9 K], добавлен 25.01.2014Синтез оптимального управления при осуществлении разворота. Разработка математической модели беспилотных летательных аппаратов. Кинематические уравнения движения центра масс. Разработка алгоритма оптимального управления, результаты моделирования.
курсовая работа [775,3 K], добавлен 16.07.2015Предикатное представление условий непересечения многоугольников. Алгоритм непересечения многоугольника и полосы. Определение направления обхода вершин многоугольника. Решение систем линейных алгебраических уравнений. Построение интерактивной оболочки.
дипломная работа [800,2 K], добавлен 10.11.2012Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.
контрольная работа [1,6 M], добавлен 22.12.2014Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа [170,3 K], добавлен 01.04.2010Порядок преобразования исходных данных и построения математической модели оптимального плана доставки газет. Выбор метода решения и основные этапы его реализации. Принципы освоения и практического применения оптимизационного пакета прикладных программ.
курсовая работа [235,0 K], добавлен 25.03.2017Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.
курсовая работа [462,5 K], добавлен 20.10.2013Создание математической модели движения шарика, подброшенного вертикально вверх, от начала падения до удара о землю. Компьютерная реализация математической модели в среде электронных таблиц. Определение влияния изменения скорости на дальность падения.
контрольная работа [1,7 M], добавлен 09.03.2016Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.
курсовая работа [863,4 K], добавлен 21.06.2015