Построение математической модели оптимального управления, обеспечивающего мягкую посадку при минимальном расходе топлива

Составление гамильтониан Н с учетом необходимых условий оптимальности для задачи Майера. Определение оптимального управления из условия максимизации. Получение конической системы уравнений и ее разрешение. Анализ необходимых условий оптимальности.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 13.09.2010
Размер файла 113,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

2

Исходные данные к курсовому проекту

Рассматривается последний этап посадки космического аппарата (КА) на планету. При построении математической модели предположим:

посадка осуществляется по нормали к поверхности планеты, планета неподвижна и в районе посадки плоская;

на КА действуют сила тяжести G=mg, причем g=const и сила тяги , где с=const, а в - секундный расход массы m, ;

аэродинамические силы отсутствуют.

Уравнения движения КА могут быть представлены в виде:

; ; , где h - текущая высота;

или в нормальной форме:

; ; ; .

Здесь введены обозначения:

; ; ; ; .

Граничные условия имеют вид:

; ; ; ; ,

причем Т заранее неизвестно. Требуется найти программу управления u*(t), обеспечивающую мягкую посадку при минимальном расходе топлива, то есть .

Исходные данные для расчетов

Начальная масса КА

, кг.

Начальная высота

, км.

Начальная

скорость

, км/с

Отношение силы тяги

к начальной массе , м/с2

500

190

2,65

42,5

=190000 м.

=2650 м/с

Ускорение силы тяжести для планеты g=1,62 м/с2, величина с=3000 м/с.

Задание к курсовому проекту

Составить гамильтониан Н, воспользовавшись необходимыми условиями оптимальности для задачи Майера.

Из условия максимизации Н по u найти оптимальное управление.

Получить каноническую систему уравнений и в результате прийти к краевой задаче, для которой в момент t=0 заданы компоненты x0, x1, x2, а в момент t=T_компоненты x1, x2, ш0.

Из условия Н(Т)=0 получить соотношение для определения неизвестного времени Т.

Произвести анализ необходимых условий оптимальности, начав с исследования возможности существования особого вырожденного управления, то есть случая, когда функция переключения

.

Доказать, что Кu не может обратиться в нуль на конечном интервале времени и, следовательно, особого управления в данной задаче не существует.

Показать, что Кu есть монотонная функция t.

Рассмотреть четыре возможных случая:

а) Ku>0 для всех ;

б) Ku<0 для всех ;

в) Ku>0 для , Ku<0 для ;

г) Ku<0 для , Ku>0 для .

Показать, в каких случаях (из физических соображений) мягкая посадка невозможна, в каком из реализуемых случаев расход топлива меньше.

Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива.

Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление u*=0, и когда , u*=umax.

Приравнивая х1(Т) и х2(Т) нулю, получить два уравнения относительно t1 и Т. Таким образом, краевую задачу свести к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t1, Т. Составить программу расчета. Получив решение этой системы, решить полностью исходную задачу программирования оптимального управления мягкой посадкой КА на планету. В заключение следует построить фазовую траекторию спуска КА и определить конечную массу m(Т).

Выполнение задания курсового проекта

Нам известно, что

, где с - сила тяги двигателя,

m - масса космического аппарата;

- ускорение аппарата.

То есть, масса ? ускорение = сумме сил, действующих на аппарат.

в - секундный расход массы m: .

Расход массы обеспечивает силу тяги двигателя (P=c?в), ее можно менять в пределах .

можно найти из исходных данных - выразив из отношения силы тяги к начальной массе Pmax/m(0):

;

;

кг/с.

Наш критерий оптимизации . Введем принятые в исходных данных обозначения:

; .

Начальный момент времени t=0, конечный момент времени - момент посадки КА (момент столкновения с планетой) t=T.

;

Тогда критерий оптимизации:

;

. (Здесь .)

Теперь необходимо написать уравнение состояния системы. Для этого нужно ввести переменные состояния и входную переменную.

Порядок дифференциального уравнения n=3, отсюда 3 уравнения состояния:

;

;

.

Выберем управление:

;

Подставляем уравнения состояния, получим:

так как и , отсюда

;

;

.

Критерий оптимизации:

.

Введем переменные х0 и хn+1 (то есть х4).

, где t - текущее время.

.

Тогда основные уравнения состояния:

Составим гамильтониан Н:

;

.

Оптимальному управлению соответствует максимум функции Гамильтона в заданной области возможных управлений. Причем этот максимум равен нулю.

То есть нужно добиться максимума этой функции, меняя u1. Это и будет оптимальное управление.

Для функций шi тоже получим сопряженные уравнения, которые имеют вид :

- так как функция не зависит от х0,

следовательно производная равна нулю;

- аналогично, так как функция не зависит от х1.

Итак, нужно найти максимум гамильтониана:

Функция переключения:

Используя для вычислений Mathcad, получим оптимальное управление:

Таким образом оказалось, что оптимальное управление должно осуществляться на предельных ресурсах. То есть либо двигатель должен быть совсем выключен (при Ku<0), либо включен на максимальную мощность (при Ku>0).

Посмотрим, как меняется функция переключения Кu во времени:

;

Для определения ш1 и ш2 решаем сопряженные уравнения:

, следовательно, ш1 = const, обозначим ш11.

, следовательно, , где c2 = const.

Итак,

Масса КА всегда положительна, а с=3000 = const - величина постоянная, поэтому производная имеет всегда постоянный (один и тот же) знак. То есть величина Ku либо всё время монотонно возрастает, либо всё время монотонно убывает. А это означает, что она может пройти через ноль только один раз.

Рассмотрим четыре возможных случая:

а) Ku>0 для всех ;

б) Ku<0 для всех ;

в) Ku>0 для , Ku<0 для ;

г) Ku<0 для , Ku>0 для .

В случаях б) (когда двигатель КА выключен на всем протяжении посадки) и в) (когда двигатель включен на максимальную мощность до какого-то момента времени t=t*, а затем полет происходит с выключенным двигателем до самой посадки) - говорить о мягкой посадке не приходится. Эти варианты означают падение КА на планету. Поэтому оптимальными (и вообще допустимыми) их считать нельзя.

Следовательно, остаются два реализуемых варианта - а) и г). И оптимальное управление предполагает либо всё время включенный на максимальную мощность двигатель, либо полет с выключенным двигателем до какого-то момента t=t*, а затем полет с двигателем, включенным на максимальную мощность до момента посадки. Естественно, что во втором случае (г) расход топлива меньше, так как часть пути проделывается с выключенным двигателем.

Поэтому оптимальным управлением в данной ситуации можно считать полет с выключенным двигателем, затем происходит включение двигателя и полет продолжается с двигателем, включенным на максимальную мощность.

Итак, оптимальному управлению соответствует

На первом участке полета, на котором u1=0:

; ; ;

;

;

.

Рассмотрим второй участок полета u1=7,083:

Зададимся условием, что при t=t* (в момент включения двигателя):

;

;

.

На отрезке полета со включенным двигателем:

;

так как , запишем:

.

Теперь, зная х3, можно выразить х2:

.

Теперь, зная х2 выразим х1:

;

На отрезке пути h(t):

В момент посадки t=T высота и скорость должны быть равны нулю, то есть и . На основании этого утверждения приравняем х1(T) и х2(Т) нулю и получим таким образом два уравнения относительно t* и T. Таким образом, краевая задача у нас свелась к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t* и Т:

Из второго уравнения системы выразим момент времени, на котором включается двигатель:

;

Подставим это выражение в первое уравнение системы, получим уравнение для нахождения времени полета T (оно же время посадки):

Для расчета времени полета Т воспользуемся программой Mathcad. На следующем листе приведены эти вычисления Все дальнейшие вычисления также производились в программе Mathcad:

Теперь, зная Т и t*, можно определить конечную массу космического аппарата m(T):

кг.

Можно рассчитать высоту h (t*), на которой КА должен включить двигатели:

м.

Таким образом, включение двигателей происходит на 3317-ой секунде полета на высоте около 67 км. от поверхности планеты. Тот же результат мы наблюдаем и на графике.


Подобные документы

  • Описание газлифтного процесса с помощью системы дифференциальных уравнений с частными производными гиперболического типа. Конечно-разностная аппроксимация производных функций и решение дискретной линейно-квадратичной задачи оптимального управления.

    статья [41,4 K], добавлен 17.10.2012

  • Задачи оптимального управления системами обыкновенных дифференциальных уравнений. Системы уравнений, определяющие дифференциальную связь между состоянием и управлением. Решение задачи о прилунении космического корабля при помощи дискретных методов.

    курсовая работа [188,9 K], добавлен 25.01.2014

  • Синтез оптимального управления при осуществлении разворота. Разработка математической модели беспилотных летательных аппаратов. Кинематические уравнения движения центра масс. Разработка алгоритма оптимального управления, результаты моделирования.

    курсовая работа [775,3 K], добавлен 16.07.2015

  • Предикатное представление условий непересечения многоугольников. Алгоритм непересечения многоугольника и полосы. Определение направления обхода вершин многоугольника. Решение систем линейных алгебраических уравнений. Построение интерактивной оболочки.

    дипломная работа [800,2 K], добавлен 10.11.2012

  • Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.

    контрольная работа [1,6 M], добавлен 22.12.2014

  • Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.

    контрольная работа [170,3 K], добавлен 01.04.2010

  • Порядок преобразования исходных данных и построения математической модели оптимального плана доставки газет. Выбор метода решения и основные этапы его реализации. Принципы освоения и практического применения оптимизационного пакета прикладных программ.

    курсовая работа [235,0 K], добавлен 25.03.2017

  • Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.

    курсовая работа [462,5 K], добавлен 20.10.2013

  • Создание математической модели движения шарика, подброшенного вертикально вверх, от начала падения до удара о землю. Компьютерная реализация математической модели в среде электронных таблиц. Определение влияния изменения скорости на дальность падения.

    контрольная работа [1,7 M], добавлен 09.03.2016

  • Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.

    курсовая работа [863,4 K], добавлен 21.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.