Повторные и независимые испытания. Теорема Бернулли о частоте вероятности
Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
Рубрика | Математика |
Предмет | Теория вероятностей и математическая статистика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | okwell5 |
Дата добавления | 21.01.2011 |
Размер файла | 265,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация [611,2 K], добавлен 17.08.2015Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат [1,4 M], добавлен 18.02.2014Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.
курсовая работа [134,2 K], добавлен 31.05.2010Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.
практическая работа [55,0 K], добавлен 23.08.2015Практическое применение теории вероятностей. Методы решения задач, в которых один и тот же опыт повторяется неоднократно. Формула Бернулли для описания вероятности наступления события. Биномиальное распределение и формулировка теоремы о повторении опытов.
презентация [47,1 K], добавлен 01.11.2013Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.
контрольная работа [547,6 K], добавлен 02.02.2012Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа [183,1 K], добавлен 25.11.2011Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы. Примеры решения задач с игральными костями, выигрыша в лотерею, вероятности брака и др. Биноминальный закон распределения: решение математического ожидания и дисперсии.
контрольная работа [74,4 K], добавлен 31.05.2010Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.
презентация [422,7 K], добавлен 02.06.2013