Независимость событий в примере Бернштейна с правильным тетраэдром

Независимость событий. Условная вероятность. Независимость событий и испытаний. События А и В называются независимыми, если Р(АВ) = Р(А). Если Р(В)>0, то независимость А и В эквивалентна равенству Р(А/В) = Р(А).

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 31.03.2003
Размер файла 20,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4

Крымский Экономический Институт

Киевского Национального Экономического Университета

Реферат по дисциплине: «Теория вероятности и математическая статистика»

на тему:

«Независимость событий в примере Бернштейна с правильным тетраэдром»

Выполнил: Апаз С.В.

группа ЭП - 21

Симферополь -- 2002

Независимость событий

Понятие независимости является одним из важнейших понятий теории вероятностей.

События А и В называются независимыми, если

Р(АВ) = Р(А)Р(В). (1.1)

В случае Р(А) = 0 и Р(В) > 0 эквивалентны любому из равенств

Р(А|В) = Р(А), Р(В|А) = Р(В). (1.2)

Определение независимости в форме (1.1) симметрично относительно А и В; условие (1.1) несколько шире, чем условия (1.2).

Если математическая модель, описывающая некоторые опыт, подобран достаточно хорошо, то независимым события реального опыта соответствуют событиям модели, независимые в смысле определения (1.1). Пусть, например, опыт заключается в том, что один раз бросают две симметричные монеты. В обозначениях положим Щ = {ГГ, РР, РГ, ГР}; А = {ГГ, ГР} - первая монета выпала гербом вверх, В = {РГ, Г} - вторая монета выпала гербов вверх. Предполагая равновероятность элементарных событий, получим

Таким образом, Р(АВ) = Р(А)Р(В). события А и В оказались независимыми в смысле определения (1.1).

Условная вероятность. Независимость событий и испытаний.

Начнем с примеров. Пусть эксперимент состоит в троекратно подбрасывании симметричной монеты. Вероятность того, что герб выпадет ровно один раз, т.е. что произойдет одно из элементарных событий (грр), (ргр), (ррг), в классической схеме равно 3/8. обозначим это событие буков А. Предположим теперь, что об исход эксперимента дополнительно известно, что произошло событие

В = {число выпавших гербов нечетно}

Какова вероятность события А при этой дополнительной информации? Событие В состоит из 4 элементарных исходов. Событие же А составляется из 3 исходов события В. в рамках классической схемы естественно принять новую вероятность события А равной ѕ.

Рассмотрим еще один более общий пример. Пусть задана классическая схема с n исходами. Событие А состоит из r исходов, событие В из m исходов, а событие АВ содержит k исходов. Вероятность события А при условии, что произошло событие В, по аналогии с предыдущим примером, естественно определить следующим образом:

Полученное отношение равно , так как

Р(АВ) = k/n

Р(В) = m/n.

Мы можем перейти теперь ко общему определению.

Пусть задано вероятностное пространство Щ, о, Р и пусть А и В - произвольны события. Если Р(В) > 0, то условная вероятность события А при условии , что произошло событие В, по определению полагается равной

События А и В называются независимыми, если

Р(АВ) = Р(А)

Некоторые свойства независимых событий.

1) Если Р(В) > 0, то независимость А и В эквивалентна равенству

Р(А/В) = Р(А)

Доказательство очевидно.

2) Если А и В независимы, от независимы В и В.

Действительно,

Р(ВВ) = Р(В - АВ) = Р(В) - Р(АВ) = Р(В)(1 - Р(А)) = Р(В)Р(В)

3) Пусть событие А и В1 независимы и независимы так же события А и В2, при этом В1В2 = Ш. Тогда независимы события А и В12.

Следующие равенства доказывают это свойство:

Р(А(В12)) = Р(АВ1+АВ2) = Р(АВ2) = =Р(А)(Р(В1))+Р(В2)) = Р(А)Р(В12)

Как мы увидим ниже, требование В1В2 = Ш здесь существенно.

Пусть событие А означает выпадение герба в первом из двух бросаний симметричной монеты, событие В - выпадение решетки во втором бросании. Вероятность каждого из этих событий равна Ѕ. Вероятность пресечения АВ будет равна

Таким образом, события А и В независимы.

Пусть событие А состоит в том, что случайно брошенная точка попала в области, распложенную правее абсциссы а1, событие В - в том, что точка попал в область расположенную выше ординаты b.

На рисунке обе области заштрихованы. Событие АВ на рисунке заштриховано в клеточку. Очевидно, Р(АВ) = Р(А)Р(В) и, значит, события А и В независимы.

Легко проверить также, что ели событие В означает, что брошенная точка попала треугольник FCD, то событие А и В будут уже зависимыми.

События В1,В2,…Вn независимы в совокупности, если для любых 1 = i1<i2<…<ir = in=2,3,…, n

Попарной независимости событий недостаточно для независимости n в совокупности. Это показывает следующий пример.

Рассмотрим такой эксперимент. На плоскость бросается тетраэдр, три грань которого покрашены соответственно в красный, синий и зеленый цвета, а на четвертую нанесены все три цвета событие К означает, что при бросании тетраэдра на плоскость выпала грань, содержащая красный цвет, событие С - грань, содержащая синий цвет, и событие З - грань, содержащихся зеленый цвет. Так как каждый из трех цветов содержится на двух гранях, то Р(К) = Р(С) = Р(З) = Ѕ. Вероятность пересечения любой пары веденных событий равна ј = Ѕ Ѕ , так как любая пара цветов присутсвует только для одной грани. Это означает попарную независимость всех трех событий.

Но:

Список использованной литературы:

1. Хеннекен П.А. «Теория вероятности»

2. Гурский Е.И. «Теория вероятности и математическая статистика».

3. Барковский В.В. «Теория вероятности и математическая статистика».


Подобные документы

  • Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.

    презентация [77,5 K], добавлен 01.11.2013

  • Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

    реферат [402,7 K], добавлен 03.12.2007

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.

    контрольная работа [69,3 K], добавлен 17.09.2013

  • Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.

    контрольная работа [30,0 K], добавлен 15.06.2012

  • Примеры пространства элементарных событий. Вероятность появления одного из двух несовместных событий. Функция распределения F(x,y) системы случайных величин. Расчет математического ожидания и дисперсии. Закон генеральной совокупности и его параметры.

    контрольная работа [178,1 K], добавлен 15.06.2012

  • Порядок составления гипотез и решения задач на вероятность определенных событий. Вычисление вероятности выпадения различных цифр при броске костей. Оценка вероятности правильной работы автомата. Нахождение функции распределения числа попаданий в цель.

    контрольная работа [56,6 K], добавлен 27.05.2013

  • Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача [37,9 K], добавлен 19.03.2011

  • Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция [287,5 K], добавлен 02.04.2008

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.