Расчет вероятности событий
Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.09.2013 |
Размер файла | 69,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа
по курсу Теория вероятностей
Задача 1
Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны?
Решение: В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,25=0,75 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,75, q=1-p=1-0,75=0,25 найдем вероятности того, что исправны две, три и четыре линии:
P4(4) = pn = 0.754 = 0.3164
По условию задачи
=
Тогда найдем вероятность того, что исправных линий будет не меньше двух (хотя бы две), по формуле:
Задача 2
вероятность гипергеометрический дискретный величина
В одной урне белых шаров и черных шара, а в другой - белых и черных. Из первой урны случайным образом вынимают шара и опускают во вторую урну. После этого из второй урны также случайно вынимают шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Решение:
Введем следующие обозначения для событий:
из первой урны переложили два белых шара
из первой урны переложили один белый шар и один черный
из первой урны переложили два черных шара
Так как других вариантов вытащить из первой урны два шара нет, эти события составляют полную группу событий, и они несовместны. Найдем вероятности этих событий по формуле гипергеометрической вероятности:
Введем событие А - после перекладывания из второй урны вытащили 2 белых шара. Вероятность этого события зависит от того, что во вторую урну переложили из первой. Найдем условные вероятности:
Теперь найдем вероятность события А по формуле полной вероятности:
Задача 3
В типографии имеется печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна . Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти математическое ожидание, дисперсию, а также вероятность того, что число работающих машин будет не больше .
Решение:
В этой задаче x - дискретная случайная величина, принимающая значения 0,1,2,3,4,5. Чтобы построить ряд распределения х, требуется найти вероятности, с которыми она принимает эти значения. В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха р=0,2 одинакова во всех испытаниях (успех - печатная машина работающая). Тогда по формуле Бернулли при n=5, р=0,2, q=1-p=1-0.2=0.8:
P5(0) = (1-p)n = (1-0.2)5 = 0.3277
P5(1) = np(1-p)n-1 = 5(1-0.2)5-1 = 0.4096
P5(5) = pn = 0.25 = 0.00032
Теперь построим ряд распределения:
Значения |
0 |
1 |
2 |
3 |
4 |
5 |
|
вероятность |
0,3277 |
0,4096 |
0,2048 |
0,0512 |
0,0064 |
0,00032 |
Найдем математическое ожидание по формуле:
Найдем дисперсию:
Выпишем в аналитическом виде функцию распределения:
Найдем вероятность того, что число работающих машин будет не больше 3:
Задача 4
Непрерывная случайная величина задана ее функцией распределения:
.
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал и квантиль порядка
Решение:
Найдем параметр С из уравнения . Так как плотность на разных интервалах задана разными функциями, разбиваем область интегрирования на соответствующее количество интервалов.
, тогда
Найдем функцию распределения по формуле: . Так как плотность распределения задается разными выражениями в зависимости от интервала, функция распределения так же будет задаваться разными выражениями на этих интервалах:
если
если
если .
Таким образом, можно записать
Найдем математическое ожидание по формуле:
.
Опять разбиваем область интегрирования на три интервала:
Дисперсию находим по формуле:
Вероятность попадания случайной величины в интервал найдем по формуле
.
В нашем случае
Найдем квантиль порядка 0,6: это решение уравнения : этот корень не попадает в интервал, где функция распределения принимает значения от 0 до 1. Квантиль один:
Задача 5
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
Решение:
Пусть - суточное потребление электроэнергии исправной печью. По условию задачи надо найти .
Сначала найдем вероятность того, что суточное потребление не превысит 1100 кВт. Вероятность того, что Х примет значение, принадлежащее интервалу , найдем по формуле
.
Тогда
т.к. функция Ф - нечетная
Тогда вероятность того, что суточное потребление превысит 1100 кВт, и печь отключат, и будут ремонтировать, равна
Для решения второй части задачи обозначим переменной t величину превышения суточного потребления электроэнергии по инструкции, чтобы вероятность ремонта печи была равна 0,02.
Тогда вероятность того, что суточное потребление электроэнергии не превысит величину (1000+t) равна 1- 0,02=0,98.
Для нахождения t нам надо решить уравнения вида:
т.к. функция Ф(х) - нечетная
найдя значение функции Лапласа в таблице, имеем:
Таким образом, чтобы вероятность ремонта печи была равна 0,02, суточное потребление должно превысить 1092,7 кВт.
Размещено на Allbest.ru
Подобные документы
Порядок составления гипотез и решения задач на вероятность определенных событий. Вычисление вероятности выпадения различных цифр при броске костей. Оценка вероятности правильной работы автомата. Нахождение функции распределения числа попаданий в цель.
контрольная работа [56,6 K], добавлен 27.05.2013Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.
контрольная работа [86,4 K], добавлен 26.02.2012Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.
контрольная работа [114,3 K], добавлен 11.02.2014Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.
контрольная работа [57,3 K], добавлен 07.09.2010Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.
контрольная работа [708,2 K], добавлен 02.02.2011Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.
контрольная работа [390,7 K], добавлен 29.05.2014Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.
контрольная работа [547,6 K], добавлен 02.02.2012Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.
контрольная работа [480,0 K], добавлен 29.06.2010