Расчет вероятности событий

Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 17.09.2013
Размер файла 69,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

по курсу Теория вероятностей

Задача 1

Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны?

Решение: В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,25=0,75 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,75, q=1-p=1-0,75=0,25 найдем вероятности того, что исправны две, три и четыре линии:

P4(4) = pn = 0.754 = 0.3164

По условию задачи

=

Тогда найдем вероятность того, что исправных линий будет не меньше двух (хотя бы две), по формуле:

Задача 2

вероятность гипергеометрический дискретный величина

В одной урне белых шаров и черных шара, а в другой - белых и черных. Из первой урны случайным образом вынимают шара и опускают во вторую урну. После этого из второй урны также случайно вынимают шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.

Решение:

Введем следующие обозначения для событий:

из первой урны переложили два белых шара

из первой урны переложили один белый шар и один черный

из первой урны переложили два черных шара

Так как других вариантов вытащить из первой урны два шара нет, эти события составляют полную группу событий, и они несовместны. Найдем вероятности этих событий по формуле гипергеометрической вероятности:

Введем событие А - после перекладывания из второй урны вытащили 2 белых шара. Вероятность этого события зависит от того, что во вторую урну переложили из первой. Найдем условные вероятности:

Теперь найдем вероятность события А по формуле полной вероятности:

Задача 3

В типографии имеется печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна . Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти математическое ожидание, дисперсию, а также вероятность того, что число работающих машин будет не больше .

Решение:

В этой задаче x - дискретная случайная величина, принимающая значения 0,1,2,3,4,5. Чтобы построить ряд распределения х, требуется найти вероятности, с которыми она принимает эти значения. В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха р=0,2 одинакова во всех испытаниях (успех - печатная машина работающая). Тогда по формуле Бернулли при n=5, р=0,2, q=1-p=1-0.2=0.8:

P5(0) = (1-p)n = (1-0.2)5 = 0.3277

P5(1) = np(1-p)n-1 = 5(1-0.2)5-1 = 0.4096

P5(5) = pn = 0.25 = 0.00032

Теперь построим ряд распределения:

Значения

0

1

2

3

4

5

вероятность

0,3277

0,4096

0,2048

0,0512

0,0064

0,00032

Найдем математическое ожидание по формуле:

Найдем дисперсию:

Выпишем в аналитическом виде функцию распределения:

Найдем вероятность того, что число работающих машин будет не больше 3:

Задача 4

Непрерывная случайная величина задана ее функцией распределения:

.

Найти параметр С, функцию распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал и квантиль порядка

Решение:

Найдем параметр С из уравнения . Так как плотность на разных интервалах задана разными функциями, разбиваем область интегрирования на соответствующее количество интервалов.

, тогда

Найдем функцию распределения по формуле: . Так как плотность распределения задается разными выражениями в зависимости от интервала, функция распределения так же будет задаваться разными выражениями на этих интервалах:

если

если

если .

Таким образом, можно записать

Найдем математическое ожидание по формуле:

.

Опять разбиваем область интегрирования на три интервала:

Дисперсию находим по формуле:

Вероятность попадания случайной величины в интервал найдем по формуле

.

В нашем случае

Найдем квантиль порядка 0,6: это решение уравнения : этот корень не попадает в интервал, где функция распределения принимает значения от 0 до 1. Квантиль один:

Задача 5

Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?

Решение:

Пусть - суточное потребление электроэнергии исправной печью. По условию задачи надо найти .

Сначала найдем вероятность того, что суточное потребление не превысит 1100 кВт. Вероятность того, что Х примет значение, принадлежащее интервалу , найдем по формуле

.

Тогда

т.к. функция Ф - нечетная

Тогда вероятность того, что суточное потребление превысит 1100 кВт, и печь отключат, и будут ремонтировать, равна

Для решения второй части задачи обозначим переменной t величину превышения суточного потребления электроэнергии по инструкции, чтобы вероятность ремонта печи была равна 0,02.

Тогда вероятность того, что суточное потребление электроэнергии не превысит величину (1000+t) равна 1- 0,02=0,98.

Для нахождения t нам надо решить уравнения вида:

т.к. функция Ф(х) - нечетная

найдя значение функции Лапласа в таблице, имеем:

Таким образом, чтобы вероятность ремонта печи была равна 0,02, суточное потребление должно превысить 1092,7 кВт.

Размещено на Allbest.ru


Подобные документы

  • Порядок составления гипотез и решения задач на вероятность определенных событий. Вычисление вероятности выпадения различных цифр при броске костей. Оценка вероятности правильной работы автомата. Нахождение функции распределения числа попаданий в цель.

    контрольная работа [56,6 K], добавлен 27.05.2013

  • Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.

    контрольная работа [86,4 K], добавлен 26.02.2012

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа [114,3 K], добавлен 11.02.2014

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.

    контрольная работа [708,2 K], добавлен 02.02.2011

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа [547,6 K], добавлен 02.02.2012

  • Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

    контрольная работа [480,0 K], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.