Обчислення матричних задач

Обчислення визначника матриці методом Гаусса. Розгорнення характеристичного визначника заданої матриці методом Крилова. Обчислення наближеного значення визначеного інтегралу за допомогою формули Сімпсона. Мінімум функції і суть методу золотого перерізу.

Рубрика Математика
Вид контрольная работа
Язык украинский
Дата добавления 04.10.2009
Размер файла 45,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ

Бердичівський політехнічний коледж

Контрольна робота

з дисципліни “Числові методи”

Виконав:

студент групи Пзс-503

Лифар Сергій Олександрович

Перевірив:

Федчук Людмила Олегівна

м. Бердичів 2009 р.

Зміст

Завдання 1.

Завдання 2.

Завдання 3.

Завдання 4.

Список використаної літератури

Завдання 1

Обчислити визначник матриці методом Гаусса.

Розв'язок.

Визначник матриці А шукатимемо за формулою:

де - ведучі елементи схеми єдиного ділення.

Складемо розрахункову таблицю і знайдемо

Стовпчики

1

2

3

9

4

0

4

1

2

2

1

1

1

0,44444

0

-0,77778

2

0,11111

1

1

-2,57143

1,285714

Отримаємо: de t= 9 · (-0,77778) · 1,285714 = -9

Завдання 2

Розгорнути характеристичний визначник заданої матриці методом Крилова.

Розв'язок.

1. Вибираємо початковий вектор наближення .

2. Визначаємо координати векторів

2. Визначаємо координати векторів

3. Складемо матричне рівняння:

4. Запишемо систему виду.

5. Розв'язавши систему методом Гауса, отримаємо

p1

p2

p3

b

У1

У2

1

2

10

-61

-48

0

1

7

-41

-33

0

1

6

-37

-30

1

2

10

-61

-48

-48

1

7

-41

-33

-33

1

6

-37

-30

-30

1

7

-41

-33

-33

-1

4

3

3

1

-4

-3

-3

1

p3

-4

1

p2

-13

1

p1

5

6. Таким чином, характеристичний визначник має вигляд:

Завдання 3

Обчислити наближене значення визначеного інтегралу за допомогою формули Сімпсона, розбивши відрізок інтегрування на 10 частин. Усі обчислення проводити з точністю е=0,001.

Розв'язок.

Наближене значення визначеного інтегралу методом Сімпсона обчислюється за формулою:

Крок табулювання функції знайдемо за формулою:

За умовою a=0 b=1 n=10, отже

Складемо розрахункову таблицю значень функції змінюючи x від a до b на крок табулювання:

i

xi

f(xi)

0

0

2,000

1

0,1

2,452

2

0,2

2,458

3

0,3

2,468

4

0,4

2,482

5

0,5

2,500

6

0,6

2,522

7

0,7

2,548

8

0,8

2,577

9

0,9

2,610

10

1

2,646

Знайдемо проміжкові суми з формули Сімпсона:

Отримуємо:

Завдання 4

Методом золотого перерізу знайти мінімум функції y=f(x) на відрізку [a; b] з точністю е=0,001.

, [0; 4];

Розв'язок.

Найменше значення функції шукатиме за таким алгоритмом:

1) обчислюємо значення та ;

2) обчислюємо f(x1), f(x2);

3) якщо f(x1) ? f(x2), то для подальшого ділення залишаємо інтервал [a, x2];

4) якщо f(x1) > f(x2), то для подальшого ділення залишаємо інтервал [x1, b].

Процес ділення продовжуємо до тих пір, доки довжина інтервалу невизначеності не стане меншою заданої точності е.

Складемо розрахункову таблицю:

a

b

x1

x2

f(x1)

f(x2)

0,000

4,000

1,528

2,472

0,150

0,329

0,000

2,472

0,944

1,528

-0,019

0,150

0,000

1,528

0,584

0,944

-0,161

-0,019

0,000

0,944

0,361

0,583

-0,271

-0,161

0,000

0,583

0,223

0,361

-0,350

-0,271

0,000

0,361

0,138

0,023

-0,403

-0,350

0,000

0,223

0,085

0,138

-0,439

-0,403

0,000

0,138

0,053

0,085

-0,462

-0,439

0,000

0,085

0,033

0,053

-0,476

-0,462

0,000

0,053

0,020

0,033

-0,485

-0,476

0,000

0,033

0,012

0,020

-0,491

-0,45

0,000

0,020

0,008

0,012

-0,494

-0,491

0,000

0,012

0,005

0,008

-0,496

-0,494

0,000

0,002

0,003

0,005

-0,498

-0,496

0,000

0,005

0,002

0,003

-0,499

-0,498

Отримали:

[0;4]

Список використаної літератури

1. Коссак О., Тумашова О. - Методи наближених обчислень: Навчальний посібник. Львів. 2003.

2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Вища математика в вправах та задачах. 1999.

3. Конспект лекцій.


Подобные документы

  • Теорія обернених матриць та їх знаходження за формулою. Оберненні матриці на основі яких складається написання програми обчислення оберненої матриці до заданої. Побудова матриць та їх характеристика. Приклади проведення розрахунків при обчисленні матриць.

    курсовая работа [96,8 K], добавлен 06.12.2008

  • Будування сіткової функції. Методи прямокутників і трапецій, підвищення їх точності. Інтерполяційний многочлен Лагранжа другого степеня. Формула Сімпсона для чисельного інтегрування. Похибка формули Сімпсона. Обчислення наближеного значення інтеграла.

    презентация [99,6 K], добавлен 06.02.2014

  • Основні поняття і теореми. Обчислення визначників методом зміни елементів, представлення їх у вигляді суми, виділення лінійних множників, методом рекурентних співвідношень, знижуючи їхній порядок за допомогою розкладання за елементами рядка або стовпця.

    контрольная работа [137,9 K], добавлен 25.03.2011

  • Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.

    контрольная работа [67,1 K], добавлен 27.03.2012

  • Огляд складання програми на мові програмування С++ для обчислення чотирьох лінійної системи рівнянь матричним методом. Обчислення алгебраїчних доповнень до елементів матриці. Аналіз ітераційних методів, заснованих на використанні повторюваного процесу.

    практическая работа [422,7 K], добавлен 28.05.2012

  • Визначення понять "первісна функція", "невизначений інтеграл" та "інтегральна сума". Особливості застосування формул прямокутників, трапецій та парабол (Сімпсона). Розрахунок абсолютних похибок методів наближеного обчислення визначених інтегралів.

    курсовая работа [1,5 M], добавлен 26.08.2014

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа [584,5 K], добавлен 18.07.2010

  • Історія розвитку обчислювальної техніки. Особливості застосування швидкодіючих комп'ютерів для розв’язання складних математичних задач. Методика написання програми для обчислення визначених інтегралів за формулами прямокутників, трапецій та Сімпсона.

    курсовая работа [1,0 M], добавлен 07.10.2010

  • Запис системи рівнянь та їх розв'язання за допомогою методів оберненої матриці та Гауса. Поняття вектора-стовпця з невідомих та вільних членів. Пошук оберненої матриці до даної. Послідовне виключення невідомих за допомогою елементарних перетворень.

    контрольная работа [115,2 K], добавлен 16.07.2010

  • Етапи розв'язування інженерних задач на ЕОМ. Цілі, засоби й методи моделювання. Створення математичної моделі. Побудова обчислювальної моделі. Реалізація методу обчислень. Розв’язання нелінійних рівнянь методом дихотомії. Алгоритм метода дихотомії.

    контрольная работа [86,1 K], добавлен 06.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.