Теория вероятности
Способы определения вероятности происхождения события с помощью формулы Бейеса на примере задач о вынимании шарика определенного цвета из урны, попадании стрелком в мишень, о выпадении герба монеты, передачи сообщения по средствам связи без помех.
Рубрика | Математика |
Предмет | Теория вероятности |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Дмитрий |
Дата добавления | 01.12.2010 |
Размер файла | 105,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.
задача [104,1 K], добавлен 14.01.2011Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа [212,0 K], добавлен 01.05.2010Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.
реферат [42,6 K], добавлен 24.04.2009Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.
контрольная работа [87,2 K], добавлен 29.01.2014Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.
контрольная работа [114,3 K], добавлен 11.02.2014Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.
контрольная работа [309,4 K], добавлен 18.09.2010Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция [287,5 K], добавлен 02.04.2008Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.
контрольная работа [263,8 K], добавлен 13.01.2014Способы вычисления наступления некоторого события. Решение задач, связанных с теорией вероятности. Использование таблицы функции Лапласа для определения теоретических частот нормального закона распределения. Определение исправленной выборочной дисперсии.
контрольная работа [225,3 K], добавлен 14.03.2015