Теория вероятности и математическая статистика

Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

Рубрика Математика
Вид задача
Язык русский
Дата добавления 14.01.2011
Размер файла 104,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию РФ

НОУ ВПО Международный университет бизнеса и новых технологий (академия)

Контрольная работа по теории организации и математической статистике

Вариант 4

Выполнила: Спицина Н. Н.

Специальность: МН - 2

Задание 1

В коробке 12 зеленых, 5 красных, 6 синих карандашей. Из коробки наудачу берут три карандаша. Какова вероятность того, что все они будут синими? Рассмотреть случаи, когда карандаши: а) не возвращают в коробку; б) возвращают в коробку.

Решение:

а) Событие А - все три вынутые без возращения в коробку карандаши синие.

Согласно классическому определению вероятность события А равна:

В коробке 12+5+6=23 карандаша.

Общее число исходов равно:

Благоприятное число способов равно:

Ответ: вероятность того, что все три вынутые без возращения в коробку карандаши синие, равна 0,011.

б) Событие В - все три вынутые с возращением в коробку карандаши синие, то есть три раза будут выниматься 1 синий шар из 23.

Вероятность извлечения одного синего карандаша р = 6/23.

Воспользуемся схемой Бернулли:

q = 1-6/23=7/23

n = 3

m=3

Ответ: вероятность того, что все три вынутые с возращения в коробку карандаши синие, равна 0,018.

Задание 2

Из колоды в 32 карты наугад вынимают 5. Найти вероятность того, что среди них окажется ровно один туз.

Решение:

Событие А - из вынутых наугад 5 карт, ровно один туз.

Согласно классическому определению вероятность события А равна:

Пусть детали пронумерованы с 1 до 80, с 1 до 20 стандартные и с 21 по 80 не стандартные.

Общее число исходов равно:

Благоприятное исход состоит в том, что вынут 1 туз из 4-х возможных и 4 другие карты из оставшихся 28, таким образом, число благоприятных способов равно:

Ответ: вероятность того, что из вынутых наугад 5 карт, ровно один туз, равна 0,407.

Задание 3

Брак изделий цеха составляет 11%. Найти вероятность того, что из 250 изделий цеха окажется бракованными: а) ровно 45 изделий; б) от 145 до 155 изделий; в) не менее 101 изделий; г) не более 100 изделий.

Решение:

а) Вероятность того, что из 250 изделий цеха окажется бракованными ровно 45 изделий, найдем, используя локальную теорему Лапласа:

б) Вероятность того, что из 250 изделий цеха окажется бракованными от 145 до 155 изделий, найдем, используя интегральную теорему Лапласа:

где Ф - функция Лапласа (значения берутся из таблиц).

Подставляем:

в) Вероятность того, что из 250 изделий цеха окажется бракованными не менее 101 изделий, найдем, используя интегральную теорему Лапласа:

,

где Ф - функция Лапласа (значения берутся из таблиц).

Подставляем:

г) Вероятность того, что из 250 изделий цеха окажется бракованными не более 100 изделий, найдем, используя интегральную теорему Лапласа:

где Ф - функция Лапласа (значения берутся из таблиц).

Подставляем:

Задание 4

Радист трижды вызывает корреспондента. Вероятность того, что будет принят первый вызов, равна 0,2, второй вызов - 0,3, третий вызов 0,4. События, состоящие в том, что данный вызов будет услышан, независимы. Найти вероятность того, что корреспондент вообще услышит вызов.

Решение:

Событие А - корреспондент услышал вызов.

Событие Н1 - принят первый вызов.

Событие Н2 - принят второй вызов.

Событие Н3 - принят третий вызов.

Р( Н1 ) = 0,2, Р( Н2 ) = 0,3, Р( Н3 ) = 0,4.

Р (А / Н1) = 1/3; Р (А / Н2) = 1/3; Р( А/Н2 ) = 1/3.

Используя формулу полной вероятности, получим

Р( А ) = Р( А / Н1 ) · Р( Н1 ) + Р( А / Н2 ) · Р( Н2 ) + Р( А / Н3 ) · Р( Н3 ) =

Ответ: вероятность того, что корреспондент услышал вызов, равна 0,3.

Задание 5

Случайная величина о имеет распределение вероятностей, представленное таблицей:

о

1

2

3

4

5

Р(Х)

0,1

0,15

0,2

0,3

Найти Р(3), функцию распределения F(Х). Построить многоугольник распределения.

Решение:

Найдем Р(3):

о

1

2

3

4

5

Р(Х)

0,1

0,15

0,25

0,2

0,3

Найдем и построим функцию распределения F(Х):

Построим многоугольник распределения:

Задание 6

Найти М(о), D(о), у(о) случайной величины о примера 5.

Решение:

Найдем М(о) случайной величины о из примера 5:

Найдем D(о) случайной величины о из примера 5:

Найдем случайной величины о из примера 5:

Задание 7

о- непрерывная случайная величина с плотностью распределения ц(Х), заданной следующим образом:

ц(Х)=

Найти функцию распределения F(Х).

Решение:

Найдем функцию распределения F(Х):

При

При

При

Задание 8

о- непрерывная случайная величина из примера 7. Найти М(о), D(о).

Решение:

Найдем М(о):

.

Найдем D(о):


Подобные документы

  • Анализ случайных явлений, статистическая обработка результатов численных экспериментов. Способы вычисления наступления предполагаемого события. Решение задач, связанных с теорией вероятности. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа [43,8 K], добавлен 21.09.2013

  • Способы вычисления наступления некоторого события. Решение задач, связанных с теорией вероятности. Использование таблицы функции Лапласа для определения теоретических частот нормального закона распределения. Определение исправленной выборочной дисперсии.

    контрольная работа [225,3 K], добавлен 14.03.2015

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.

    контрольная работа [59,7 K], добавлен 26.07.2010

  • Определение вероятности наступления заданного события. Расчет математических величин по формуле Бернулли и закону Пуассона. Построение эмпирической функции распределения, вычисление оценки математического ожидания и доверительных интегралов для него.

    курсовая работа [101,9 K], добавлен 26.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.