Базисная система уравнений
Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.03.2014 |
Размер файла | 193,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задание 1
Решить систему методом Гаусса и указать одно из базисных решений:
Решение
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~ ~
Система несовместна, т.к. ранг матрицы равен 2, а ранг расширенной матрицы равен 3. Следовательно решений нет.
Задание №4
Решить систему методом Гаусса и указать одно из базисных решений:
Решение
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~ ~
матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
.
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 3. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 3 - 2 = 1 параметров.
Получаем, что х2, х3 - базисные неизвестные, а х1 - параметры.
Обозначим для удобства х1 =С1 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
.
Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .
Задание №3
Найти общее решение системы
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
Помножим первую строку на (-2) и сложим со второй, затем помножим первую строку на (-1) и сложим с третьей.
Сложим вторую строку с третьей.
Получили трапециевидную матрицу, в которой три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 3 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 , х5 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3, х4 - параметры. Обозначим для удобства х3 =С1, х4 =С2 и выразим базисные неизвестные через параметры. Так как r = 3, то достаточно взять три уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 5 - 3 = 2, т. е. базис в этом пространстве состоит из одного линейно независимого решения. Придадим параметру С1, С2, С3, поочередно следующее значение: С1 = 1, С2 = 0 и С1 = 1, С2 = 0, тогда получим два частных решения системы, линейно-независимых между собой,
Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.
Задание №2
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
первую строку домножим на (-1) и сложим с третьей и четвертой.
Сложим вторую строку с третьей домножив на (-1), и сложим вторую строку с четвертой.
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,
Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.
Задание 3
Решить систему методом Гаусса и указать одно из базисных решений:
Решение.
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~ ~
~ ~
Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
.
Получили трапециевидную матрицу, в которой только три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 3 = 2 параметров.
Получаем, что х1, х4, х5 - базисные неизвестные, а х2, х3 - параметры.
Обозначим для удобства х2 =С1, х3 =С2 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
.
Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .
Задание 4
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
первую строку домножим на 3 и сложим со второй, затем помножим первую строку на (5) и сложим с третьей.
Сложим вторую строку с третьей домножив на (-1).
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,
Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.
Задание 5
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
первую строку домножим на 3 и сложим со второй, помножим первую строку на (-4) и сложим с третьей.
затем помножим первую строку на (-3) и сложим с четвертой.
Сложим вторую строку с третьей домножив на (-3), и с чеивертой домножив на (2).
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,
Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.
Задание №6
Решить систему методом Гаусса и указать одно из базисных решений:
Решение
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~ ~
~~
~
Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
.
Получили трапециевидную матрицу, в которой четыре ненулевые строки. Значит ранг r = 4. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 4 = 1 параметров.
Получаем, что х1, х2, х4, х5, - базисные неизвестные, а х3 - параметры.
Обозначим для удобства х3 =С1 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
.
Ответ: а) общее решение:
,
где - произвольные числа
б) базисное решение: .
Задание №7
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
Помножим первую строку на (4) и сложим со второй, затем помножим первую строку на (-6) и сложим с третьей.
Сложим вторую строку с третьей.
Получили трапециевидную матрицу, в которой только три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 3 = 1 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 , х4 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 - параметры. Обозначим для удобства х3 =С1 и выразим базисные неизвестные через параметры. Так как r = 3, то достаточно взять три уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 4 - 3 = 1, т. е. базис в этом пространстве состоит из одного линейно независимого решения. Придадим параметру С1 следующее значение: С1 = 1, тогда получим одно частное решение системы.
Решения Е1 образует один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 принимает произвольные значения. Размерность этого пространства равна одному.
Задание №8
Определите размерность пространства решений неоднородной системы уравнений, и указать какой-нибудь базис этого пространства.
Решение.
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~ ~
Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
.
Получаем, что х1, х2 - базисные неизвестные, а х3, х4 - параметры.
Обозначим для удобства х4 =С1 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .
уравнение крамер линейный базис
Задание №9
Решить систему методом Гаусса и указать одно из базисных решений:
Решение
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~
~
~ ~
Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
.
Получили трапециевидную матрицу, в которой только три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 3 = 2 параметров.
Получаем, что х1, х3, х5 - базисные неизвестные, а х2, х4 - параметры.
Обозначим для удобства х2 =С1, х4 =С2 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
.
Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .
Задание №10
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
Первую строку домножим на (-1) и сложим со второй и третьей.
Сложим вторую строку с третьей.
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,
Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.
Задание №11
Решить систему методом Гаусса и указать одно из базисных решений:
Решение
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~~
Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
.
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров.
Получаем, что х1, х4 - базисные неизвестные, а х2, х3 - параметры.
Обозначим для удобства х2 =С1, х3 =С2 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
.
Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .
Задание №12
Определите размерность пространства решений неоднородной системы уравнений, и указать какой-нибудь базис этого пространства.
Решение
а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:
Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:
~ ~
Эта матрица имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 2 = 3 параметров. Получаем, что х1, х2 - базисные неизвестные, а х3, х4, х5 - параметры.
Обозначим для удобства х3 =С1, х4 =С2 х5 =С3 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .
Задание №13
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
первую строку домножим на 3 и сложим со второй, затем сложим первую строку с третьей.
третью строку домножим на (-2) и сложим со второй.
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:
Решим эту систему с помощью формул Крамера.
Тогда:
Общее решение исходной системы имеет вид:
Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности
n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,
Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.
Задание №14
Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:
Решение
С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.
третью строку домножим на -2 и сложим со второй, затем помножим третью строку на -3 и сложим с первой.
Сложим первую строку со второй домножив на (-1), первую строку сложим с третьей.
Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров.
Получаем, что х1, х3, - базисные неизвестные, а х2, х4 - параметры.
Обозначим для удобства х2 =С1 , х4 =С2 и выразим базисные неизвестные через параметры.
Мы нашли общее решение исходной системы:
б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :
.
Ответ: а) общее решение:
,
где - произвольные числа
б) базисное решение: .
Размещено на Allbest.ru
Подобные документы
Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.
курсовая работа [154,5 K], добавлен 13.11.2012Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа [63,2 K], добавлен 24.10.2010Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция [24,2 K], добавлен 14.12.2010Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа [355,9 K], добавлен 28.02.2011Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.
контрольная работа [98,6 K], добавлен 19.04.2015Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.
контрольная работа [35,1 K], добавлен 24.06.2009Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа [69,7 K], добавлен 26.02.2012Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.
контрольная работа [161,0 K], добавлен 16.03.2010Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.
контрольная работа [200,4 K], добавлен 17.12.2010Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.
курсовая работа [220,0 K], добавлен 21.10.2011